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RANDOM VARIABLES
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Abstract: Non-Gaussian stable random variables always have in�nite variance, but

the conditional second moment E[X2

2 jX1] for a jointly �-stable vector (X1; X2) with

index 1=2 < � < 2 may exist when some conditions on the spectral measure are met.

Wu and Cambanis (1991) obtained a functional form of the conditional variance Var

[X2jX1 = x] for symmetric �-stable vectors with 1 < � < 2. This paper extends their

result to the whole range 1=2 < � < 2 and also provides a formula for the conditional

variance in the case where (X1; X2) are skewed and � 6= 1.

Key words and phrases: Stable distributions, bivariate stable distributions, domain

of attraction, conditional moments, regression, nonlinear regression.

1. Introduction and the Main Result

Let (X1;X2) be a symmetric �-stable (S�S) random vector with index 0 <

� < 2. Assume that X1 and X2 are non-degenerate. Then EjXij
p < 1; i =

1; 2, if and only if p < �. However, conditional moments E[jX2j
pjX1] can exist

with higher values of p. If the components of (X1;X2) are linearly dependent,

conditional moments of any order exist. If we exclude the trivial case of linear

dependence, then as shown in Cioczek-Georges and Taqqu (1994a), conditional

moments of order up to p < 2�+ 1 may exist. One can therefore investigate the

regression E[X2jX1 = x] if 0 < � < 2 and the conditional variance E[X2
2 jX1 =

x]�E2[X2jX1 = x] if 1=2 < � < 2.

Recall that the joint characteristic function � of an S�S vector (X1; X2) is

given by

�(t; r) = E exp(i(tX1 + rX2)) = exp(�

Z
S2

jts1 + rs2j
��(ds));

where �, called the spectral measure, is a �nite symmetric measure on the Borel

sets of the unit circle S2 in R
2 (see for example Samorodnitsky and Taqqu (1994)).

There is a one-to-one correspondence between the measure � and the distribution

of (X1;X2). The marginal characteristic function �1 of X1 is given by

�1(t) = E exp(itX1) = expf���1 jtj
�g;
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where �1 = (
R
S2
js1j

��(ds))1=� is the scale parameter of X1.

For the case 1 < � < 2 the regression always exists, and Kanter (1972)

proved that for all x 2 R,

E[X2jX1 = x] =

R
S2
s<��1>
1 s2�(ds)R

S2
js1j��(ds)

x; (1:1)

where a<�> = jaj�sign(a) for a; � 2 R. This result can be extended in some

situations to � � 1. We have shown (Cioczek-Georges and Taqqu (1994a,b))

that E[jX2j jX1 = x] <1 for all x 2 R if and only if

Z
S2

js1j
�(1��)�(ds) <1 for the case 0 < � < 1; (1:2)

and if and only if

�

Z
S2

ln js1j�(ds) <1 for the case � = 1: (1:3)

The equality (1.1) also holds for 0 < � � 1 as shown by Samorodnitsky and

Taqqu (1991). They obtained this result under a condition slightly stronger than

(1.2) or (1.3), namely, assuming that
R
S2
js1j

���(ds) < 1 for some � > 1 � �,

0 < � � 1. (The form of the �rst derivative of the characteristic function �X2jx

of X2 given X1 = x used by Samorodnitsky and Taqqu to establish (1.1) follows

from (1.2) and (1.3) as well, and to establish its existence one does not need the

stronger condition stated above.1)

In the Gaussian case (� = 2) the regression is always linear. In view of

(1.1), linearity extends to symmetric �-stable, 0 < � < 2, vectors whenever the

regression exists. However, the behavior of the conditional variance is completely

di�erent in the two cases, as will be seen below.

Let us focus �rst on the second conditional moment. Again, results of

Cioczek-Georges and Taqqu (1994a,b) (c.f: also Wu and Cambanis (1991) for

1In fact, even Relation (1.3) is stronger than what is needed for the existence

of the �rst derivative in the case � = 1. The �rst derivative of �X2jx for � = 1

exists without any additional assumption, and evaluating �i�0X2jx
(0) yields the

right hand side of (1.1). But, as it is known, the �niteness of an odd derivative of

a characteristic function does not guarantee the existence of the corresponding

odd moment.
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1 < � < 2) imply that, in the case 1=2 < � < 2; E[X2
2 jX1 = x] <1 for all x 2 R

if and only if Z
S2

js1j
�(2��)�(ds) <1: (1:4)

Note that (1.4) implies that the scale parameter �1 = (
R
S2
js1j

��(ds))1=� of X1

is non-zero and hence X1 6� 0. A functional form of the conditional variance

for 1 < � < 2, under the above assumption, was obtained by Wu and Cambanis

(1991). The next theorem extends their result to the case 1=2 < � � 1 and shows

that the conditional variance is of the form C(�; �)R2(x=�1;�).

Theorem 1.1. Let (X1;X2) be a S�S, 1=2< �< 2, random vector. Assume

that (1:4) holds in the case 1 � � < 2 and assume

Z
S2

js1j
���(ds) <1 (1:5)

for some � > 2 � � for the case 1=2 < � < 1. Then the conditional variance

Var[X2jX1 = x], for x 2 R, has the form

Var[X2jX1=x] = �2�2�
1 [��1

Z
S2

js1j
��2s22�(ds)�(

Z
S2

s<��1>
1 s2�(ds))

2]R2(x=�1;�);

(1:6)

where

R2(x;�) =
�2
R
1

0
cos tx e�t

�

t2��2dtR
1

0
cos tx e�t

�

dt
+ x2:

The function R(x;�) is symmetric and

R2(x;�) � x2

8<
:
!1; if 1=2 < � < 1,

= 1; if � = 1,

! �1; if 1 < � < 2.

Moreover, if � 6= 1,

R(x;�) = x+ o(x); as x!1;

R(x;�) = R(0;�) +B(�)x2 + o(x2); as x! 0;

where

R(0;�) = [�(� � 1)�(1 � 1=�)=�(1=�)]1=2 ;

B(�)R(0;�) = ((� � 1)=4)[�1 + ��(3=�)�(1 � 1=�)=�2(1=�)] � 0:

Remarks
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� For the case 1 < � < 2 the statement of Theorem 1.1 is equivalent to

Theorem 2 of Wu and Cambanis (1991). To verify this, integrate by parts

(twice) the top integral of R2(x;�):

R2(x;�) =
��x

R
1

0
sin tx e�t

�

t��1dtR
1

0
cos tx e�t

�

dt
+
�(� � 1)

R
1

0
cos tx e�t

�

t��2dtR
1

0
cos tx e�t

�

dt
+ x2

= �(�� 1)

R
1

0
cos tx e�t

�

t��2dtR
1

0
cos tx e�t

�

dt
� �(�� 1)S2(x;�); (1:7)

where S2(x;�) is the notation used in Wu and Cambanis (1991). Similarly,

R(0;�) = (�(� � 1))1=2S(0;�);

and

B(�)R(0;�) = �(� � 1)A(�)S(0;�);

where again A(�) is de�ned inWu and Cambanis (1991). (There is a misprint

in that paper. One should have S(0;�) = (�(1� 1=�)=�(1=�))1=2 instead of

S(0;�) = (��(1 � 1=�)=�(1=�))1=2 :)

� As remarked by Wu and Cambanis (1991), for the Gaussian case � = 2, we

have R2(x; 2) � 2 by (1.7) and hence (1.6) reduces to the usual formula

Var[X2jX1 = x] = 2�2
2(1� �2) = (Var(X2))(1� �2);

where � is the correlation coe�cient between X1 and X2.

� For the case 1=2 < � < 1 we make the stronger assumption (1.5). For the

existence of the conditional variance it is enough to assume (1.4). But to

evaluate it, we need the form of the second derivative �00X2jx
, which is obtained

using Condition (1.5).

� One can draw conclusions similar to those in Wu and Cambanis (1991). The

conditional variance is proportional to the function R2(�=�1;�) which de-

pends only on the index of stability � and the scale parameter �1 of X1.

When � = 1, this functional form reduces to the surprisingly simple expres-

sion R2(x=�1; 1) = 1 + (x=�1)
2. The dependence on the joint distribution of

(X1; X2) expresses itself only through a multiplicative constant (which does

not depend on X1 = x). This constant,

�2�2�
1 [��1

Z
S2

js1j
��2s22�(ds)� (

Z
S2

s<��1>
1 s2�(ds))

2];

is always nonnegative (by the Cauchy-Schwarz inequality) and �nite. It can

be zero only if c1s
<�=2>�1
1 s2 + c2s

<�=2>
1 = 0, �-a.e., for some c21 + c22 > 0,



FORM OF CONDITIONAL VARIANCE 355

i.e. s2 = (c2=c1)s1, �-a.e. (c1 6= 0 since s1 6= 0 �-a.e.), i.e. X2 = (c2=c1)X1

a.e. Hence, if X1 and X2 are linearly independent, the conditional variance

Var[X2jX1 = x] can never be constant in contrast to the Gaussian case

(� = 2). In fact, it tends to in�nity as jxj ! 1. The function R(x;�), which

is proportional to the conditional standard deviation, is even, approximately

quadratic around zero and approximately linear at in�nity. Its mean is �nite

for � > 1 but in�nite for � � 1.

Figures 1, 2 and 3 display R2(x;�) and R2(x;�) � x2 plotted for various

values of parameter �. A graph of R2(0;�) as a function of � is given in

Figure 4. All �gures were created with Mathematica, v.2.0.
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Figure 1. The functions R2(x;�) for � = 0:51, 0.6, 0.7, 0.9, 1, 1.3, 1.7, 1.9, 1.99, starting

with the top graph and proceeding down.

R2(x;�) � x2
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Figure 2. The functions R2(x;�) � x2 for � = 0:51, 0.6, 0.7, 0.9, 1, 1.3, 1.7, 1.9, 1.99,

starting with the top graph and proceeding down. Recall that R2(x;�) � x2 ! +1, as

x! +1, for � < 1, and R2(x;�) � x2 ! �1, as x! +1, for � > 1.
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R2(x;�)

70

60

50

40

30

20

10

0 x
2 4 6 8 10

Figure 3. The functions R2(x;�) for � = 1, 1.9, 1.99, 1.9999, 1.9999999, starting with

the top graph and proceeding down. Note that the closer � is to 2, the longer R2(x;�)

stays 
at and near 2 (R2(x; 2) � 2).
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Figure 4. R2(0;�) as a function of �.

The next section contains the proof of Theorem 1.1. In Section 3 we include

a formula for the conditional variance in the skewed �-stable case, 1=2 < � < 2,

� 6= 1.
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2. Proof of Theorem 1.1

The statement of Theorem 1.1 for 1 < � < 2 follows from Theorem 2 of

Wu and Cambanis (1991) as noted earlier. Hence, we focus only on the case

1=2 < � � 1.

In Proposition 2.2 of Cioczek-Georges and Taqqu (1994a) we showed that,

for 1=2 < � � 1,

Re�00X2jx
(r)

=
�2

2�f(x)

Z
1

�1

cos tx exp(�

Z
S2

jts1+rs2j
��(ds))(

Z
S2

(ts1+rs2)
<��1>s2�(ds))

2dt

�

�x

2�f(x)

Z
1

�1

sin tx exp(�

Z
S2

jts1+rs2j
��(ds))(

Z
S2

(ts1+rs2)
<��1>s22s

�1
1 �(ds))dt

�

�2

2�f(x)

Z
1

�1

cos tx exp(�

Z
Z2

jts1+rs2j
��(ds))(

Z
S2

(ts1+rs2)
<��1>s1�(ds))

� (

Z
S2

(ts1+rs2)
<��1>s22s

�1
1 �(ds))dt; (2:1)

where �X2jx is the conditional characteristic function of X2 given X1 = x and

f(x) is the density of X1. Relation (2.1) was proved using (1.5) in the case

1=2 < � < 1, but only (1.4) in the case � = 1. The second moment E[X2
2 jX1 = x]

is then �nite for all x 2 R and

E[X2
2 jX1 = x] = �Re�00X2jx

(0)

=
hZ

S2

js1j
<�>�(ds)

Z
S2

js1j
��2s22�(ds)

� (

Z
S2

s<��1>
1 s2�(ds))

2
i �2

�f(x)

Z
1

0

cos tx exp(���1 t
�)t2��2dt

+ (

Z
S2

js1j
��2s22�(ds))

�x

�f(x)

Z
1

0

sin tx exp(���1 t
�)t��1dt: (2:2)

Relation (1.4) (or (1.5)) implies �1 > 0, i.e. X1 6� 0, and thus the characteristic

function of X1 is absolutely integrable. The following equality holds for x 2 R:

f(x) =
1

2�

Z
1

�1

e�itxe��
�

1
jtj�dt =

1

�

Z
1

0

cos tx e��
�

1
t�dt: (2:3)

Using (2.3) and integrating by parts, we get

�x

�f(x)

Z
1

0

sin tx exp(���1 t
�)t��1dt =

x2

��1 �f(x)

Z
1

0

cos tx exp(���1 t
�)dt =

x2

��1 :
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Now, we are able to calculate the conditional variance Var[X2jX1 = x]. Relations

(2.2), (1.1), (2.3) and the last one imply

Var[X2jX1 = x] = E[X2
2 jX1 = x]�E2[X2jX1 = x]

=
h
��1

Z
S2

js1j
��2s22�(ds)� (

Z
S2

s<��1>
1 s2�(ds))

2
i

�
n �2

�f(x)

Z
1

0

cos tx exp(���1 t
�)t2��2dt+

x2

�2�
1

o

= �2�2�
1

h
��1

Z
S2

js1j
��2s22�(ds)� (

Z
S2

s<��1>s2�(ds))
2
i

�
n�2

R
1

0
cos(t x

�1
)e�t

�

t2��2dtR
1

0
cos(t x

�1
)e�t

�

dt
+
x2

�2
1

o
:

Thus, (1.6) is established.

We now turn to the asymptotic behavior of R(x;�); � 6= 1, as x ! 1 and

x! 0. First note that

lim
x!1

R2(x;�)

x2
= 1 + lim

x!1

�2
R
1

0
cos tx e�t

�

t2��2dt

x2
R
1

0
cos tx e�t

�

dt
= 1:

The second limit is zero because
R
1

0
cos tx e�t

�

dt � const x���1, as x!1 (the

integral
R
1

0
cos tx e�t

�

dt is proportional to the density of the normalized one-

dimensional stable distribution), and
R
1

0
cos tx e�t

�

t2��2dt � �(2��1) sin(�(1�

�))x1�2�, as x ! 1, by Theorems 126 and 127 of Titchmarsh (1986). Note,

however, that when x!1; R2(x;�)�x2 becomes in�nitely large (+1) if � < 1

and in�nitely small (�1) if � > 1 (see Figure 2).

We also have

lim
x!0

R2(x;�) �R2(0;�)

x2
= 1 + lim

x!0

(
�2
R
1

0
cos tx e�t

�

t2��2dtR
1

0
cos tx e�t

�

dt
)0

2x

= 1� lim
x!0

�2
R
1

0
sin tx e�t

�

t2��1dt

2x
R
1

0
cos tx e�t

�

dt

+ lim
x!0

�2(
R
1

0
cos tx e�t

�

t2��2dt)(
R
1

0
sin tx e�t

�

tdt)

2x(
R
1

0
cos tx e�t

�

dt)2

= 1�
�2

2
R
1

0
e�t

�

dt
lim
x!0

(

Z
1

0

sin tx e�t
�

t2��1dt)0

+
�2
R
1

0
e�t

�

t2��2dt

2(
R
1

0
e�t

�

dt)2
lim
x!0

(

Z
1

0

sin tx e�t
�

tdt)0

= 1�
�2
R
1

0
e�t

�

t2�dt

2
R
1

0
e�t�dt

+
�2(
R
1

0
e�t

�

t2��2dt)(
R
1

0
e�t

�

t2dt)

2(
R
1

0
e�t�dt)2

:
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Using the equalities
R
1

0
e�t

�

t�dt = �((� + 1)=�)=� for � > �1, and �(y + 1) =

y�(y) for y > �1; y 6= 0, we get

lim
x!0

R2(x;�) �R2(0;�)

x2
= 1�

�2�(2 + 1

�
)

2�( 1
�
)

+
�2�(2� 1

�
)�( 3

�
)

2�2( 1
�
)

=
(�� 1)

2

h
�1 + ��

� 3
�

�
�
�
1�

1

�

�
=�2

� 1
�

�i
� 2B(�)R(0;�):

Hence

lim
x!0

R(x;�)�R(0;�)

x2
= B(�);

which completes the proof.

3. Conditional Variance for Skewed Stable Random Variables

Condition (1.4) is also su�cient for the existence a.e. of the second condi-

tional moment E[X2
2 jX1 = x] in the case when (X1; X2) is a skewed �-stable,

1=2 < � < 2, random vector (c.f. Cioczek-Georges and Taqqu (1994a)), i.e. when

the joint characteristic function of (X1; X2) is of the form

�(t; r) =

8>>><
>>>:
expf�

R
S2
jts1 + rs2j

�(1� i tan ��
2
sign(ts1 + rs2))�(ds)

+ i(t�1 + r�2)g; if � 6= 1;

expf�
R
S2
jts1 + rs2j(1 + i 2

�
sign(ts1 + rs2) ln jts1 + rs2j)�(ds)

+ i(t�1 + r�2)g; if � = 1;

where (�1; �2) 2 R
2 and the spectral measure � on S2 is not assumed symmetric

anymore. In this case, \a.e." means \for all x such that f(x) 6= 0," where f is

the density of X1.

The regression E[X2jX1 = x] in the skewed �-stable case is given in Theo-

rem 3.1 of Hardin Jr., Samorodnitsky and Taqqu (1991a) and techniques for its

numerical computation are described in Hardin Jr., Samorodnitsky and Taqqu

(1991b). The regression equals

E[X2jX1 = x] = �x+
a2(�� �1�)�1

1 + a2�2
1

x+
a(�� �1�)

1 + a2�2
1

1� xH(x)

�f(x)

=
(�+ a2�1�)

1 + a2�2
1

x+
a(�� �1�)

1 + a2�2
1

1� xH(x)

�f(x)
; (3:1)

where

�1 = (

Z
S2

js1j
��(ds))1=�; �1 =

1

��1

Z
S2

s<�>1 �(ds)
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are the scale and skewness parameters of X1, and

a = tan(
��

2
); � =

1

��1

Z
S2

s<��1>
1 s2�(ds); � =

1

��1

Z
S2

js1j
��1s2�(ds);

H(x) =

Z
1

0

sin(tx� a�1�
�
1 t

�) exp(���1 t
�)dt;

�f(x) =

Z
1

0

cos(tx� a�1�
�
1 t

�) exp(���1 t
�)dt:

Set H(x) = (1=��1 )Hs(x=�1) and f(x) = (1=��1 )fs(x=�1), where

Hs(x) =

Z
1

0

sin(xt� a�1t
�) exp(�t�)dt;

�fs(x) =

Z
1

0

cos(xt� a�1t
�) exp(�t�)dt;

and fs is the probability density function of the standard �-stable random vari-

able with index � 6= 1, scale parameter �1 = 1 and skewness parameter �1.

The following theorem gives the form of the conditional variance for 1=2 <

� < 2, � 6= 1. Its proof, which is omitted, uses the techniques developed in

Cioczek-Georges and Taqqu (1994a) to establish a form of Re�00X2jx
(r) for � 6= 1

under the same conditions as in the symmetric case. The case � = 1 appears

more complicated.

We suppose here that the shift vector (�1; �2) is zero. This can be done

without loss of generality because Var[X2jX1 = x] = Var[X2 + �2jX1 + �1 =

x+ �1]:

Theorem 3.1. Under (1:4) if 1 < � < 2 and (1:5) if 1=2 < � < 1, we get for

(X1;X2) with (�1; �2) = (0; 0),

Var[X2jX1 = x]

= (
x

�1
)2
�
a2�1�

2��
1

1 + a2�2
1

Z
S2

s<��2>1 s22�(ds)+
�2��
1

1+a2�2
1

Z
S2

js1j
��2s22�(ds)�

(�+a2�1�)
2�2

1

(1+a2�2
1)

2

�

�

 
1� ( x

�1
)Hs(

x
�1
)

�fs(
x
�1
)

!2

a2(���1�)
2�2

1

(1+a2�2
1)

2
+ (

x

�1
)
1�( x

�1
)Hs(

x
�1
)

�fs(
x
�1
)

�

�
a�2��

1

1+a2�2
1

Z
S2

s<��2>1 s22�(ds)�
a�1�

2��
1

1+a2�2
1

Z
S2

js1j
��2s22�(ds)�2

a(���1�)(�+a
2�1�)�

2
1

(1+a2�2
1)

2

�

+
1

�fs(
x
�1
)

Z
1

0

cos(
x

�1
t�a�1t

�) exp(�t�)t2��2dt

�

h
�2(a2�2 � �2)�2

1 � a2�2�1�
2��
1

Z
S2

s<��2>
1 s22�(ds) + �2�2��

1

Z
S2

js1j
��2s22�(ds)

i
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+
1

�fs(
x
�1
)

Z
1

0

sin(
x

�1
t� a�1t

�) exp(�t�)t2��2dt

�

h
2a�2���2

1 � a�2�2��
1

Z
S2

s<��2>
1 s22�(ds)� a�2�1�

2��
1

Z
S2

js1j
��2s22�(ds)

i
:
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