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S1 Proofs of the main results

Proof of Theorem 1. Write for any j:

R;fn(Xaj) _ {X(nﬁn],n} f s aﬂ"dg( y fo s~ %7dg;(s
Ry, 6,(X) q(Bn) f ™% dg;(s) jo,ﬁn<XaJ)

We start by showing the consistency statement: from Lemma 3(i) and the

continuity of the maps t +— fol s7%'dg;(s), 1 < j < d at the point v, we

obtain

R?JEBn(Xaj) _ X["Bﬂv" ‘
Ry (X)) [ 1) } (L+or(D))

Write now X7,s,1.n = U(Y[ng,1,n) Where Y has a standard Pareto distribu-

tion, and use Corollary 2.2.2 in de Haan and Ferreira (2006) together with
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the regular variation property of U to get

DA aj
R0
jo \Bn (Xaj )

To show the asymptotic normality of the estimator, use first the hypothesis

on X, and Lemma 3(ii) together with a Taylor expansion to get

o; fol §~%7 s*’;—ldgj(s) }]

1+ ———-<06 -\ op(1 .

Tl n>{ Tomdgs) )
(S1.1)

RA%, (X9) _ i sy, (s)
Ry, 5, (X%)  [1s=avdg,(s)

Set then r(z) = ¢* — 1 — = and notice that

Ji 577 log(1/s)dg; (s)
Jo s7e7dg;(s)

S 57 (a; (3 — ) log(1/5))dg;(s)

Jo s7odg;(s) .

Jy s~ dg;(s)
Jo s7edg;(s)

= 1+aj(;}7n_7>

_|_

A Taylor inequality for the exponential function at order 2 gives |k(z)| <

2%el?l /2 and thus

/0 s w(ay (G — ) log(1/s))dg;(s)
.9
- 2

1
o= [ 7ot (1) g s)
0

Since fol s™%77dg,(s) < oo, it follows by the y/n(1 — §,)—consistency of

()
“\Vnll=5.)

n that

/0 (0, (3 — ) log(1/5))dg, (s)
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and thus

Jo 5~ dg; (5)

1 g
e Jysos(1/s)dg(s)

JFs—adg;(s) n(I=B.) [y s~97dg,(s)
1
+ op| —— . (S1.2)
( n(l — Bn)>
Combining (S1.1) and (S1.2) completes the proof. u

Proof of Theorem 2. First, recall that for any ¢ € R we have |t|+[—t]| =

0, where [-] denotes the floor function. Whence the equality
Ry, 5, (X / X ls],n dg;(s)
with | = l(n) = n(1 — 3,) — oco. Clearly:
Vs € [0,1], Xo (st < X s < Xao|[1)s)ins

and thus it is enough to prove that, for any sequence of integers k = k(n)

such that k(n)/l(n) — 1, we have:

fO n— ksJ dgj(s) d
f( Ry 5. (X) —1>1<j<d—>/\/(o,v).

For any a > 0, let U,(x) := [U(x)]* denote the left-continuous inverse of

1/(1 — F,), where F, is the cdf of X*. By Lemma 2:

jo,ﬁn (X%‘) o a] (n/k:s —ajy
%@%>_A O, (k) 98 %/ dgj s
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It is therefore enough to prove that:

\/E fol XZJ_ Lksz" dgj(s> - jovﬁn (Xaj)
Uqg; (n/k)

) Ly N(0, M) (SL3)
1<j<d
where M is the d X d matrix with (¢, 7)—th entry
M, ;= aiaﬂz/ min(s, t)s™ Y dg,(s)dg;(t).
[0,1]2
Pick now j € {1,...,d} and write
1 .
/0 XL lks)n @95(8) = Ry, 5, (X%) = G+ Ejim (51.4)

with
' XZJ_ Lks],n —a; a;
Cj,n = A Uaj (n/l{:s) W — S i S J’ydgj(S)

Xl ((Us(/k) N
Ua; (n/k) <Uaj(n/k‘s) 5 )dgj(s),

1
and &, = /Uaj(n/k:s)
0

According to Lemma 4, we have:

gﬁn d
Vk (T = /k))1<j<n L N (A\C, M) (S1.5)

where C' is the column vector whose j—th entry is

1 —p 1
s —a;
C; = aj/ s %7dg;(s).
0 P

To examine the convergence of &, ,,, we note that according to (S2.1), there

exist Borel measurable functions B,,, ..., B,,, respectively asymptotically
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equivalent to a;Aq,...,aqAs; and having constant sign, such that for any

e >0:

Vs € (0,1],

1 U“J’ (n/k) — W7 | — gu7 st —1 < ggivtr—e
B, (n/ks) \ U, (n/ks) p

(S1.6)

for n sufficiently large. Consider then the following decomposition of &; ,:

Ein = Em + 600 (S1.7)
with
1 X% P_1
(1):/ U,.(n/ks)B,. (n/ks nolkslin cajy 3 dg;(s
g]m 0 J( / ) j( / )Uaj(n/k) p g]( )7
! X 1 Ua, (n/k)
2 _ n—|ks|,n 9 QY| g
é-j,n /(; Uaj(n/kS>Baj(n/k8) Uaj(n/]f) (Baj(n/kS) [Uaj(n/ks) S :| S

Writing

Xn—LksJ,nSaj»y — 14 Xn—LksJ,n g | g
Ua,(n/F) U, (n/k) ’

we get by Lemma 4:

s —1

U, (n/k)B,, <n/k>) |

(1) = 1 n S n S
£ = / U, (n/ks) B, (n/ks) o

dgj(s) + O (

Applying Lemma 2 to the regularly varying functions ¢ — U, ()| By, ()|

and t — t77U,,(t)|Bq,(t)|, which have respective regular variation indices
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a;y + p and a;v, we get

Gn I
\/%W = \/EBaJ(n/k)/o S P dgj(s)—l—o]p(l)

1 _p—l
_ _a /0 57 gy (s) + oe(1) (S1.8)

= —)\Cj + O]p(l)

since B,, is equivalent to a;A. The quantity 55272 is controlled by applying

inequality (S1.6): for any e € (0,7), we have for sufficiently large n that:

aj

€] < e / U (/)| Ba (o) | 2=l o g ).
Jml — 0 J J Uaj (’n,/]f) !

The ideas used to control 5](173 yield for n large enough:

2
3

vk U, (n/k)

1
< cayl)| / 5% dg,(s) + op(1)
0

1
< 5aj\)\|/ s 477 dg;(s) 4+ op(1)
0

which, since € is arbitrary, entails

2
3

vk U, (n/k)

= op(1). (S1.9)

Combining (S1.7), (S1.8) and (S1.9) entails

gj,n P
Vk (T (n/k))l<j<d — —AC. (S1.10)

Combine finally (S1.4), (S1.5) and (S1.10) to obtain (S1.3): the proof is

complete. =
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Proof of Theorem 3. We start by writing, for any j:

ﬁg{ﬁn(){%;ﬁn) <1 _ 6">aj(%_y) Egjﬁn(Xaj) Ry;,6,(X") (1 - 5")aﬂ

X
Ry, s, (X%) 1-96, Ry, 3. (X%) Ry, s, (X%) \1-=9,

Recall that for any a > 0, U, satisfies condition Cy(a~y, p,aA) by Lemma 1.

Taking logarithms and applying Lemma 5 with ¥ = X% we get
Ry 5, (X3 B) -3 Ry, 5. (X%)
log | —&———— = a;(Fn =) 1og< ") +log | 51—
( joyén (Xaj) ’ 1- 6” jo767l (Xll])

1
O ————|.
! < n(l—ﬁn)>

The y/n(1 — §,)—relative consistency of }Azgj,gn(X %) entails

RY5 (X9:8,)\ 1- B, 1
10g< jo,5n(Xaj) >_aj(7n_’7)10g<1_5n)+oﬂ>< F(l—ﬁ@)

Recall that log([1 — 5,]/[1 — d,]) — oo; a Taylor expansion and the hypoth-

esis on 7, now make it clear that

n(l - B,) RV 5 (X% 3,)
log([1 = Bul/[1 = 6u]) \ Ry, (X%)

- 1) = a;€(1 + 0p(1))

which completes the proof. |

S2 Preliminary results and their proofs

The first result is a very useful fact which we shall use several times in our

proofs.
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Lemma 1. Assume that condition Cy(vy, p, A) is satisfied. Pick a > 0 and

define U,(z) := [U(x)]*. Then U, satisfies condition Ca(ay, p,aA).

Proof of Lemma 1. Pick £ > 0. The function U satisfies condition

Ca(7, p, A) which is equivalent to:

2 (zP — 1)

Ult) = U(%) (:ﬂ +A(t) [ ;

+o(1)D as t — oo.

Thus

zf —1

p

Ua(tz) = U, (t)z™ (1 +A(t) { +o(1)Da as t — 0o,

Using a Taylor expansion and rearranging terms, we get:

¥ (xf — 1)

Uy(tz) = Uy(t) <x’” +aA(t) [ ;

+o(1)D as t — oo,

which is the result. ]

This result yields an important inequality which is actually contained in
Theorem 2.3.9 in de Haan and Ferreira (2006): for any a > 0, one may
find a Borel measurable function B,, asymptotically equivalent to aA and
having constant sign, such that for any € > 0, there is ¢ty > 0 such that for

ttx > to:

1 Us(tz) 7) Ll = 1‘ _
— %) — a° < ex™ P max (¢, v7°). S2.1
‘Ba<t> ( Ut o= @) (521)

The second preliminary result is a technical lemma on some integrals, which

we shall use frequently in our proofs.
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Lemma 2. Let g be a nondecreasing right-continuous function on [0, 1].
Assume that f is a Borel measurable reqularly varying function with index

b e R. If for somen > 0:

1
/ s dg(s) < oo,
0

then for any 6 € R such that 6 < n and any continuous and bounded

function ¢ on (0, 1] we have, provided (u,) is a positive sequence tending to

[ 208 sty [t

Proof of Lemma 2. Pick § < 7 and define € := (n — §)/2 > 0, so that

infinity:

0 +¢e < n. We have

/ f un/s s70(s) g(s)—/ol s 00 (s)dg(s)
. /Sm M s

Notice that the function f; : y — y~°¢f(y) is regularly varying with index

s p(s)ldg(s).

—e < 0. By a uniform convergence result for regularly varying functions

(see e.g. Theorem 1.5.2 in Bingham et al., 1987):

filun/s) | _ | fi(unt)

b+e
filun) 0TS )

sup s
0<s<1

flun/s) s —

f(un) -

— 0.
t>1

0<s<1
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As a consequence

[ L) s pspagts) — [ st etsrdate

— O su Sb+€ M — S_b )
<0<521 f(un)
and the right-hand side converges to 0. The proof is complete. |

The third lemma gives an asymptotic expansion of a Wang DRM that is in

particular the key to the construction of our first family of estimators.

Lemma 3. Let g be a distortion function on [0,1] and a > 0. Pick a

sequence (3,) such that 3, — 1.

(i) If U is reqularly varying with index v > 0 and there isn > 0 such that

1
/ s~ dg(s) < o0
0

then we have that:

RQ, n Xa ! —a
Ua([lﬁ—(ﬁn])_l) —>/0 s dg(s) as n — oo.

(11) If furthermore condition Cy(7y, p, A) is satisfied and n(1 — ,) — oo,

V(1 — B)A((1 = Bn)7Y) = X € R then provided

1
/ s~ H27dg(s) < o0
0
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for some n > 0, we have that:

Rg,ﬁn (Xa) o ! G s a Lg=p 18_[17 s
e < dg“*ﬁl_ﬁn)/o o dale)

1
+ o (7?1 = &)) .

Proof of Lemma 3. The first statement is proven by applying Lemma 2:

PanX) [ Gl Bl

:/0 s dg(s)(1+o(1)).

Ua([1 = B8] ™) Us([1 = B 1)
(52.2)
To show the second statement, use (S2.1) to get:
Rg,ﬁn(Xa) . ! ( B NG 1) .
Uull — Bl ) / L Bul[l = 5.]7) s~dg (s)

= o <Ba([1 = Bal™) /01 S“”"""dg(S)) -

Rearranging and using the convergence \/n(1 — 3,)B.((1—3,)"!) — aX €

R, we obtain

R, 5, (X?) B ! ar a\ Lg—r_1 ar
AT /0 YT /0 ;o)
1
which completes the proof. |

The fourth lemma is the key to the proof of Theorem 2. It examines the
asymptotic behavior of some weighted integrals of the empirical tail quantile

process.
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Lemma 4. Assume that condition Cy(7y, p, A) is satisfied. Let ay,...,aq >
0, f1,-.., fa be Borel measurable reqularly varying functions with respective

indices b; < a;y and g1, ...,gq be distortion functions. Assume that k =

k(n) = oo, k/n — 0, VkA(n/k) = X\ € R and for some n > 0:

1
Vied{l,...,d}, / s_“ﬂ_l/2_’7dgj(s) < 00.
0

Pick 6y, ...,0q € R such that 0; < (a;y — bj) +n, and set

aj

- 1 1 (n/ks X"_U“Jv"_s—aﬂ s% 7% da. (s
b = Gy Jy H0EVE <Uaj<n/k> ) 0ts)

Then we have:

(Iips -+ Ian) —2 N (AC, )

with C' being the column vector with j—th entry

1 .—p 1
C; = aj/ i s707% dg,(s)
0 P

and ¥ being the d x d matriz with (i, j)—th entry

i = aiaﬂ2/ min(s, t)s_bi_‘si_lt_bf_‘;j_ldgi(s)dgj(t).
[0,1)2

Proof of Lemma 4. Define ¢ := min;<;<4(n—9;)/2 > 0, so that §,+¢ <17

for all j, and let ¢’ > 0 be so small that

e ) 1 ¢ 1-¢ 1 - (S2.4)
Vielil,...,d}, ajy+ -+ ———— a7+ =+ 0. A4
J e 2 2 142\ 27 ¢
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Set s, = k=(1=0/(42¢) Pick j € {1,...,d} and use the triangle inequality

to get:

aj

# sn (n/ks m _ s | %7 dg. (s
fj(n/k:)/o fin/ks) Vi (Uaj(n/k) ) dg;(s)

with

n’

(1) (2)
<E;,+E;

n _ Xzf” o f](n/ks) a;jy—0; )
Fin = VAo b hhwm = 00)

and EJ(?) = Vk nifj(n/ks)s_jdgj(s).

" o [in/k)
Since the distribution of X is heavy-tailed it follows from Theorem 1.1.6,
Theorem 1.2.1 and Lemma 1.2.9 in de Haan and Ferreira (2006) that X, , =

Op(U(n)). Thus

1 _ Ua;(n) [ fj(”/ks)saﬂ—(sj (s
By = Or (ﬁvajm/k) o Ham el ))

Use now Potter bounds for U (see e.g. Theorem 1.5.6 in Bingham et al.,

1987) to get

Bl = Op (kaﬂ+1/2+e/2 " fi(n/ks) k5>saﬂ—6jdgj(8))

o [fi(n/k)
_ ajy+1/2+¢/2 gajy " fin/ks) ida. )
= Op <k vHl/2re/2ga TR s™%dg;(s) | .

Besides, note that

n fj(n/ks)s_(;jdgj(s) 1jo4e [T fi(n/ks) 8_1/2_5j_edgj(s) — 5 (8111/2+€) ’

8 PR

o (k) SR Ny ey



JONATHAN EL METHNI AND GILLES STUPFLER

by Lemma 2. Thus

E](}TZ _ OP(kaj'y+1/2+e/2szj“/+1/2+€) IOp(l)
and Ej(iz _ Op(k1/2+8/2371/2+8)20]p(1)

by (S2.4) and the fact that s, = k~(=5)/0+25) " From this we deduce that

for any j € {1,...,d}:

1 /1 XZJ— Lks],n —a; S
Lin=—-—— [ fi(n/ks)Vk | —2=220 5707 | %7 % dg(s) + op(1).
" fin/k) S Ua, (n/F) ’ ’
Now, by Theorem 2.4.8 in de Haan and Ferreira (2006), we may find a
Borel measurable function Ay which has constant sign and is asymptotically

equivalent to A at infinity such that for any & > 0, we have

/
g1H1/24e

sup
0<s<1

Xn_Lkst N | B _ﬁ/s—p —1] p
Vk (W —s ) s W, (s) — VEAg(n/k)s p —0
(52.5)

where W, is an appropriate sequence of standard Brownian motions. In

other words:

Xn—\_ksj,n — 1 1 s —1 1 —1/2—¢'
T/k) s (1 + \/E% Wa(s) + Ao(n/k) p + \/ES op(1)

with the op(1) being uniform in s € (0, 1]. Now for any n, W, L W where W
is a standard Brownian motion, and the random process W has continuous
sample paths and s~1/27¢'IW(s) — 0 almost surely as s — 0. Moreover, for

s € [su, 1], 5727 < 5% = VEI= = o(v/k). Finally, (s — 1)/p is
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bounded by a constant on [s,, 1] when p < 0, and is equal to —log(s) for

p = 0 and thus dominated by s~'/2~¢" in a neighborhood of 0. A Taylor

expansion therefore yields:

X" 1 -1 %
n—|ks|n —a;y -1 s —1/2 e’ )
= U1+ W,(s) + Ag(n/k op(1
Ua,(n/k) ( Vi A T A
1 1 1 ,
= 59 (14 —a;vs "W, (s) + a; Ag(n/k + —s/ 1)
( T 7Y (8) +ajAo(n/ ) JE p(1)

where the op(1) is uniform in s € [s,, 1]. We deduce from this convergence

that
lin = Cj,n+§j,n+0uﬁ>< ; j;ij(gl//k;) §TH/27% _eldgj(s)> + op(1)
- _ fin/ks) s,
with (jn = a;7 ; WS JWn(S)dgj(S)
e k) s
and &, = a;VEAy(n/k) Tk s s %dg;(s).

By Lemma 2, we obtain

[]n = Cj,n—ng,n—l-Op(l). (826)

The bias term ¢, is controlled by applying Lemma 2:

1 —p -1
gjm = aj)\/ P _bj_éjdgj(S) + 0(1) — )\Cj (827)
0

Notice now that

d _ f](n/k5> s I ($)das (s
o) (o1 [ o)

1<5<d
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where W is a standard Brownian motion. Since W has continuous sample
paths and s~/2*¢'T¥/(s) — 0 almost surely as s — 0, we get by Lemma, 2

that

' fj(n/ks)s—m—aj—e’
fi(n/k)

([ W)

o) £ (a0 (W) gy )

1<j<d
1<5<d

The entries of this random vector are almost surely finite. Let us recall that
W is a centered Gaussian process with covariance function Cov(W (s), W (t)) =

min(s, t); consequently, for all (uy,...,uq) € RY the random variable

d 1
S way 5T EIW (s dgs)
j=1 0

is Gaussian centered and has variance

d 1 d
~* Var <Z ujaj/ S_l_bj_éjW(S)dgj(S)> = > way¥ (52.8)
j=1 0

ij=1

by Fubini’s theorem. It remains to combine Equations (S2.6), (52.7) and

(52.8), and to use the Cramér-Wold theorem to complete the proof. [

The fifth and final lemma shall be useful to control the bias term in Theo-

rem 3.

Lemma 5. Assume that Y;, © > 1 are independent random variables with
common cdf Fy, such that the left-continuous inverse Uy of 1/(1—Fy) satis-

fies condition Ca(vy, py, Ay ), with py < 0. Assume further that 5,0, — 1,
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n(l—B,) = oo, (1 =25,)/(1—f,) — 0 and \/n(1 — B,)Ay((1 - B,)7') —

A € R. Pick a distortion function g. If for some n > 0,
1
/ s dg(s) < oo,
0

then

Rys,(Y) (1 — 5n) Y 1 N py fol sTWTPYdg(s) o 1
RonlV) A1 =00 ViI=B) Jysrdgs)  \Val-5))

Proof of Lemma 5. Set ky = ky(n) =n(l — B,), rn = (1 = 5,)/(1 — 0,),

ko = ko(n) = k1 /rn. Since for any b € (0, 1),

Ryy(Y) = / Uy ([(1 — b)s]Y)dg(s).

we may write

ngén (Y) = Tgy RQ»B'!L(Y) + u17n + u27n (829)
where
,r.PY — 1 1
Uy, = T,ZY"T/ Uy (n/kis)Ag(n/k1s)dg(s)
Y 0

and us, — /O Uy (/) Ao Eas) ( . (nl/kls) {g%:g —rﬂ _szr;;yp%) dg(s)

with the notation of (S2.5). By Lemma 2 and the convergence v/k; Ag(n/ky) —

A,
Ul 7”"’—1/1 UV
Vki—""F— = M)V t—n0 ST dg(s) 4+ o(r)Y
lUY(n/kl) py Jo gls) +olry)

1
= —ATZY/ s TP dg(s) + o(r)Y) (52.10)
Py 0
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because 7, — 0o and py < 0. The sequence us,, is controlled by using first
inequality (S2.1) and Lemma 2: for any ¢ € (0, —py ), we have if n is large

enough,

[t | / Uy (n/kis)|Ao(n/k:s)|
ki < erytevis 1Ao(n/ky) dag(s
Vi < Wkido/kOl | = S Ay (] )
1
= g [ () o)
0

= o(rl¥). (52.11)

Combining (52.10) and (S2.11) entails

\/k_l — )\ Y ' VY —PY 7Y
W(ULn + uzn) = —p—YT' /0 S dg(S) + O(’f’n )

Use once more Lemma 2 to get

Ryp, (V) _ / ' Uy(n/kis)

Uy(n/k1) Uy (n/ky) dg(s) _>/0 s dy(s),

which yields

Vi A fl ST PYdg(s)
(U + Ugp) = ——1 +o(r)). (52.12)
Ry ,(Y) Py fol s~dg(s)
Combining (52.9) and (S2.12) completes the proof. ]

S3 Tables and Figures



S3. TABLES AND FIGURES

Risk measure Ry(X)

Distortion function g

VaR at level 3

glz)={x >1—-p} where 0 < g <1

TVaR above level 3

g(z) :min{%,l} where 0 < 5 < 1

Proportional Hazard transform

g(x) =2 where 0 < aa < 1

Dual Power

g(x) =1—(1—2)"* where 0 < a < 1

MAXMINVAR

g(aj) = (1 — (1 — x)o‘)l/o‘ Where O <a< 1

MINMAXVAR

9(30):1—(1—961/0‘)0‘ where 0 < a < 1

Gini’s principle

g(z) = (1 4+ a)z — az? where 0 < a < 1

1+ a)z if 0<x<1/2
Denneberg’s absolute deviation | g(z) = where 0 < a <1
a+(1l—-a)z if 1/2<z<1
(1 —exp(—rx))/(1 —exp(—r)) if r>0
Exponential transform g(x) =
x if r=0
(log(1+rz))/(log(l+7r)) if r>0
Logarithmic transform g(z) =
x if r=0
(Vi4+rz-1)/(V1+r—1) if >0
Square-root transform glx) =
x if r=0
. #5, 52
S-inverse shaped transform gx)=a 5 % + 5 +8)z
1§ 8 N\
where a = 6—5—%54—5 with0<d<land B€R

Wang’s transform

g9(x) = (@7 (z) + &7 (a))

where @ is the standard Gaussian cdf and 0 < o <1

Beta’s transform

_ * 1 a—1 _ 4\b—1
g(x)—/o B(a,b)t (1—t)"""dt

where (a, b) is the Beta function with parameters a, b > 0

Table 1: Some risk measures and their distortion functions.
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Risk measure

Expression as a combination of CTM,(8) and VaR(p)

CTE(S) CTM, (B)
CVaR,(B) AVaR(B) + (1 — \)CTM; () where X € [0,1]
w1 CTM, (8) + w2 CTM; () + w3 VaR(a)
GlueVaR/;';"* where wi = hy — (f”_;%)(j_m wy = (hrﬂhl_#
and w3 =1 —w; —ws =1 — hy, with hy € [0,1], ho € [h1,1] and a < B
SP(pB) (1 —B)(CTMy(B) — VaR(B))
CTV(B) CTM,(8) — CTM3(B)
TSD,(8) CTM,(8) + )\\/CTMQ(B) — CTM2(8) where A > 0
CTS(B) CTMs(8)/(CTMz(8) — CTMI(8))*/?

Table 2: Link between the CTM and some risk measures when the cdf of

X is continuous.
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Figure 1: Choosing  on a random sample of n = 100 Burr observations
with v = 1/2 and p = —1; x—axis: 1—/. The choice procedure is conducted
with Sy = 0.5 and h = 0.1. The blue line is the Hill estimator; we obtain

B* = 0.86 and 7 = 0.475.
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Figure 2: Poker data set: values of the consecutive swings of poker player
Tom Dwan (absolute value of the aggregated results during alternative win-

ning and losing streaks). Measurement unit: thousands of USD.
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Figure 3: Poker data set: sample autocorrelation function until lag 34.

Dashed line: 95% significance level.
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Figure 4: Poker data set, detrended data: Hill estimators; x—axis: 1 —
3. Dashed line: standard Hill estimator, black line: estimator 347(1),
blue line: estimator 757 (3/4), purple line: estimator 757 (1/2), green line:

estimator 757 (1/4), red line: estimator 75 (0).
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Figure 5: Secura Belgian Re data set: Hill estimators; r—axis: 1 — f.
Dashed line: standard Hill estimator, black line: estimator 757 (1), blue
line: estimator 757 (3/4), purple line: estimator 74”(1/2), green line: esti-

mator 757 (1/4), red line: estimator 757(0).
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