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Abstract: In this paper, we build simple extreme analogues of Wang distortion

risk measures and we show how this makes it possible to consider many standard

measures of extreme risk, including the usual extreme Value-at-Risk or Tail-Value-

at-Risk, as well as the recently introduced extreme Conditional Tail Moment, in

a unified framework. We then introduce adapted estimators when the random

variable of interest has a heavy-tailed distribution and we prove their asymptotic

normality. The finite sample performance of our estimators is assessed in a simu-

lation study and we showcase our techniques on two sets of data.
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1. Introduction

Understanding the extremes of a random phenomenon is a major question in

various areas of statistical application. For instance, a stimulating topic comes

from the fact that extreme phenomena may have strong adverse effects on finan-

cial institutions or insurance companies, and the investigation of those effects on

financial returns makes up a large part of the recent extreme value literature; see

e.g. Drees (2003) and Rootzén and Tajvidi (1997). A further application in ac-

tuarial science is, for insurance companies operating in Europe, the computation

of their own solvency capital so as to fulfill the European Union Solvency II di-

rective requirement that an insurance company be able to survive the upcoming

calendar year with a probability not less than 0.995.

A commonly encountered problem when analyzing the extremes of a random

variable is that the straightforward empirical estimator of the quantile function is

not consistent at extreme levels. In many of the aforementioned applications, this

issue can be bypassed by modeling the problem using heavy-tailed distributions.

Roughly speaking, a distribution is said to be heavy-tailed if and only if its

related survival function decays like a power function at infinity; its so-called tail

index is then the parameter that controls its rate of convergence to 0 at infinity.
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A heuristic consequence of this is, if q denotes the underlying quantile function,

q(δ) ≈
(
1− β

1− δ

)γ

q(β)

when β, δ are close to 1 and γ is the tail index of the distribution. This implies

that the quantile function can be consistently estimated at an arbitrarily high

extreme level δ provided it can be consistently estimated at a much smaller level

β (usually by an empirical quantile) and a consistent estimator �γ of γ can be

computed (see the examples in Section 3 of de Haan and Ferreira (2006)). This

procedure, suggested by Weissman (1978), is arguably the simplest and most

popular device as far as extreme quantile estimation is concerned.

Of course, the estimation of a single extreme quantile, or Value-at-Risk (VaR)

as it is known in the actuarial and financial literature, only gives incomplete

information on the extremes of a random variable. This is one of the reasons

why other quantities, which take into account the whole right tail of the random

variable of interest, were developed and studied. Examples of such indicators

include the Tail Value-at-Risk (TVaR), also called Expected Shortfall, and the

Stop-loss Premium for reinsurance problems, see Embrechts, Klüppelberg and

Mikosch (1997) and McNeil, Frey and Embrechts (2005). When the related

survival function is continuous, these measures can be obtained by combining

the VaR and a Conditional Tail Moment (CTM), as introduced by El Methni,

Gardes and Girard (2014).

In our opinion, a way to encompass all these indicators in a unified frame-

work is to consider the flexible class of Wang distortion risk measures (DRMs),

introduced by Wang (1996). The aforementioned VaR, TVaR and CTM actually

are particular cases of Wang DRMs, and so are many other interesting risk mea-

sures such as the Wang transform (Wang (2000)), the tail standard deviation

premium calculation principle (Furman and Landsman (2006)) and the newly

introduced GlueVaR of Belles-Sampera, Guillén and Santolino (2014). In this

paper, we show how a simple linear transformation allows one to construct an

extreme analogue of a Wang DRM, and we consider its estimation under classical

conditions in extreme value theory. Our method, it appears, provides a unified

framework for the study of many frequently used extreme risk metrics, and we

shall underline in particular that several results of the literature can be recovered

from our results.

The outline of our paper is as follows. We first recall the definition of a

Wang DRM in Section 2. In Section 3, we present a simple way to build extreme

analogues of Wang DRMs and we consider their estimation. Section 4 is devoted
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to the study of the finite-sample performance of our estimators, and we showcase

our method on two data sets in Section 5. Section 6 concludes the paper with

a discussion of our results. The proofs of our results and some additional tables

and figures are deferred to the Supplementary Material.

2. Wang Risk Measures

In this paper, g : [0, 1] → [0, 1] is a distortion function if it is right-continuous

and nondecreasing with g(0) = 0 and g(1) = 1. The Wang DRM of a positive

random variable X with distortion function g is then

Rg(X) :=

∫ ∞

0
g(1− F (x))dx,

where F is the cumulative distribution function (cdf) of X. An alternative,

easily interpretable expression of Rg(X) can be found. Denote by q the quantile

function of X, q(α) = inf{x ≥ 0 |F (x) ≥ α} for all α ∈ (0, 1). Let m = inf{α ∈
[0, 1] | g(α) > 0} and M = sup{α ∈ [0, 1] | g(α) < 1}. Assume for the moment

that q is continuous on U∩(0, 1) with U an open interval containing [1−M, 1−m].

Noticing that F is the right-continuous inverse of q, a classical change-of-variables

formula and an integration by parts then entail that Rg(X), provided it is finite,

can be written as a Lebesgue-Stieltjes integral:

Rg(X) =

∫ 1

0
g(α)dq(1− α) =

∫ 1

0
q(1− α)dg(α).

A Wang DRM can thus be understood as a weighted version of the expectation

of the random variable X. Specific examples include the quantile at level β

or VaR(β), obtained by setting g(x) = I{x ≥ 1− β}, with I{·} denoting the

indicator function; the Tail Value-at-Risk TVaR(β) in the worst 100(1− β)% of

cases, the average of all quantiles exceeding VaR(β), is recovered by taking g(x) =

min(x/(1 − β), 1). In Table 1 of the Supplementary Material we give further

examples of classical DRMs and their distortion functions. Broadly speaking,

the class of Wang DRMs allows almost total flexibility as far as the weighting

scheme is considered. Besides, any spectral risk measure of X (see Cotter and

Dowd (2006)) is also a Wang DRM.

Furthermore, we note that if h : [0,∞) → [0,∞) is a strictly increasing,

continuously differentiable function, then the Wang DRM of h(X) with distortion

function g is

Rg(h(X)) =

∫ 1

0
h ◦ q(1− α)dg(α). (2.1)
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For instance, the choices g(x) = min(x/(1 − β), 1), β ∈ (0, 1) and h(x) = xa,

with a a positive real number, yield, after integrating by parts,

Rg(X
a) = CTMa(β) := E(Xa|X > q(β)),

provided F is continuous. This is the Conditional Tail Moment (CTM) of order a

of the random variable X, as introduced in El Methni, Gardes and Girard (2014).

Especially, when F is continuous, the TVaR coincides with the Conditional Tail

Expectation of X. Table 2 in the Supplementary Material gives several examples

of risk measures, such as the Stop-loss Premium (SP) that can be obtained by

combining a finite number of CTMs and the VaR.

In an actuarial context, a DRM is a coherent risk measure (see Artzner et

al. (1999)) if and only if the distortion function g is concave (Wirch and Hardy

(2002)). Coherency of a risk measure reflects in particular on the diversification

principle which asserts that aggregating two risks cannot be worse than handling

them separately (Artzner et al. (1999)). Especially, while the VaR is not a

coherent risk measure, the TVaR is, for instance, and this has already been noted

several times in the recent literature. It should be acknowledged nonetheless that

the VaR is subadditive (and therefore coherent) in the right tail under certain

conditions, see Dańıelsson et al. (2013).

The discussion about the relative merits of VaR, distortion risk measures,

and TVaR is not limited to coherency: although the popular saying in insurance

and finance is that TVaR is more conservative than VaR, Kou and Peng (2014)

argue that TVaR should actually be compared to the median shortfall (see Kou,

Peng and Heyde (2013)), and in this case the aforementioned conclusion is no

longer necessarily true. Cont, Deguest and Scandolo (2010) show that VaR is

more robust than TVaR against small departures from the model or from the

data, although it might be less aggregation-robust, see Embrechts, Wang and

Wang (2015). Linton and Xiao (2013) argue that the inference procedure for the

extreme VaR is easier than for the extreme TVaR because it does not depend on

tail heaviness (at least theoretically, for heavy-tailed data). There are concerns

related to the practical use of the VaR: for instance, in the Basel II and III ac-

cords (see Basel Committee on Banking Supervision (2006, 2011)) the VaR-based

risk measure used to compute capital requirements for trading books, whose re-

lationship to the 99.9% VaR is studied in Gordy (2003), has been criticized for

being procyclical (see Adrian and Brunnermeier (2008)), or, as Kou and Peng

(2014) point out, for being low in booms and high in crises, which is of course

a problem as far as regulation is concerned. Keppo, Kofman and Meng (2010)
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even show that the Basel accords capital requirements may sometimes increase

the default probability of a bank, contrary to the regulators’ original aim.

Yet another property of risk measures, namely elicitability (see Gneiting

(2011) and Ziegel (2015)), has gained prominence in recent years since it has been

argued to allow for correct forecast performance comparisons. A related concept

is consistency, introduced by Davis (2013). While the VaR is an elicitable (and

consistent) risk measure, the TVaR is not; more generally, it has been shown

recently by Kou and Peng (2014) and Wang and Ziegel (2015) that Wang DRMs

different from either the VaR or the simple expectation do not satisfy such a

property. An example of a risk measure that is both coherent and elicitable is

the expectile (Newey and Powell (1987); in a financial context, Kuan, Yeh and

Hsu (2009)) when it is larger than the expectation. The estimation of extreme

expectiles, which to the best of our knowledge cannot be written as a simple

combination of extreme Wang DRMs of X, is beyond the scope of this paper.

3. Framework

3.1. Extreme versions of Wang DRMs and their estimation

Extreme versions of Wang risk measures may be obtained as follows. Let g

be a distortion function and for every β ∈ (0, 1), consider the function gβ defined

by

∀y ∈ [0, 1], gβ(y) := g

(
min

[
1,

y

1− β

])
=





g

(
y

1− β

)
if y ≤ 1− β,

1 otherwise.

Such a function, which is deduced from g by a simple piecewise linear transform

of its argument, is thus constantly 1 on [1− β, 1]. Especially, if g gives rise to a

coherent Wang DRM, so does gβ . We now consider the Wang DRM of X with

distortion function gβ :

Rg,β(X) :=

∫ ∞

0
gβ(1− F (x))dx.

Because the inequality F (x) ≥ β is equivalent to x ≥ q(β), we have:

Rg,β(X) =

∫ ∞

0
g(1− Fβ(x))dx with Fβ(x) := max

[
0,

F (x)− β

1− β

]
. (3.1)

When q is continuous and strictly increasing in a neighborhood of β, then

Fβ(x) = max

[
0,

F (x)− F (q(β))

1− q(β)

]
= P(X ≤ x|X > q(β)),

which makes the interpretation of the risk measure Rg,β(X) clear: it is the Wang
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DRM of X given that it lies above the level q(β). In other words, we have shown

the following.

Proposition 1. Assume that for some t > 0, the function q is continuous and

strictly increasing on [t, 1). Then for all β > t and any strictly increasing and

continuously differentiable function h on (0,∞),

Rg,β(h(X)) = Rg(h(Xβ)) with P(Xβ ≤ x) = P(X ≤ x|X > q(β)).

When β ↑ 1, we may then think of this construction as a way to consider

Wang DRMs of the extremes of X.

Choosing h(x) = x makes it possible to recover some simple and widely used

extreme risk measures: the usual extreme VaR is obtained by setting g(x) =

I{x = 1}, and an extreme version of the TVaR is obtained by taking g(x) = x.

The same idea yields extreme analogues of the various risk measures shown in

Table 1 of the Supplementary Material. Furthermore, as highlighted in Section

2, choosing g(x) = x and h(x) = xa, a > 0, yields an extreme version of a CTM

of X, and therefore extreme versions of quantities such as those introduced in

Table 2 of the Supplementary Material can be studied.

It is worth noting at this point that the construction presented in this paper

is different from that of Vandewalle and Beirlant (2006). In the latter paper,

the authors consider the Wang DRM Rg of (X −R)I{X > R} = max(X −R, 0)

for large R. Their construction is thus adapted to the examination of excess-of-

loss reinsurance policies for extreme losses; their work is, by the way, restricted

to the case of a concave function g satisfying a regular variation condition in

a neighborhood of 0. It therefore excludes the simple VaR risk measure, for

instance, as well as the Conditional-Value-at-Risk (CVaR) and the GlueVaR of

Belles-Sampera, Guillén and Santolino (2014). Our idea is rather to consider a

conditional construction in the sense that we look at the Wang DRMs of X given

that it lies above a high level, with conditions as weak as possible on the function

g, in an effort to be able to examine the extremes of X in as unified a way as

possible.

3.2. Estimation using an asymptotic equivalent

We now give a first idea on how to estimate this type of extreme risk measure.

Let (X1, . . . , Xn) be a sample of independent and identically distributed copies

of a random variable X having cdf F , and let (βn) be a nondecreasing sequence

of real numbers belonging to (0, 1), which converges to 1. Assume for the time

EXTREME VERSIONS OF WANG RISK MEASURES AND THEIR ESTIMATION 7

being that X is Pareto distributed,

∀x > 1, P(X ≤ x) = 1− x−1/γ ,

where γ > 0 is the so-called tail index of X. In this case, the quantile function

of X is q(α) = (1− α)−γ for all α ∈ (0, 1). Using (2.1) in Section 2 and a simple

change of variables, we get:

Rg,βn
(h(X)) =

∫ 1

0
h ◦ q(1− α)dgβn

(α) =

∫ 1

0
h ◦ q(1− (1− βn)s)dg(s)

=

∫ 1

0
h(q(βn)s

−γ)dg(s). (3.2)

In this case, an estimator of Rg,βn
(h(X)) would then be obtained by plugging

estimators of q(βn) and γ in the right-hand side of (3.2).

Of course, in general, a strong relationship such as (3.2) cannot be expected

to hold, but it stays true to some extent when X has a heavy-tailed distribution,

the rigorous definition of which we recall now. A function f is said to be regularly

varying at infinity with index b ∈ R if f is nonnegative and for any x > 0,

f(tx)/f(t) → xb as t → ∞; the distribution of X is then said to be heavy-tailed

when 1 − F is regularly varying with index −1/γ < 0, the parameter γ being

the so-called tail index of the cdf F . This condition, which is a usual restriction

in extreme value theory (see de Haan and Ferreira (2006)), essentially says that

1−F (x) is in some sense close to x−1/γ when x is large. In the sequel, we therefore

assume that X is heavy-tailed. We also suppose that the quantile function q of X

is continuous and strictly increasing in a neighborhood of infinity, which makes

possible the use of (2.1) for n large enough.

Finally, we assume that the function h is a positive power of x: h(x) = xa,

where a > 0. This choice allows us to consider estimators of a large class of risk

measures of X, including the aforementioned CTM. In this case (see Lemma 3

in the Supplementary Material), it holds that

Rg,βn
(Xa) = [q(βn)]

a

∫ 1

0
s−aγdg(s)(1 + o(1)) as n → ∞,

provided
∫ 1
0 s−aγ−ηdg(s) < ∞ for some η > 0. This suggests that the above idea

for the construction of the estimator can still be used provided n is large enough.

Specifically, if �qn(α) = X⌈nα⌉,n denotes the empirical quantile function, in which

X1,n ≤ · · · ≤ Xn,n are the order statistics of the sample (X1, . . . , Xn) and ⌈·⌉ is

the ceiling function, we set

�RAE
g,βn

(Xa) := Xa
⌈nβn⌉,n

∫ 1

0
s−aγ̂ndg(s), (3.3)
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the following.

Proposition 1. Assume that for some t > 0, the function q is continuous and

strictly increasing on [t, 1). Then for all β > t and any strictly increasing and

continuously differentiable function h on (0,∞),

Rg,β(h(X)) = Rg(h(Xβ)) with P(Xβ ≤ x) = P(X ≤ x|X > q(β)).

When β ↑ 1, we may then think of this construction as a way to consider

Wang DRMs of the extremes of X.

Choosing h(x) = x makes it possible to recover some simple and widely used

extreme risk measures: the usual extreme VaR is obtained by setting g(x) =

I{x = 1}, and an extreme version of the TVaR is obtained by taking g(x) = x.

The same idea yields extreme analogues of the various risk measures shown in

Table 1 of the Supplementary Material. Furthermore, as highlighted in Section

2, choosing g(x) = x and h(x) = xa, a > 0, yields an extreme version of a CTM

of X, and therefore extreme versions of quantities such as those introduced in

Table 2 of the Supplementary Material can be studied.

It is worth noting at this point that the construction presented in this paper

is different from that of Vandewalle and Beirlant (2006). In the latter paper,

the authors consider the Wang DRM Rg of (X −R)I{X > R} = max(X −R, 0)

for large R. Their construction is thus adapted to the examination of excess-of-

loss reinsurance policies for extreme losses; their work is, by the way, restricted

to the case of a concave function g satisfying a regular variation condition in

a neighborhood of 0. It therefore excludes the simple VaR risk measure, for

instance, as well as the Conditional-Value-at-Risk (CVaR) and the GlueVaR of

Belles-Sampera, Guillén and Santolino (2014). Our idea is rather to consider a

conditional construction in the sense that we look at the Wang DRMs of X given

that it lies above a high level, with conditions as weak as possible on the function

g, in an effort to be able to examine the extremes of X in as unified a way as

possible.

3.2. Estimation using an asymptotic equivalent

We now give a first idea on how to estimate this type of extreme risk measure.

Let (X1, . . . , Xn) be a sample of independent and identically distributed copies

of a random variable X having cdf F , and let (βn) be a nondecreasing sequence

of real numbers belonging to (0, 1), which converges to 1. Assume for the time
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being that X is Pareto distributed,

∀x > 1, P(X ≤ x) = 1− x−1/γ ,

where γ > 0 is the so-called tail index of X. In this case, the quantile function

of X is q(α) = (1− α)−γ for all α ∈ (0, 1). Using (2.1) in Section 2 and a simple

change of variables, we get:

Rg,βn
(h(X)) =

∫ 1

0
h ◦ q(1− α)dgβn

(α) =

∫ 1

0
h ◦ q(1− (1− βn)s)dg(s)

=

∫ 1

0
h(q(βn)s

−γ)dg(s). (3.2)

In this case, an estimator of Rg,βn
(h(X)) would then be obtained by plugging

estimators of q(βn) and γ in the right-hand side of (3.2).

Of course, in general, a strong relationship such as (3.2) cannot be expected

to hold, but it stays true to some extent when X has a heavy-tailed distribution,

the rigorous definition of which we recall now. A function f is said to be regularly

varying at infinity with index b ∈ R if f is nonnegative and for any x > 0,

f(tx)/f(t) → xb as t → ∞; the distribution of X is then said to be heavy-tailed

when 1 − F is regularly varying with index −1/γ < 0, the parameter γ being

the so-called tail index of the cdf F . This condition, which is a usual restriction

in extreme value theory (see de Haan and Ferreira (2006)), essentially says that

1−F (x) is in some sense close to x−1/γ when x is large. In the sequel, we therefore

assume that X is heavy-tailed. We also suppose that the quantile function q of X

is continuous and strictly increasing in a neighborhood of infinity, which makes

possible the use of (2.1) for n large enough.

Finally, we assume that the function h is a positive power of x: h(x) = xa,

where a > 0. This choice allows us to consider estimators of a large class of risk

measures of X, including the aforementioned CTM. In this case (see Lemma 3

in the Supplementary Material), it holds that

Rg,βn
(Xa) = [q(βn)]

a

∫ 1

0
s−aγdg(s)(1 + o(1)) as n → ∞,

provided
∫ 1
0 s−aγ−ηdg(s) < ∞ for some η > 0. This suggests that the above idea

for the construction of the estimator can still be used provided n is large enough.

Specifically, if �qn(α) = X⌈nα⌉,n denotes the empirical quantile function, in which

X1,n ≤ · · · ≤ Xn,n are the order statistics of the sample (X1, . . . , Xn) and ⌈·⌉ is

the ceiling function, we set

�RAE
g,βn

(Xa) := Xa
⌈nβn⌉,n

∫ 1

0
s−aγ̂ndg(s), (3.3)
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where �γn is any consistent estimator of γ. This estimator is called the AE estima-

tor in what follows; notice that the integrability condition
∫ 1
0 s−aγ−ηdg(s) < ∞,

which should be thought of as a condition that guarantees the existence of the

considered Wang DRM, makes the estimator introduced here well-defined with

probability arbitrarily large when n is large enough, due to the consistency of

�γn. For a related but different idea, see Vandewalle and Beirlant (2006).

An appealing feature of the AE estimator is that it is easy to compute in

many cases:

• in the case of the Conditional Tail moment of order a, i.e. g(x) = x, the

estimator reads

�RAE
g,βn

(Xa) = Xa
⌈nβn⌉,n

∫ 1

0
s−aγ̂nds =

Xa
⌈nβn⌉,n

1− a�γn
when a�γn < 1. In particular, this provides an estimator different from the

sample average estimator of El Methni, Gardes and Girard (2014);

• in the case of the Dual Power risk measure, i.e. g(x) = 1− (1−x)1/α where

0 < α < 1 and a = 1, then when r := 1/α is an integer, the estimator is

�RAE
g,βn

(X) = X⌈nβn⌉,n

∫ 1

0
rs−γ̂n(1− s)r−1ds =

r!Γ(1− �γn)
Γ(1− �γn + r)

X⌈nβn⌉,n

provided �γn < 1. Here Γ is Euler’s Gamma function, Γ(x) =
∫∞
0 tx−1e−tdt;

• in the case of the Proportional Hazard transform, i.e. g(x) = xα where

0 < α < 1 and a = 1, the estimator is

�RAE
g,βn

(X) = X⌈nβn⌉,n

∫ 1

0
αsα−γ̂n−1ds =

αX⌈nβn⌉,n

α− �γn
provided �γn < α.

In order to examine the asymptotic properties of our estimator, it is necessary to

compute the order of magnitude of its asymptotic bias. To do so, it is convenient

to use an assumption on the left-continuous inverse U of 1/(1 − F ), defined by

U(t) = q(1− t−1). Specifically, we assume that U is regularly varying with index

γ and satisfies the following second-order condition (see de Haan and Ferreira

(2006)).

Condition C2(γ, ρ,A): for any x > 0, we have

lim
t→∞

1

A(t)

(
U(tx)

U(t)
− xγ

)
= xγ

xρ − 1

ρ

EXTREME VERSIONS OF WANG RISK MEASURES AND THEIR ESTIMATION 9

with γ > 0, ρ ≤ 0, and A is a Borel measurable function that converges to 0 and

has constant sign. When ρ = 0, the right-hand side is to be read as xγ log x.

We highlight that in condition C2(γ, ρ, A), the function |A| is necessarily regularly

varying at infinity with index ρ (see Theorem 2.3.3 in de Haan and Ferreira

(2006)). Such an assumption is classical when studying the rate of convergence

of an estimator of a parameter describing the extremes of a random variable, and

all standard examples of heavy-tailed distributions satisfy this condition (see e.g.

the examples pp.61–62 in de Haan and Ferreira (2006)).

Theorem 1. Assume that U is regularly varying with index γ > 0. Assume

further that βn → 1 and n(1− βn) → ∞.

1. Pick a distortion function g and a > 0. If there is some η > 0 such that∫ 1

0
s−aγ−ηdg(s) < ∞

and �γn is a consistent estimator of γ, then

�RAE
g,βn

(Xa)

Rg,βn
(Xa)

− 1
P−→ 0 as n → ∞.

2. Assume moreover that U satisfies condition C2(γ, ρ,A) and
√

n(1− βn)A((1−
βn)

−1) → λ ∈ R. Pick a d−tuple of distortion functions (g1, . . . , gd) and

a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) < ∞,

then, provided we have the joint convergence
√

n(1− βn)

(
�γn − γ,

X⌈nβn⌉,n

q(βn)
− 1

)
d−→ (Γ,Θ)

it holds that the random vector

√
n(1− βn)

( �RAE
gj ,βn

(Xaj )

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

asymptotically has the joint distribution of

aj


−λ

∫ 1

0
s−ajγ((s−ρ−1)/ρ)dgj(s)

∫ 1

0
s−ajγdgj(s)

+

∫ 1

0
s−ajγ log(1/s)dgj(s)

∫ 1

0
s−ajγdgj(s)

Γ+Θ







1≤j≤d

.

Because of the restriction n(1− βn) → ∞, Theorem 1 only ensures that the
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where �γn is any consistent estimator of γ. This estimator is called the AE estima-

tor in what follows; notice that the integrability condition
∫ 1
0 s−aγ−ηdg(s) < ∞,

which should be thought of as a condition that guarantees the existence of the

considered Wang DRM, makes the estimator introduced here well-defined with

probability arbitrarily large when n is large enough, due to the consistency of

�γn. For a related but different idea, see Vandewalle and Beirlant (2006).

An appealing feature of the AE estimator is that it is easy to compute in

many cases:

• in the case of the Conditional Tail moment of order a, i.e. g(x) = x, the

estimator reads

�RAE
g,βn

(Xa) = Xa
⌈nβn⌉,n

∫ 1

0
s−aγ̂nds =

Xa
⌈nβn⌉,n

1− a�γn
when a�γn < 1. In particular, this provides an estimator different from the

sample average estimator of El Methni, Gardes and Girard (2014);

• in the case of the Dual Power risk measure, i.e. g(x) = 1− (1−x)1/α where

0 < α < 1 and a = 1, then when r := 1/α is an integer, the estimator is

�RAE
g,βn

(X) = X⌈nβn⌉,n

∫ 1

0
rs−γ̂n(1− s)r−1ds =

r!Γ(1− �γn)
Γ(1− �γn + r)

X⌈nβn⌉,n

provided �γn < 1. Here Γ is Euler’s Gamma function, Γ(x) =
∫∞
0 tx−1e−tdt;

• in the case of the Proportional Hazard transform, i.e. g(x) = xα where

0 < α < 1 and a = 1, the estimator is

�RAE
g,βn

(X) = X⌈nβn⌉,n

∫ 1

0
αsα−γ̂n−1ds =

αX⌈nβn⌉,n

α− �γn
provided �γn < α.

In order to examine the asymptotic properties of our estimator, it is necessary to

compute the order of magnitude of its asymptotic bias. To do so, it is convenient

to use an assumption on the left-continuous inverse U of 1/(1 − F ), defined by

U(t) = q(1− t−1). Specifically, we assume that U is regularly varying with index

γ and satisfies the following second-order condition (see de Haan and Ferreira

(2006)).

Condition C2(γ, ρ,A): for any x > 0, we have

lim
t→∞

1

A(t)

(
U(tx)

U(t)
− xγ

)
= xγ

xρ − 1

ρ
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with γ > 0, ρ ≤ 0, and A is a Borel measurable function that converges to 0 and

has constant sign. When ρ = 0, the right-hand side is to be read as xγ log x.

We highlight that in condition C2(γ, ρ, A), the function |A| is necessarily regularly

varying at infinity with index ρ (see Theorem 2.3.3 in de Haan and Ferreira

(2006)). Such an assumption is classical when studying the rate of convergence

of an estimator of a parameter describing the extremes of a random variable, and

all standard examples of heavy-tailed distributions satisfy this condition (see e.g.

the examples pp.61–62 in de Haan and Ferreira (2006)).

Theorem 1. Assume that U is regularly varying with index γ > 0. Assume

further that βn → 1 and n(1− βn) → ∞.

1. Pick a distortion function g and a > 0. If there is some η > 0 such that∫ 1

0
s−aγ−ηdg(s) < ∞

and �γn is a consistent estimator of γ, then

�RAE
g,βn

(Xa)

Rg,βn
(Xa)

− 1
P−→ 0 as n → ∞.

2. Assume moreover that U satisfies condition C2(γ, ρ,A) and
√

n(1− βn)A((1−
βn)

−1) → λ ∈ R. Pick a d−tuple of distortion functions (g1, . . . , gd) and

a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) < ∞,

then, provided we have the joint convergence
√

n(1− βn)

(
�γn − γ,

X⌈nβn⌉,n

q(βn)
− 1

)
d−→ (Γ,Θ)

it holds that the random vector

√
n(1− βn)

( �RAE
gj ,βn

(Xaj )

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

asymptotically has the joint distribution of

aj


−λ

∫ 1

0
s−ajγ((s−ρ−1)/ρ)dgj(s)

∫ 1

0
s−ajγdgj(s)

+

∫ 1

0
s−ajγ log(1/s)dgj(s)

∫ 1

0
s−ajγdgj(s)

Γ+Θ







1≤j≤d

.

Because of the restriction n(1− βn) → ∞, Theorem 1 only ensures that the
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estimator consistently estimates so-called intermediate (i.e. not “too extreme”)

Wang DRMs. This restriction will be lifted in Section 3.4 by the introduction of

an estimator adapted to the extreme-value framework.

3.3. Estimation using a functional plug-in estimator

Our idea here is to introduce an alternative estimator obtained by making a

single approximation instead of the two successive ones

q(1− (1− βn)s) ≈ q(βn)s
−γ ≈ X⌈nβn⌉,ns

−γ̂n ,

which we can then expect to perform better than the AE estimator. Recall that

Rg,βn
(h(X)) =

∫ 1

0
h ◦ q(1− (1− βn)s)dg(s).

We consider the statistic obtained by replacing the function s �→ q(1− (1−βn)s)

by its empirical counterpart s �→ �qn(1 − (1 − βn)s) = X⌈n(1−(1−βn)s)⌉,n. This

yields the functional plug-in estimator

�RPL
g,βn

(h(X)) =

∫ 1

0
h ◦ �qn(1− (1− βn)s)dg(s) (3.4)

which we call the PL estimator. Contrary to the AE estimator, the PL estimator

is well-defined and finite with probability 1, and does not require an external

estimator of γ. Its expression is a bit more involved though; in the case when

n(1− βn) is actually a positive integer and g is continuous on [0, 1], it is easy to

show that it takes the simpler form

�RPL
g,βn

(h(X)) = h(Xnβn+1,n)+

n(1−βn)−1∑
i=1

g

(
i

n(1− βn)

)
[h(Xn−i+1,n)−h(Xn−i,n)].

Our aim is now to examine the asymptotic properties of the PL estimator:

Theorem 2. Assume that U satisfies condition C2(γ, ρ,A). Assume further that

βn → 1, n(1−βn) → ∞ and
√

n(1− βn)A((1−βn)
−1) → λ ∈ R. Pick a d−tuple

of distortion functions (g1, . . . , gd) and a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) < ∞,

then
√

n(1− βn)

( �RPL
gj ,βn

(Xaj )

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

d−→ N (0, V )

with V being the d× d matrix whose (i, j)−th entry is

EXTREME VERSIONS OF WANG RISK MEASURES AND THEIR ESTIMATION 11

Vi,j = aiajγ
2

∫
[0,1]2 min(s, t)s−aiγ−1t−ajγ−1dgi(s)dgj(t)∫ 1

0 s−aiγdgi(s)
∫ 1
0 t−ajγdgj(t)

.

This asymptotic normality result, unsurprisingly, is also restricted to the

case n(1−βn) → ∞, as was Theorem 1. We can draw an interesting consequence

from Theorem 2: for b ∈ R, consider the class Eb([0, 1]) of those continuously

differentiable functions on (0, 1) such that s−b|g′(s)| is bounded for s in a neigh-

borhood of 0. For instance, any polynomial function belongs to E0([0, 1]), and
the Proportional Hazard (Wang (1996)) distortion function g(s) = sα, α ∈ (0, 1),

belongs to Eα−1([0, 1]).

Corollary 1. Assume that U satisfies condition C2(γ, ρ,A). Assume further

that βn → 1, n(1 − βn) → ∞ and
√

n(1− βn)A((1 − βn)
−1) → λ ∈ R. Pick a

d−tuple of distortion functions (g1, . . . , gd) and a1, . . . , ad > 0. Assume there are

b1, . . . , bd ∈ R such that for all j ∈ {1, . . . , d}, we have gj ∈ Ebj ([0, 1]). If

∀j ∈ {1, . . . , d}, γ <
2bj + 1

2aj
,

then
√

n(1− βn)

( �RPL
gj ,βn

(Xaj )

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

d−→ N (0, V )

with V as in Theorem 2.

In particular, the condition on γ we get for the asymptotic normality of the

CTM of order a, obtained with g(x) = x and thus g ∈ E0([0, 1]), is γ < 1/2a,

which is the condition obtained by El Methni, Gardes and Girard (2014). One

may also readily check that the asymptotic variance is the same as in Theorem

1 there.

Just like the AE estimator, the PL estimator is only consistent when (βn)

is an intermediate sequence. Our purpose is now to remove this restriction by

using the extrapolation methodology of Weissman (1978).

3.4. Estimating extreme risk measures of arbitrary order

For any s ∈ (0, 1) and a > 0 we have

[q(1− (1− δn)s)]
a =

(
1− βn
1− δn

)aγ

[q(1− (1− βn)s)]
a(1 + o(1))

as n → ∞, as a consequence of the regular variation property of U , and provided

that (βn) is a sequence converging to 1 such that (1 − δn)/(1 − βn) converges

to a positive limit. Integrating this relationship with respect to the distortion
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estimator consistently estimates so-called intermediate (i.e. not “too extreme”)

Wang DRMs. This restriction will be lifted in Section 3.4 by the introduction of

an estimator adapted to the extreme-value framework.

3.3. Estimation using a functional plug-in estimator

Our idea here is to introduce an alternative estimator obtained by making a

single approximation instead of the two successive ones

q(1− (1− βn)s) ≈ q(βn)s
−γ ≈ X⌈nβn⌉,ns

−γ̂n ,

which we can then expect to perform better than the AE estimator. Recall that

Rg,βn
(h(X)) =

∫ 1

0
h ◦ q(1− (1− βn)s)dg(s).

We consider the statistic obtained by replacing the function s �→ q(1− (1−βn)s)

by its empirical counterpart s �→ �qn(1 − (1 − βn)s) = X⌈n(1−(1−βn)s)⌉,n. This

yields the functional plug-in estimator

�RPL
g,βn

(h(X)) =

∫ 1

0
h ◦ �qn(1− (1− βn)s)dg(s) (3.4)

which we call the PL estimator. Contrary to the AE estimator, the PL estimator

is well-defined and finite with probability 1, and does not require an external

estimator of γ. Its expression is a bit more involved though; in the case when

n(1− βn) is actually a positive integer and g is continuous on [0, 1], it is easy to

show that it takes the simpler form

�RPL
g,βn

(h(X)) = h(Xnβn+1,n)+

n(1−βn)−1∑
i=1

g

(
i

n(1− βn)

)
[h(Xn−i+1,n)−h(Xn−i,n)].

Our aim is now to examine the asymptotic properties of the PL estimator:

Theorem 2. Assume that U satisfies condition C2(γ, ρ,A). Assume further that

βn → 1, n(1−βn) → ∞ and
√

n(1− βn)A((1−βn)
−1) → λ ∈ R. Pick a d−tuple

of distortion functions (g1, . . . , gd) and a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) < ∞,

then
√

n(1− βn)

( �RPL
gj ,βn

(Xaj )

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

d−→ N (0, V )

with V being the d× d matrix whose (i, j)−th entry is
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Vi,j = aiajγ
2

∫
[0,1]2 min(s, t)s−aiγ−1t−ajγ−1dgi(s)dgj(t)∫ 1

0 s−aiγdgi(s)
∫ 1
0 t−ajγdgj(t)

.

This asymptotic normality result, unsurprisingly, is also restricted to the

case n(1−βn) → ∞, as was Theorem 1. We can draw an interesting consequence

from Theorem 2: for b ∈ R, consider the class Eb([0, 1]) of those continuously

differentiable functions on (0, 1) such that s−b|g′(s)| is bounded for s in a neigh-

borhood of 0. For instance, any polynomial function belongs to E0([0, 1]), and
the Proportional Hazard (Wang (1996)) distortion function g(s) = sα, α ∈ (0, 1),

belongs to Eα−1([0, 1]).

Corollary 1. Assume that U satisfies condition C2(γ, ρ,A). Assume further

that βn → 1, n(1 − βn) → ∞ and
√

n(1− βn)A((1 − βn)
−1) → λ ∈ R. Pick a

d−tuple of distortion functions (g1, . . . , gd) and a1, . . . , ad > 0. Assume there are

b1, . . . , bd ∈ R such that for all j ∈ {1, . . . , d}, we have gj ∈ Ebj ([0, 1]). If

∀j ∈ {1, . . . , d}, γ <
2bj + 1

2aj
,

then
√

n(1− βn)

( �RPL
gj ,βn

(Xaj )

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

d−→ N (0, V )

with V as in Theorem 2.

In particular, the condition on γ we get for the asymptotic normality of the

CTM of order a, obtained with g(x) = x and thus g ∈ E0([0, 1]), is γ < 1/2a,

which is the condition obtained by El Methni, Gardes and Girard (2014). One

may also readily check that the asymptotic variance is the same as in Theorem

1 there.

Just like the AE estimator, the PL estimator is only consistent when (βn)

is an intermediate sequence. Our purpose is now to remove this restriction by

using the extrapolation methodology of Weissman (1978).

3.4. Estimating extreme risk measures of arbitrary order

For any s ∈ (0, 1) and a > 0 we have

[q(1− (1− δn)s)]
a =

(
1− βn
1− δn

)aγ

[q(1− (1− βn)s)]
a(1 + o(1))

as n → ∞, as a consequence of the regular variation property of U , and provided

that (βn) is a sequence converging to 1 such that (1 − δn)/(1 − βn) converges

to a positive limit. Integrating this relationship with respect to the distortion
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measure dg therefore suggests that

Rg,δn(X
a) =

(
1− βn
1− δn

)aγ

Rg,βn
(Xa)(1 + o(1)),

see Lemma 5 in the Supplementary Material for a stronger and rigorous state-

ment. A way to design an adapted estimator of the extreme risk measure

Rg,δn(X
a), when n(1 − δn) → c < ∞, is thus to take a sequence (βn) such that

n(1− βn) → ∞, and to plug in any relatively consistent estimator �Rg,βn
(Xa) of

the intermediate Wang DRM Rg,βn
(Xa). This yields a Weissman-type estimator

of Rg,δn(X
a) (see Weissman (1978)):

�RW
g,δn(X

a;βn) :=

(
1− βn
1− δn

)aγ̂n �Rg,βn
(Xa).

This principle can of course be applied to the AE and PL estimators to obtain

two different extrapolated estimators. Our asymptotic result on this class of

estimators is the following.

Theorem 3. Assume that U satisfies condition C2(γ, ρ, A), with ρ < 0. Assume

further that βn, δn → 1, n(1−βn) → ∞, (1−δn)/(1−βn) → 0,
√

n(1−βn)/ log[(1−
βn)/(1 − δn)] → ∞ and

√
n(1− βn)A((1 − βn)

−1) → λ ∈ R. Pick a d−tuple of

distortion functions (g1, . . . , gd) and a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) < ∞

and
√

n(1− βn)(�γn − γ)
d−→ ξ, then provided

∀j ∈ {1, . . . , d},
√

n(1− βn)

( �Rgj ,βn
(Xaj )

Rgj ,βn
(Xaj )

− 1

)
= OP(1)

we have that

√
n(1− βn)

log([1− βn]/[1− δn])

( �RW
gj ,δn

(Xaj ;βn)

Rgj ,δn(X
aj )

− 1

)

1≤j≤d

d−→




a1ξ
...

adξ


 .

In the particular case d = 1, a = 1 and g(x) = 0 if x < 1, we recover the

asymptotic result about Weissman’s estimator, see Theorem 4.3.8 in de Haan and

Ferreira (2006); for g(x) = x and d = 1, we recover a result similar to Theorem 2

of El Methni, Gardes and Girard (2014) if the intermediate estimator is the PL

estimator.

In practical situations, the estimation of the parameter γ is of course a central

question. Classical tail index estimators (see Section 3 of de Haan and Ferreira

(2006)), when computed with the top 100(1 − βn)% of the data, converge at
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the required rate
√

n(1− βn). The choice of the intermediate level βn, which is

crucial, is a difficult problem however, and we discuss a possible selection rule in

our simulation study.

4. Simulation Study

The finite-sample performance of our estimators is illustrated in a simulation

study, where we considered a couple of classical heavy-tailed distributions and

three different distortion functions g. The distributions studied were: the Fréchet

distribution: F (x) = exp(−x−1/γ), x > 0; and the Burr distribution: F (x) =

1− (1 + x−ρ/γ)1/ρ, x > 0 (here ρ ≤ 0). Both of these distributions have extreme

value index γ and their respective second-order parameters are −1 and ρ, see

e.g. Beirlant et al. (2004). We considered the following distortion functions: the

Conditional Tail Expectation (CTE) function g(x) = x; the Dual Power (DP)

function g(x) = 1 − (1 − x)1/α with α ∈ (0, 1) (when r := 1/α is a positive

integer, the related DRM is the expectation of max(X1, . . . , Xr) for independent

copies X1, . . . , Xr of X), and the Proportional Hazard (PH) transform function

g(x) = xα, α ∈ (0, 1).

We first discuss the choice of the level βn. This step is crucial: choosing βn
too close to 1 increases the variance of the estimator dramatically, while choosing

βn too far from 1 results in biased estimates. In many cases, the analysis starts

by drawing a plot of one or several tail index estimators, and then by selecting

βn in a region contained in the extremes of the sample where the estimation is

“stable”. Our purpose here is to suggest an automatic such choice. We work

with the popular Hill estimator (Hill (1975)):

�γβn
= Hn(⌈n(1− βn)⌉) with Hn(k) =

1

k

k∑
i=1

log (Xn−i+1,n)− log (Xn−k,n) ,

which we shall also use to estimate the extreme value index γ. Our idea is to

detect the last stability region in the Hill plot β �→ �γβ ; choosing β in this region

most often realizes a decent bias-variance trade-off. Specifically:

• choose β0 > 0 and a window parameter h > 1/n;

• for β0 < β < 1 − h, let I(β, h) = [β, β + h] and compute the standard

deviation σ(β, h) of the set of estimates {�γb, b ∈ I(β, h)};

• if β �→ σ(β, h) is monotonic, let βlm be β0 if it is increasing and 1− h if it

is decreasing;

918



12 JONATHAN EL METHNI AND GILLES STUPFLER

measure dg therefore suggests that

Rg,δn(X
a) =

(
1− βn
1− δn

)aγ

Rg,βn
(Xa)(1 + o(1)),

see Lemma 5 in the Supplementary Material for a stronger and rigorous state-

ment. A way to design an adapted estimator of the extreme risk measure

Rg,δn(X
a), when n(1 − δn) → c < ∞, is thus to take a sequence (βn) such that

n(1− βn) → ∞, and to plug in any relatively consistent estimator �Rg,βn
(Xa) of

the intermediate Wang DRM Rg,βn
(Xa). This yields a Weissman-type estimator

of Rg,δn(X
a) (see Weissman (1978)):

�RW
g,δn(X

a;βn) :=

(
1− βn
1− δn

)aγ̂n �Rg,βn
(Xa).

This principle can of course be applied to the AE and PL estimators to obtain

two different extrapolated estimators. Our asymptotic result on this class of

estimators is the following.

Theorem 3. Assume that U satisfies condition C2(γ, ρ, A), with ρ < 0. Assume

further that βn, δn → 1, n(1−βn) → ∞, (1−δn)/(1−βn) → 0,
√

n(1−βn)/ log[(1−
βn)/(1 − δn)] → ∞ and

√
n(1− βn)A((1 − βn)

−1) → λ ∈ R. Pick a d−tuple of

distortion functions (g1, . . . , gd) and a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0
s−ajγ−1/2−ηdgj(s) < ∞

and
√

n(1− βn)(�γn − γ)
d−→ ξ, then provided

∀j ∈ {1, . . . , d},
√

n(1− βn)

( �Rgj ,βn
(Xaj )

Rgj ,βn
(Xaj )

− 1

)
= OP(1)

we have that

√
n(1− βn)

log([1− βn]/[1− δn])

( �RW
gj ,δn

(Xaj ;βn)

Rgj ,δn(X
aj )

− 1

)

1≤j≤d

d−→




a1ξ
...

adξ


 .

In the particular case d = 1, a = 1 and g(x) = 0 if x < 1, we recover the

asymptotic result about Weissman’s estimator, see Theorem 4.3.8 in de Haan and

Ferreira (2006); for g(x) = x and d = 1, we recover a result similar to Theorem 2

of El Methni, Gardes and Girard (2014) if the intermediate estimator is the PL

estimator.

In practical situations, the estimation of the parameter γ is of course a central

question. Classical tail index estimators (see Section 3 of de Haan and Ferreira

(2006)), when computed with the top 100(1 − βn)% of the data, converge at
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the required rate
√

n(1− βn). The choice of the intermediate level βn, which is

crucial, is a difficult problem however, and we discuss a possible selection rule in

our simulation study.

4. Simulation Study

The finite-sample performance of our estimators is illustrated in a simulation

study, where we considered a couple of classical heavy-tailed distributions and

three different distortion functions g. The distributions studied were: the Fréchet

distribution: F (x) = exp(−x−1/γ), x > 0; and the Burr distribution: F (x) =

1− (1 + x−ρ/γ)1/ρ, x > 0 (here ρ ≤ 0). Both of these distributions have extreme

value index γ and their respective second-order parameters are −1 and ρ, see

e.g. Beirlant et al. (2004). We considered the following distortion functions: the

Conditional Tail Expectation (CTE) function g(x) = x; the Dual Power (DP)

function g(x) = 1 − (1 − x)1/α with α ∈ (0, 1) (when r := 1/α is a positive

integer, the related DRM is the expectation of max(X1, . . . , Xr) for independent

copies X1, . . . , Xr of X), and the Proportional Hazard (PH) transform function

g(x) = xα, α ∈ (0, 1).

We first discuss the choice of the level βn. This step is crucial: choosing βn
too close to 1 increases the variance of the estimator dramatically, while choosing

βn too far from 1 results in biased estimates. In many cases, the analysis starts

by drawing a plot of one or several tail index estimators, and then by selecting

βn in a region contained in the extremes of the sample where the estimation is

“stable”. Our purpose here is to suggest an automatic such choice. We work

with the popular Hill estimator (Hill (1975)):

�γβn
= Hn(⌈n(1− βn)⌉) with Hn(k) =

1

k

k∑
i=1

log (Xn−i+1,n)− log (Xn−k,n) ,

which we shall also use to estimate the extreme value index γ. Our idea is to

detect the last stability region in the Hill plot β �→ �γβ ; choosing β in this region

most often realizes a decent bias-variance trade-off. Specifically:

• choose β0 > 0 and a window parameter h > 1/n;

• for β0 < β < 1 − h, let I(β, h) = [β, β + h] and compute the standard

deviation σ(β, h) of the set of estimates {�γb, b ∈ I(β, h)};

• if β �→ σ(β, h) is monotonic, let βlm be β0 if it is increasing and 1− h if it

is decreasing;
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• otherwise, denote by βlm the last value of β such that σ(β, h) is locally

minimal and its value is less than the average value of the function β �→
σ(β, h);

• choose β∗ such that �γβ∗ is the median of {�γb, b ∈ I(βlm, h)}.

This procedure is somewhat related to others in the extreme value literature (see

e.g. Resnick and Stărică (1997), Drees, de Haan and Resnick (2000), de Sousa and

Michailidis (2004), Frahm, Junker and Schmidt (2005), Stupfler (2013), Gardes

and Stupfler (2014) and Stupfler (2016)). An illustration of this technique on a

simulated data set is given in Figure 1 of the Supplementary Material.

In each case, we carried out our computations on N = 5, 000 independent

samples of n ∈ {100, 300} independent copies of X; our choice procedure was

conducted with β0 = 0.5 and h = 0.1. We recorded relative mean squared errors

(MSEs):

MSE( �RW
g,δ) =

1

N

N∑
i=1

( �RW
g,δ(X;β∗

i )

Rg,δ(X)
− 1

)2

at δ = 0.99, 0.995 and 0.999 (here β∗
i is the chosen intermediate level for the

i−th sample). Our results are reported in Tables 1–3. It appears on these

examples that the PL estimator performs at least as well as the AE estimator,

as expected; besides, the PL estimator performs markedly better than the AE

estimator for smaller samples or when the behavior of g′ around 0 becomes more

challenging, as can be seen by comparing the results obtained when n = 100

for the DP(1/3) or PH(2/3) risk measure. Results deteriorate when γ increases:

a possible explanation lies in the fact that the asymptotic distribution of our

estimator is essentially that of �γn by Theorem 3, which is a Gaussian distribution

with variance proportional to γ2 (see Theorem 3.2.5 in de Haan and Ferreira

(2006)). Results however improve when |ρ| increases, which was expected since

the larger is |ρ|, the smaller is the bias in the estimation.

Besides, the PL estimator seems to be at least somewhat robust to a violation

of the integrability condition in Theorems 2–3, as can be seen on the example

of the PH(2/3) risk measure with γ = 1/4. When comparing the results for the

CTE and PH(2/3) risk measures, it can also be seen that results deteriorate as

the limit of g′(s) as s ↓ 0 increases. This likely comes from the fact that an

increasing such limit amplifies the error made by the empirical quantile function,

all the more so as the latter error itself increases when estimating quantiles whose

order is very close to 1. The AE estimator, meanwhile, could have been thought
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Table 1. Relative MSE for both estimators, case of the CTE.

Value of γ δ Estimator
Fréchet Burr ρ = −1 Burr ρ = −2

n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99
AE 0.0325 0.0098 0.0374 0.0133 0.0291 0.0095
PL 0.0317 0.0097 0.0357 0.0127 0.0286 0.0094

0.995
AE 0.0457 0.0137 0.0540 0.0191 0.0401 0.0130
PL 0.0446 0.0135 0.0518 0.0184 0.0395 0.0129

0.999
AE 0.0891 0.0258 0.1115 0.0386 0.0752 0.0236
PL 0.0871 0.0255 0.1073 0.0375 0.0741 0.0235

γ = 1/5

0.99
AE 0.0519 0.0164 0.0627 0.0199 0.0472 0.0140
PL 0.0502 0.0161 0.0588 0.0191 0.0461 0.0138

0.995
AE 0.0739 0.0229 0.0915 0.0289 0.0657 0.0191
PL 0.0717 0.0225 0.0862 0.0277 0.0643 0.0189

0.999
AE 0.1500 0.0437 0.1952 0.0589 0.1266 0.0349
PL 0.1461 0.0430 0.1850 0.0569 0.1239 0.0344

γ = 1/4

0.99
AE 0.0973 0.0285 0.1028 0.0349 0.0834 0.0248
PL 0.0900 0.0278 0.0944 0.0332 0.0835 0.0246

0.995
AE 0.1411 0.0402 0.1515 0.0509 0.1190 0.0341
PL 0.1305 0.0392 0.1395 0.0484 0.1202 0.0337

0.999
AE 0.3039 0.0787 0.3350 0.1063 0.2492 0.0631
PL 0.2807 0.0768 0.3102 0.1017 0.2604 0.0622

Table 2. Relative MSE for both estimators, case of the DP(1/3).

Value of γ δ Estimator
Fréchet Burr ρ = −1 Burr ρ = −2

n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99
AE 0.0487 0.0169 0.0629 0.0215 0.0458 0.0140
PL 0.0448 0.0160 0.0549 0.0194 0.0443 0.0142

0.995
AE 0.0653 0.0225 0.0866 0.0295 0.0609 0.0182
PL 0.0597 0.0212 0.0757 0.0267 0.0586 0.0184

0.999
AE 0.1177 0.0394 0.1658 0.0549 0.1084 0.0307
PL 0.1073 0.0371 0.1456 0.0499 0.1033 0.0306

γ = 1/5

0.99
AE 0.0808 0.0261 0.0988 0.0336 0.0680 0.0211
PL 0.0743 0.0256 0.0852 0.0304 0.0652 0.0217

0.995
AE 0.1100 0.0349 0.1376 0.0463 0.0907 0.0276
PL 0.1004 0.0339 0.1187 0.0417 0.0862 0.0281

0.999
AE 0.2078 0.0620 0.2723 0.0870 0.1630 0.0468
PL 0.1879 0.0598 0.2362 0.0785 0.1535 0.0468

γ = 1/4

0.99
AE 0.1558 0.0449 0.2175 0.0570 0.1327 0.0376
PL 0.1397 0.0439 0.1707 0.0501 0.1252 0.0388

0.995
AE 0.2182 0.0602 0.3161 0.0787 0.1818 0.0494
PL 0.1932 0.0582 0.2471 0.0690 0.1698 0.0503

0.999
AE 0.4485 0.1086 0.7089 0.1508 0.3561 0.0854
PL 0.3899 0.1038 0.5482 0.1323 0.3279 0.0852
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• otherwise, denote by βlm the last value of β such that σ(β, h) is locally

minimal and its value is less than the average value of the function β �→
σ(β, h);

• choose β∗ such that �γβ∗ is the median of {�γb, b ∈ I(βlm, h)}.

This procedure is somewhat related to others in the extreme value literature (see

e.g. Resnick and Stărică (1997), Drees, de Haan and Resnick (2000), de Sousa and

Michailidis (2004), Frahm, Junker and Schmidt (2005), Stupfler (2013), Gardes

and Stupfler (2014) and Stupfler (2016)). An illustration of this technique on a

simulated data set is given in Figure 1 of the Supplementary Material.

In each case, we carried out our computations on N = 5, 000 independent

samples of n ∈ {100, 300} independent copies of X; our choice procedure was

conducted with β0 = 0.5 and h = 0.1. We recorded relative mean squared errors

(MSEs):

MSE( �RW
g,δ) =

1

N

N∑
i=1

( �RW
g,δ(X;β∗

i )

Rg,δ(X)
− 1

)2

at δ = 0.99, 0.995 and 0.999 (here β∗
i is the chosen intermediate level for the

i−th sample). Our results are reported in Tables 1–3. It appears on these

examples that the PL estimator performs at least as well as the AE estimator,

as expected; besides, the PL estimator performs markedly better than the AE

estimator for smaller samples or when the behavior of g′ around 0 becomes more

challenging, as can be seen by comparing the results obtained when n = 100

for the DP(1/3) or PH(2/3) risk measure. Results deteriorate when γ increases:

a possible explanation lies in the fact that the asymptotic distribution of our

estimator is essentially that of �γn by Theorem 3, which is a Gaussian distribution

with variance proportional to γ2 (see Theorem 3.2.5 in de Haan and Ferreira

(2006)). Results however improve when |ρ| increases, which was expected since

the larger is |ρ|, the smaller is the bias in the estimation.

Besides, the PL estimator seems to be at least somewhat robust to a violation

of the integrability condition in Theorems 2–3, as can be seen on the example

of the PH(2/3) risk measure with γ = 1/4. When comparing the results for the

CTE and PH(2/3) risk measures, it can also be seen that results deteriorate as

the limit of g′(s) as s ↓ 0 increases. This likely comes from the fact that an

increasing such limit amplifies the error made by the empirical quantile function,

all the more so as the latter error itself increases when estimating quantiles whose

order is very close to 1. The AE estimator, meanwhile, could have been thought
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Table 1. Relative MSE for both estimators, case of the CTE.

Value of γ δ Estimator
Fréchet Burr ρ = −1 Burr ρ = −2

n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99
AE 0.0325 0.0098 0.0374 0.0133 0.0291 0.0095
PL 0.0317 0.0097 0.0357 0.0127 0.0286 0.0094

0.995
AE 0.0457 0.0137 0.0540 0.0191 0.0401 0.0130
PL 0.0446 0.0135 0.0518 0.0184 0.0395 0.0129

0.999
AE 0.0891 0.0258 0.1115 0.0386 0.0752 0.0236
PL 0.0871 0.0255 0.1073 0.0375 0.0741 0.0235

γ = 1/5

0.99
AE 0.0519 0.0164 0.0627 0.0199 0.0472 0.0140
PL 0.0502 0.0161 0.0588 0.0191 0.0461 0.0138

0.995
AE 0.0739 0.0229 0.0915 0.0289 0.0657 0.0191
PL 0.0717 0.0225 0.0862 0.0277 0.0643 0.0189

0.999
AE 0.1500 0.0437 0.1952 0.0589 0.1266 0.0349
PL 0.1461 0.0430 0.1850 0.0569 0.1239 0.0344

γ = 1/4

0.99
AE 0.0973 0.0285 0.1028 0.0349 0.0834 0.0248
PL 0.0900 0.0278 0.0944 0.0332 0.0835 0.0246

0.995
AE 0.1411 0.0402 0.1515 0.0509 0.1190 0.0341
PL 0.1305 0.0392 0.1395 0.0484 0.1202 0.0337

0.999
AE 0.3039 0.0787 0.3350 0.1063 0.2492 0.0631
PL 0.2807 0.0768 0.3102 0.1017 0.2604 0.0622

Table 2. Relative MSE for both estimators, case of the DP(1/3).

Value of γ δ Estimator
Fréchet Burr ρ = −1 Burr ρ = −2

n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99
AE 0.0487 0.0169 0.0629 0.0215 0.0458 0.0140
PL 0.0448 0.0160 0.0549 0.0194 0.0443 0.0142

0.995
AE 0.0653 0.0225 0.0866 0.0295 0.0609 0.0182
PL 0.0597 0.0212 0.0757 0.0267 0.0586 0.0184

0.999
AE 0.1177 0.0394 0.1658 0.0549 0.1084 0.0307
PL 0.1073 0.0371 0.1456 0.0499 0.1033 0.0306

γ = 1/5

0.99
AE 0.0808 0.0261 0.0988 0.0336 0.0680 0.0211
PL 0.0743 0.0256 0.0852 0.0304 0.0652 0.0217

0.995
AE 0.1100 0.0349 0.1376 0.0463 0.0907 0.0276
PL 0.1004 0.0339 0.1187 0.0417 0.0862 0.0281

0.999
AE 0.2078 0.0620 0.2723 0.0870 0.1630 0.0468
PL 0.1879 0.0598 0.2362 0.0785 0.1535 0.0468

γ = 1/4

0.99
AE 0.1558 0.0449 0.2175 0.0570 0.1327 0.0376
PL 0.1397 0.0439 0.1707 0.0501 0.1252 0.0388

0.995
AE 0.2182 0.0602 0.3161 0.0787 0.1818 0.0494
PL 0.1932 0.0582 0.2471 0.0690 0.1698 0.0503

0.999
AE 0.4485 0.1086 0.7089 0.1508 0.3561 0.0854
PL 0.3899 0.1038 0.5482 0.1323 0.3279 0.0852
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Table 3. Relative MSE for both estimators, case of the PH(2/3).

Value of γ δ Estimator
Fréchet Burr ρ = −1 Burr ρ = −2

n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99
AE 0.0517 0.0162 0.0618 0.0207 0.0487 0.0141
PL 0.0395 0.0145 0.0421 0.0157 0.0382 0.0133

0.995
AE 0.0699 0.0216 0.0848 0.0282 0.0654 0.0184
PL 0.0534 0.0191 0.0584 0.0215 0.0511 0.0172

0.999
AE 0.1290 0.0383 0.1612 0.0523 0.1196 0.0311
PL 0.0993 0.0334 0.1143 0.0406 0.0932 0.0286

γ = 1/5

0.99
AE 0.0800 0.0272 0.1116 0.0335 0.0756 0.0204
PL 0.0579 0.0221 0.0670 0.0240 0.0583 0.0186

0.995
AE 0.1083 0.0363 0.1549 0.0455 0.1010 0.0267
PL 0.0780 0.0291 0.0941 0.0327 0.0776 0.0239

0.999
AE 0.2020 0.0644 0.3067 0.0843 0.1829 0.0454
PL 0.1457 0.0515 0.1916 0.0619 0.1401 0.0397

γ = 1/4

0.99
AE 0.1920 0.0461 0.2432 0.0678 0.1516 0.0405
PL 0.1008 0.0347 0.1122 0.0438 0.0927 0.0355

0.995
AE 0.2669 0.0613 0.3421 0.0921 0.2055 0.0529
PL 0.1384 0.0453 0.1595 0.0594 0.1242 0.0452

0.999
AE 0.5454 0.1088 0.7137 0.1727 0.3928 0.0906
PL 0.2760 0.0796 0.3409 0.1136 0.2330 0.0748

to provide additional robustness against this defect, since it only depends on a

single intermediate order statistic and the Hill estimator, but it actually fails

to improve upon the PL estimator, most likely because the multiplicative factor

(2/3− γ̂n)
−1 (in the PH case) makes it severely underperform in some samples.

5. Data Application

5.1. Analysis of extreme swings of the results curve of a professional

poker player

We apply our method to the study of the results of high-stakes poker player

Tom Dwan. The original data, extracted from results publicly available at http:

//www.highstakesdb.com, consists in his cumulative results on the Internet,

aggregated over all poker variants and recorded approximately every five days

from mid-October 2008 to April 2011. In this study, we focused on the sub-parts

of the results curve when the player was either consistently winning or losing. The

analysis of such timeframes helps poker players understand their own behavior

(and possibly that of their opponents as well) during winning and losing streaks.

To this end, we recorded the values of the local minima and maxima of the
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results curve and we constructed the differences between two such consecutive

points. The data was made of n = 68 observations, which represented the ag-

gregated results during alternative winning and losing streaks. Our aim was to

analyze the extreme such streaks (also called “swings” in poker parlance). Our

data Xt, represented in Figure 1 (see also Figure 2 in the Supplementary Ma-

terial), was the absolute value of the 68 observations at our disposal, and the

analysis focused on the magnitude of the extreme swings of the results curve,

irrespective of whether such a swing corresponds to a win or a loss. It should

be pointed out that a statistical analysis did not reveal a significant difference

between the tail indices of winning and losing swings at the 5% error rate.

Since we work on time series data, there are particular concerns about in-

dependence and stationarity. These hypotheses were checked using the turning

point test (see Kendall and Stuart (1968)) contained in the R package randtests;

the p-value of this test was 0.278 and thus we did not reject the i.i.d. assumption

based on this procedure. Since such a test is known to be poor against trends,

we also ran the KPSS test for trend stationarity (Kwiatkowski et al. (1992))

contained in the R package tseries, whose p-value was greater than 0.1 for an

estimated trend parameter of �m = −15.236 (estimated via a linear regression)

and a lag parameter of 1 in the Newey-West variance estimator. The stationar-

ity assumption could then be assumed to be reasonable on the detrended time

series Xt − �mt, which is the sample of data we applied our procedures on in

what follows; this was confirmed by the KPSS test for level stationarity, also

part of the tseries package, whose p-value was greater than 0.1. Finally, let

us note that the plot of the sample autocorrelation function (see Figure 3 in the

Supplementary Material) did not indicate significant correlation in the data.

Our next aim was to estimate the extreme value index γ of the detrended

sample. Since the sample size was fairly small, we used the Hill estimator together

with a bias-reduced version inspired by the work of Peng (1998):

�γRB
β (τ) =

1

�ρβ1
(τ)

�γβ +

(
1− 1

�ρβ1
(τ)

) �γSβ
2�γβ ,

with

�γSβ =
1

⌈n(1− β)⌉

⌈n(1−β)⌉∑
i=1

(
logXn−i+1,n − logXn−⌈n(1−β)⌉,n

)2

and �ρβ1
(τ) is the consistent estimator of ρ presented at (2.18) of Fraga Alves,

Gomes and de Haan (2003), which depends on a different sample fraction 1− β1
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Table 3. Relative MSE for both estimators, case of the PH(2/3).

Value of γ δ Estimator
Fréchet Burr ρ = −1 Burr ρ = −2

n = 100 n = 300 n = 100 n = 300 n = 100 n = 300
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0.99
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PL 0.0395 0.0145 0.0421 0.0157 0.0382 0.0133

0.995
AE 0.0699 0.0216 0.0848 0.0282 0.0654 0.0184
PL 0.0534 0.0191 0.0584 0.0215 0.0511 0.0172

0.999
AE 0.1290 0.0383 0.1612 0.0523 0.1196 0.0311
PL 0.0993 0.0334 0.1143 0.0406 0.0932 0.0286

γ = 1/5

0.99
AE 0.0800 0.0272 0.1116 0.0335 0.0756 0.0204
PL 0.0579 0.0221 0.0670 0.0240 0.0583 0.0186
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AE 0.1083 0.0363 0.1549 0.0455 0.1010 0.0267
PL 0.0780 0.0291 0.0941 0.0327 0.0776 0.0239
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PL 0.1384 0.0453 0.1595 0.0594 0.1242 0.0452
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AE 0.5454 0.1088 0.7137 0.1727 0.3928 0.0906
PL 0.2760 0.0796 0.3409 0.1136 0.2330 0.0748

to provide additional robustness against this defect, since it only depends on a

single intermediate order statistic and the Hill estimator, but it actually fails

to improve upon the PL estimator, most likely because the multiplicative factor

(2/3− γ̂n)
−1 (in the PH case) makes it severely underperform in some samples.

5. Data Application

5.1. Analysis of extreme swings of the results curve of a professional

poker player

We apply our method to the study of the results of high-stakes poker player

Tom Dwan. The original data, extracted from results publicly available at http:

//www.highstakesdb.com, consists in his cumulative results on the Internet,

aggregated over all poker variants and recorded approximately every five days

from mid-October 2008 to April 2011. In this study, we focused on the sub-parts

of the results curve when the player was either consistently winning or losing. The

analysis of such timeframes helps poker players understand their own behavior

(and possibly that of their opponents as well) during winning and losing streaks.

To this end, we recorded the values of the local minima and maxima of the
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results curve and we constructed the differences between two such consecutive

points. The data was made of n = 68 observations, which represented the ag-

gregated results during alternative winning and losing streaks. Our aim was to

analyze the extreme such streaks (also called “swings” in poker parlance). Our

data Xt, represented in Figure 1 (see also Figure 2 in the Supplementary Ma-

terial), was the absolute value of the 68 observations at our disposal, and the

analysis focused on the magnitude of the extreme swings of the results curve,

irrespective of whether such a swing corresponds to a win or a loss. It should

be pointed out that a statistical analysis did not reveal a significant difference

between the tail indices of winning and losing swings at the 5% error rate.

Since we work on time series data, there are particular concerns about in-

dependence and stationarity. These hypotheses were checked using the turning

point test (see Kendall and Stuart (1968)) contained in the R package randtests;

the p-value of this test was 0.278 and thus we did not reject the i.i.d. assumption

based on this procedure. Since such a test is known to be poor against trends,

we also ran the KPSS test for trend stationarity (Kwiatkowski et al. (1992))

contained in the R package tseries, whose p-value was greater than 0.1 for an

estimated trend parameter of �m = −15.236 (estimated via a linear regression)

and a lag parameter of 1 in the Newey-West variance estimator. The stationar-

ity assumption could then be assumed to be reasonable on the detrended time

series Xt − �mt, which is the sample of data we applied our procedures on in

what follows; this was confirmed by the KPSS test for level stationarity, also

part of the tseries package, whose p-value was greater than 0.1. Finally, let

us note that the plot of the sample autocorrelation function (see Figure 3 in the

Supplementary Material) did not indicate significant correlation in the data.

Our next aim was to estimate the extreme value index γ of the detrended

sample. Since the sample size was fairly small, we used the Hill estimator together

with a bias-reduced version inspired by the work of Peng (1998):

�γRB
β (τ) =

1

�ρβ1
(τ)

�γβ +

(
1− 1

�ρβ1
(τ)

) �γSβ
2�γβ ,

with

�γSβ =
1

⌈n(1− β)⌉

⌈n(1−β)⌉∑
i=1

(
logXn−i+1,n − logXn−⌈n(1−β)⌉,n

)2

and �ρβ1
(τ) is the consistent estimator of ρ presented at (2.18) of Fraga Alves,

Gomes and de Haan (2003), which depends on a different sample fraction 1− β1
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Figure 1. Poker data set (measurement unit: thousands of USD). Full line: 95% quantile
line, dashed line: 97% quantile line, dashed-dotted line: 99% quantile line.

Table 4. Data sets: estimates of γ. Left: poker data set, right: Secura Belgian Re data
set.

Estimator �γ β∗ Estimate
Hill 0.75 0.351
Bias-reduced, τ = 1 0.794 0.260
Bias-reduced, τ = 3/4 0.912 0.167
Bias-reduced, τ = 1/2 0.912 0.158
Bias-reduced, τ = 1/4 0.912 0.146
Bias-reduced, τ = 0 0.853 0.118

Estimator �γ β∗ Estimate
Hill 0.854 0.292
Bias-reduced, τ = 1 0.782 0.263
Bias-reduced, τ = 3/4 0.792 0.262
Bias-reduced, τ = 1/2 0.792 0.261
Bias-reduced, τ = 1/4 0.792 0.260
Bias-reduced, τ = 0 0.792 0.258

and a tuning parameter τ ≤ 0. By Theorem 2.1 in Peng (1998),

√
n(1− βn)(�γRB

βn
(τ)− γ)

d−→ N
(
0, γ2

1− 2ρ+ 2ρ2

ρ2

)
(5.1)

provided (βn) is an intermediate sequence. The generalized jackknife estimator

�γRB
β (τ) is thus essentially a suitably weighted combination of the Hill estimator

and a similar estimator, the coefficients being estimates of those which make

the asymptotic biases cancel out. We took β1 = 1 − ⌈n0.975⌉/n ≈ 0.0882, as

recommended by Caeiro, Gomes and Rodrigues (2009).

Some estimates of γ are given in Table 4 and Hill plots are represented

in Figure 4 of the Supplementary Material. The Hill estimator seems to drift

away fairly quickly due to the finite-sample bias, and we decided to drop it for

our analysis. We then estimated γ by the median of the bias-reduced estimates

obtained for τ ∈ {0, 1/4, 1/2, 3/4, 1}: in each case, the estimate was obtained

by a straightforward adaptation of the selection procedure detailed in Section

4. We got �γ = 0.158 for β∗ = 0.912 and τ = 1/2; especially, ρ was estimated
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Table 5. Poker data set, detrended data: estimating some risk measures (measurement
unit: thousands of USD). Between square brackets: asymptotic 95% confidence intervals.

δ Estimator V̂aR ĈTE ̂DP(1/2) ̂DP(1/3)

0.95
AE

3684 4373 4747 5010
[3121, 4247] [3705, 5041] [4022, 5472] [4245, 5775]

PL
3684 4911 5450 5805

[3121, 4247] [4161, 5661] [4618, 6282] [4918, 6692]

0.97
AE

3993 4740 5145 5430
[2832, 5154] [3362, 6118] [3649, 6641] [3851, 7009]

PL
3993 5323 5907 6291

[2832, 5154] [3775, 6871] [4190, 7624] [4462, 8120]

0.99
AE

4748 5636 6118 6457
[1958, 7538] [2325, 8947] [2524, 9712] [2663, 10251]

PL
4748 6329 7023 7480

[1958, 7538] [2611, 10047] [2897, 11149] [3085, 11875]

by ρ̂ = −1.130. Finally, Table 5 gives estimates of some risk measures for the

detrended data set and Figure 1 represents the estimates of some extreme quantile

lines for the time series Xt, obtained by re-adding the trend component m̂t to

our estimates of the VaR. From these results, it appears in particular that the

maximal value in this data set, corresponding to a losing streak costing more

than 6.1 million USD, exceeds our estimate of the 99% quantile. It is also of

the same order of magnitude as our estimates of the CTE and DP(1/2) (resp.

DP(1/3)) risk measure in the 1% highest cases, which corresponds to the average

value of the maximum of two (resp. three) consecutive extreme results. In our

opinion, this losing streak can thus be regarded as an extreme period of loss.

5.2. The Secura Belgian Re actuarial data set

We consider here the Secura Belgian Re data set on automobile claims from

1998 until 2001, introduced in Beirlant et al. (2004) and further analyzed in

Vandewalle and Beirlant (2006) from the extreme-value perspective. The data

set consists of n = 371 claims which were at least as large as 1.2 million Euros

and were corrected for inflation. Our aim was to revisit this data set and show

how we can recover results similar to those of Vandewalle and Beirlant (2006)

although they worked in a different context.

We started as in Section 5.1 by estimating the extreme value index γ. We

again used the Hill estimator and some of its bias-reduced versions: Hill plots

are represented in Figure 5 of the Supplementary Material, on which we can

see that all our selected estimators give very close estimates. Results using our
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Figure 1. Poker data set (measurement unit: thousands of USD). Full line: 95% quantile
line, dashed line: 97% quantile line, dashed-dotted line: 99% quantile line.

Table 4. Data sets: estimates of γ. Left: poker data set, right: Secura Belgian Re data
set.

Estimator �γ β∗ Estimate
Hill 0.75 0.351
Bias-reduced, τ = 1 0.794 0.260
Bias-reduced, τ = 3/4 0.912 0.167
Bias-reduced, τ = 1/2 0.912 0.158
Bias-reduced, τ = 1/4 0.912 0.146
Bias-reduced, τ = 0 0.853 0.118

Estimator �γ β∗ Estimate
Hill 0.854 0.292
Bias-reduced, τ = 1 0.782 0.263
Bias-reduced, τ = 3/4 0.792 0.262
Bias-reduced, τ = 1/2 0.792 0.261
Bias-reduced, τ = 1/4 0.792 0.260
Bias-reduced, τ = 0 0.792 0.258

and a tuning parameter τ ≤ 0. By Theorem 2.1 in Peng (1998),

√
n(1− βn)(�γRB

βn
(τ)− γ)

d−→ N
(
0, γ2

1− 2ρ+ 2ρ2

ρ2

)
(5.1)

provided (βn) is an intermediate sequence. The generalized jackknife estimator

�γRB
β (τ) is thus essentially a suitably weighted combination of the Hill estimator

and a similar estimator, the coefficients being estimates of those which make

the asymptotic biases cancel out. We took β1 = 1 − ⌈n0.975⌉/n ≈ 0.0882, as

recommended by Caeiro, Gomes and Rodrigues (2009).

Some estimates of γ are given in Table 4 and Hill plots are represented

in Figure 4 of the Supplementary Material. The Hill estimator seems to drift

away fairly quickly due to the finite-sample bias, and we decided to drop it for

our analysis. We then estimated γ by the median of the bias-reduced estimates

obtained for τ ∈ {0, 1/4, 1/2, 3/4, 1}: in each case, the estimate was obtained

by a straightforward adaptation of the selection procedure detailed in Section

4. We got �γ = 0.158 for β∗ = 0.912 and τ = 1/2; especially, ρ was estimated
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Table 5. Poker data set, detrended data: estimating some risk measures (measurement
unit: thousands of USD). Between square brackets: asymptotic 95% confidence intervals.

δ Estimator V̂aR ĈTE ̂DP(1/2) ̂DP(1/3)

0.95
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3684 4373 4747 5010
[3121, 4247] [3705, 5041] [4022, 5472] [4245, 5775]

PL
3684 4911 5450 5805
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[2832, 5154] [3362, 6118] [3649, 6641] [3851, 7009]
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[1958, 7538] [2325, 8947] [2524, 9712] [2663, 10251]

PL
4748 6329 7023 7480

[1958, 7538] [2611, 10047] [2897, 11149] [3085, 11875]

by ρ̂ = −1.130. Finally, Table 5 gives estimates of some risk measures for the

detrended data set and Figure 1 represents the estimates of some extreme quantile

lines for the time series Xt, obtained by re-adding the trend component m̂t to

our estimates of the VaR. From these results, it appears in particular that the

maximal value in this data set, corresponding to a losing streak costing more

than 6.1 million USD, exceeds our estimate of the 99% quantile. It is also of

the same order of magnitude as our estimates of the CTE and DP(1/2) (resp.

DP(1/3)) risk measure in the 1% highest cases, which corresponds to the average

value of the maximum of two (resp. three) consecutive extreme results. In our

opinion, this losing streak can thus be regarded as an extreme period of loss.

5.2. The Secura Belgian Re actuarial data set

We consider here the Secura Belgian Re data set on automobile claims from

1998 until 2001, introduced in Beirlant et al. (2004) and further analyzed in

Vandewalle and Beirlant (2006) from the extreme-value perspective. The data

set consists of n = 371 claims which were at least as large as 1.2 million Euros

and were corrected for inflation. Our aim was to revisit this data set and show

how we can recover results similar to those of Vandewalle and Beirlant (2006)

although they worked in a different context.

We started as in Section 5.1 by estimating the extreme value index γ. We

again used the Hill estimator and some of its bias-reduced versions: Hill plots

are represented in Figure 5 of the Supplementary Material, on which we can

see that all our selected estimators give very close estimates. Results using our
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Table 6. Insurance data set: estimating some risk measures (measurement unit: thou-
sands of Euros). Between square brackets: asymptotic 95% confidence intervals.

δ Estimator �VaR ĈTE �SP

0.98
AE

4989 6750 35.220
[3505, 6473] [4742, 8758] [24.744, 45.696]

PL
4989 6864 37.500

[3505, 6473] [4822, 8906] [26.346, 48.654]

0.99
AE

5978 8087 21.092
[3673, 8283] [4969, 11205] [12.960, 29.224]

PL
5978 8224 22.459

[3673, 8283] [5053, 11395] [13.800, 31.118]

0.995
AE

7163 9690 12.636
[3770, 10556] [5100, 14280] [6.6506, 18.621]

PL
7163 9854 13.455

[3770, 10556] [5186, 14522] [7.0817, 19.828]

0.999
AE

10899 14744 3.8452
[3506, 18291] [4743, 24745] [1.2371, 6.4533]

PL
10899 14993 4.0944

[3506, 18292] [4823, 25163] [1.3172, 6.8716]

selection procedure are given in Table 4. Retaining the median estimate of γ

yields �γ = 0.261 for β∗ = 0.792 and τ = 1/2, with �ρ = −1.064. Table 6 gives

estimates of some risk measures for this data set.

The main example of excess-of-loss reinsurance policy that Vandewalle and

Beirlant (2006) considered, namely the net premium principle, can actually be

recovered from these estimates. Indeed, according to Vandewalle and Beirlant

(2006), the net premium NP(R) for a reinsurance policy in excess of a high

retention level R is

NP(R) =

∫ ∞

R
[1− F (x)]dx.

Rearranging equation (3.1) and setting g(x) = x gives the identity

NP(q(β)) = (1− β)(Rg,β(X)−VaR(β))

and, in particular, the right-hand side is actually SP(β). When R is equal to 5

million Euros, as considered in Vandewalle and Beirlant (2006), it can be seen

that the exceedance probability P(X > R) is estimated to be approximately

0.02, or in other words that R is essentially the estimated VaR at the 98% level.

Estimates of our risk measures at this level are provided in Table 6; in particular,

the net premium is estimated to be approximately 36,000 Euros, which is in line

with the 41,798 Euros that Vandewalle and Beirlant (2006) obtained, with our
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estimate being slightly lower partly because a bias-reduced estimate of γ was

used in the present work, whereas Vandewalle and Beirlant (2006) computed a

simple Hill estimate.

6. Discussion

In the application of statistics to insurance and finance, the study of extreme

risk is of prime importance. We believe that a major part of the value of our

work lies in the flexibility and generality of the proposed class of extreme Wang

distortion risk measures (DRMs) we introduce here. We also provide estimators

for our concept of extreme Wang DRM when the underlying distribution is heavy-

tailed. Our work makes it theoretically possible to give a detailed picture of

extreme risk; the finite-sample procedure we introduce, which is completely data-

driven and has decent performance when the tail index is moderate, is a step

towards achieving this goal in practice.

Because the proposed class of extreme Wang DRMs allows for almost total

freedom in choosing how to weight quantiles above a high level, it should be

highlighted that it allows for yet many other interesting problems to be tackled.

One may look for instance at extreme versions of Dual Power (DP) distortion risk

measures; in certain situations, the DP risk measure is actually the expectation

of the maximum Mr = max(X1, . . . , Xr) of independent copies of the random

variable of interest above a high threshold. This is of course interesting in finan-

cial contexts, as our data application to the results curve of high-stakes poker

player Tom Dwan shows.

As far as actuarial applications are concerned, a possible situation is the

following: when insurance firms have to cover against flood risk, then assuming

that r floods occur in a given year, a catastrophic event occurs when the max-

imum Mr of water levels during these flood episodes exceeds a given extreme

level. If flood heights can reasonably be thought to be independent then such a

problem can be examined as a simple application of the devices developed in this

paper. Another appealing perspective lies in the fact that our class of extreme

Wang DRMs can produce certain reinsurance objects such as the Stop-loss Pre-

mium and therefore, as in our application to the Secura Belgian Re data set, our

framework may also be applied to certain reinsurance calculations.

Supplementary Materials

The Supplementary Material contains two tables listing risk indicators ob-
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yields �γ = 0.261 for β∗ = 0.792 and τ = 1/2, with �ρ = −1.064. Table 6 gives

estimates of some risk measures for this data set.

The main example of excess-of-loss reinsurance policy that Vandewalle and

Beirlant (2006) considered, namely the net premium principle, can actually be

recovered from these estimates. Indeed, according to Vandewalle and Beirlant

(2006), the net premium NP(R) for a reinsurance policy in excess of a high

retention level R is

NP(R) =

∫ ∞

R
[1− F (x)]dx.

Rearranging equation (3.1) and setting g(x) = x gives the identity

NP(q(β)) = (1− β)(Rg,β(X)−VaR(β))

and, in particular, the right-hand side is actually SP(β). When R is equal to 5

million Euros, as considered in Vandewalle and Beirlant (2006), it can be seen

that the exceedance probability P(X > R) is estimated to be approximately

0.02, or in other words that R is essentially the estimated VaR at the 98% level.

Estimates of our risk measures at this level are provided in Table 6; in particular,

the net premium is estimated to be approximately 36,000 Euros, which is in line

with the 41,798 Euros that Vandewalle and Beirlant (2006) obtained, with our
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estimate being slightly lower partly because a bias-reduced estimate of γ was

used in the present work, whereas Vandewalle and Beirlant (2006) computed a

simple Hill estimate.

6. Discussion

In the application of statistics to insurance and finance, the study of extreme

risk is of prime importance. We believe that a major part of the value of our

work lies in the flexibility and generality of the proposed class of extreme Wang

distortion risk measures (DRMs) we introduce here. We also provide estimators

for our concept of extreme Wang DRM when the underlying distribution is heavy-

tailed. Our work makes it theoretically possible to give a detailed picture of

extreme risk; the finite-sample procedure we introduce, which is completely data-

driven and has decent performance when the tail index is moderate, is a step

towards achieving this goal in practice.

Because the proposed class of extreme Wang DRMs allows for almost total

freedom in choosing how to weight quantiles above a high level, it should be

highlighted that it allows for yet many other interesting problems to be tackled.

One may look for instance at extreme versions of Dual Power (DP) distortion risk

measures; in certain situations, the DP risk measure is actually the expectation

of the maximum Mr = max(X1, . . . , Xr) of independent copies of the random

variable of interest above a high threshold. This is of course interesting in finan-

cial contexts, as our data application to the results curve of high-stakes poker

player Tom Dwan shows.

As far as actuarial applications are concerned, a possible situation is the

following: when insurance firms have to cover against flood risk, then assuming

that r floods occur in a given year, a catastrophic event occurs when the max-

imum Mr of water levels during these flood episodes exceeds a given extreme

level. If flood heights can reasonably be thought to be independent then such a

problem can be examined as a simple application of the devices developed in this

paper. Another appealing perspective lies in the fact that our class of extreme

Wang DRMs can produce certain reinsurance objects such as the Stop-loss Pre-

mium and therefore, as in our application to the Secura Belgian Re data set, our

framework may also be applied to certain reinsurance calculations.

Supplementary Materials

The Supplementary Material contains two tables listing risk indicators ob-
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tained by combining Wang DRMs in an appropriate way, five figures relevant to

the data analyses and the proofs of our main results.
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