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Abstract: We propose a fully efficient joint fractional imputation method for han-

dling bivariate ordinal responses with missing observations. We show that the

method is ideally suited for bivariate ordinal responses to create a single imputed

data file and provides valid and efficient inferences for the joint and marginal proba-

bilities, association measures, as well as regression analysis. Asymptotic properties

of estimators based on the joint fractionally imputed data set are developed and

their superiority over existing methods, including available-case analysis, propen-

sity score adjustment, and sequential regression multiple imputation methods, is

demonstrated through theoretical results and simulation studies. The proposed

joint fractional imputation strategy employs modelling procedures that could be

used for the sequential regression multiple imputation method but creates a single

imputed data set which can be easily analyzed using existing softwares with minor

modifications. Variance estimation and tests of independence are also discussed

under the proposed joint fractional imputation method.

Key words and phrases: Association measure, contingency table, fractional impu-

tation, marginal probabilities, sequential regression multiple imputation.

1. Introduction

Ordinal responses are categorical variables with an ordered scale and are

routinely collected and analyzed by researchers from many scientific fields. For

example, ordinal variables are commonly used in medical studies to measure the

severity of injuries (i.e., minor, mild, severe or life-threatening), the stage of

progression of a disease, the effect of a treatment, and many others. Bivariate

ordinal responses are also commonly observed, such as conditions on two related

parts of the body or measures of two contrasting treatments.

There are two major problems in statistical analysis of bivariate ordinal re-

sponses: contingency table analysis and regression analysis. Contingency table

analysis focuses mainly on the joint and the marginal distribution of the two

variables and, more importantly, the interrelation between responses; regression
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modelling explores the dependence of both responses on covariates while simulta-

neously taking into consideration the correlation between the two response vari-

ables. Statistical methods developed for bivariate nominal responses are also ap-

plicable to ordinal contingency tables. Agresti (2010, 2013) contain an excellent

review of related techniques. There have been methods developed specifically for

ordinal responses to better handle the ordering nature of the variables. Kendall

(1945), Goodman and Kruskal (1954), and Somers (1962) proposed different

association measures to summarize correlation between ordinal responses. Alter-

natively, several association models were built to characterize the dependence,

see, for instance, Haberman (1974) and Goodman (1979, 1985). Regression anal-

ysis with ordinal responses did not attract much attention until the emergence of

generalized linear models (McCullagh and Nelder (1989)). The generalized esti-

mating equation (GEE) method, initially proposed by Liang and Zeger (1986) as

a tool for longitudinal and clustered data, can be applied for regression analysis

with ordinal responses. See, for example, Lumley (1996), Parsons, Edmondson

and Gilmour (2006), and Touloumis, Agresti and Kateri (2013). Transitional

models which include other responses as predictors are another approach to

incorporating correlation between responses. For more detailed discussions on

modeling techniques for ordinal responses, see Supplementary Material.

If one or both ordinal responses contain missing observations, none of the

existing analysis tools is directly applicable. There have been a considerable de-

velopment recent years of the theory and application of methods for handling

missing data. Multiple imputation (MI), formally proposed by Rubin (1987),

has gained tremendous popularity among users of incomplete data. However,

most studies focus on cases with continuous or nominal responses and little at-

tention has been given to ordinal responses. The sequential regression multiple

imputation (SRMI) method, proposed by Raghunathan et al. (2001), and also

known as multiple imputation with chained equations (MICE) (van Buuren and

Groothuis-Oudshoorn (2011)), is a flexible and practical procedure for generating

multiple imputed data sets, and the method is technically applicable to ordinal

responses. In Supplementary Material, we elaborate on key steps to implement

the method for bivariate ordinal responses with missing values. One of the ma-

jor drawbacks of SRMI is the lack of theoretical justifications. The popularity

of SRMI in practical applications rests largely on empirical studies rather than

theoretical arguments (White, Royston and Wood (2011)).

Multiple imputation requires the creation of multiple data files and separate

storage and analysis of those files by the users. From an operational point of
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view, and for large survey agencies, it is more appealing to have a single imputed

data file, especially if the file is to be released for public use with multiple users

(Brick and Kalton (1996)). Single imputation, however, is criticized for its lack

of efficiency due to the potential variation, known as the imputation variance,

induced by random imputation procedures. Fractional imputation (FI), origi-

nally proposed by Kalton and Kish (1984), and later studied by Kim and Fuller

(2004) and Kim (2011), is an attractive alternative to multiple imputation for

reducing imputation variance. It replaces each missing observation by a cluster of

plausible values with each imputed value receiving a fractional weight. Observed

components are duplicated for fractionally imputed units, resulting in a single

enlarged data file. With appropriate fractional weights, standard analyses can be

applied directly to the imputed data file with minor modifications to incorporate

the weights and lead to valid and efficient inferences. See Yang and Kim (2016)

for an insightful review of recent developments in the FI literature.

In this paper, we propose a fully efficient joint fractional imputation (JFI)

procedure for handling incomplete bivariate ordinal responses by creating a single

imputed data file that can be released for public use. The proposed method is

fully efficient in the sense that it does not incur any additional variation from the

imputation and leads to valid inferences for the joint and marginal probabilities,

association measures, and regression analysis. Tests of independence can also be

carried out based on the association estimators. We justify the validity of our

proposed procedure by revealing its deep link to the EM algorithm (Dempster,

Laird and Rubin (1977)).

The rest of the paper is organized as follows. Section 2 introduces basic

settings, and notation and inferential problems with bivariate ordinal responses.

In Section 3, we present our proposed method and establish its theoretical re-

sults. Results from simulation studies with comparisons to existing methods are

reported in Section 4. Some concluding remarks are given in Section 5.

2. Basic Settings and Notation

Suppose that the sample data set is given by D =
{

(yi, δi,xi), i = 1, . . . , n
}

,

where yi = (yi1, yi2) are ordinal responses on R-level and J-level scales, respec-

tively, and that both are partially observed. Let δi = (δi1, δi2) be the correspond-

ing response indicators: δit = 1 if yit is observed and δit = 0 otherwise, t = 1, 2.

The vector xi consists of fully observed auxiliary variables in the data file. We

assume that the data set is an independent sample of size n from (y, δ,x). Units

in the sample can be partitioned into four groups, depending on the missing
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pattern of the responses:

R =
{
i : δi1 = 1, δi2 = 1

}
, P1 =

{
i : δi1 = 1, δi2 = 0

}
,

P2 =
{
i : δi1 = 0, δi2 = 1

}
, M =

{
i : δi1 = 0, δi2 = 0

}
.

We consider scenarios where the responses are missing-at-random (MAR) as

termed by Little and Rubin (2002) such that (δ ⊥ ymis) | (yobs,x), where ymis

and yobs are respectively the missing and the observed component(s) of y. This

implies that P (δ1 = 1, δ2 = 0 |y,x) = P (δ1 = 1, δ2 = 0 | y1,x), P (δ1 = 0, δ2 =

1 |y,x) = P (δ1 = 0, δ2 = 1 | y2,x) and P (δ1 = 0, δ2 = 0 |y,x) = P (δ1 = 0, δ2 =

0 |x). The MAR assumption is less restrictive than the monotone missingness of-

ten used for longitudinal data and is sufficient for the justification of our proposed

procedure in Section 3.

In the absence of missing values, observations for bivariate ordinal responses

can be cross-classified into an R × J table of cell counts based on the response

values. For a fixed sample size n, the cell counts of the contingency table follow

a multinomial distribution. We denote the probability of the bivariate ordinal

responses falling into the cell in the rth row and jth column by πrj = P (y1 =

r, y2 = j), r = 1, . . . , R, j = 1, . . . , J . Let π = (π11, . . . , π1J , . . . , πR1, . . . , πRJ)′

be the vector of all cell probabilities. We have
∑R

r=1

∑J
j=1 πrj = 1. The

marginal distributions of the responses are of basic interest and are denoted

by π1 = (π1+, . . . , πR+)′ and π2 = (π+1, . . . , π+J)′, where πr+ =
∑J

j=1 πrj and

π+j =
∑R

r=1 πrj . As dependence between the two ordinal responses is often the

main focus for analysis of bivariate data, measures of association are of primary

concern. A simple example is the conditional distribution of y1 given y2 at level j:

π1|j = (π1|j , . . . , πR|j)
′, j = 1, . . . , J , where πr|j = P (y1 = r | y2 = j) = πrj/π+j .

Another popular example is a set of different types of ordinal odds ratios, in-

cluding the local, the cumulative and the global odds ratios. See Supplementary

Material for detailed definitions.

It is sometimes more appealing to characterize the association between two

ordinal variables by a single summary index rather than a set of odds ratios.

Several such measures have been proposed based on the probabilities of concor-

dance and discordance. Two ordinal observations (yi1, yi2) and (ym1, ym2) are

concordant if the subject ranking higher on y1 also ranks higher on y2; while

they are discordant if the one ranking higher on y1 ranks lower on y2. Goodman

and Kruskal (1954) proposed to use the parameter gamma defined as

γ =

∏
c −

∏
d∏

c +
∏

d

, (2.1)
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where
∏

c = 2
∑

r<k

∑
j<l πrjπkl and

∏
d = 2

∑
r<k

∑
j>l πrjπkl , corresponding

to the probabilities of concordance and discordance for two randomly selected

observations. The value of γ ranges from −1 to 1. When |γ| = 1, there is a

monotone relationship between y1 and y2, but not necessarily strictly monotone.

For example, γ = 1 indicates that if yi1 < ym1 then yi2 ≤ ym2. When y1 and y2
are independent, we have γ = 0, but the reverse statement is not true. Other

examples of association measures include Kendall’s Tau-b (Kendall (1945)) and

Somers’ d (Somers (1962)), both having the same numerator
∏

c−
∏

d . The

plug-in estimator of
∏

c−
∏

d is given by C −D, where C = 2
∑

r<k

∑
j<l π̂rj π̂kl

and D = 2
∑

r<k

∑
j>l π̂rj π̂kl. Simon (1978) showed that any estimated measures

based on C−D are equivalent in terms of efficacy for testing independence. The

Wald-type test statistic for independence is given by

z =
C −D
σ̂C−D

, (2.2)

where σ̂C−D can be the nonnull standard error of C − D or the null standard

error using the relations πrj = πr+π+j under independence. Agresti (2010) rec-

ommended use of the latter and claimed that the test statistic with null standard

error converges to the normal distribution faster under the null hypothesis. The

Pearson χ2 test is also applicable, but it is designed for a general alternative and

may not have good power for testing a trend, which is of primary interest for

ordinal responses. The z statistic given in (2.2) is very natural for alternative hy-

potheses such as
∏

c >
∏

d or
∏

c <
∏

d, corresponding to a positive and negative

trend.

When one or both ordinal responses contain missing values, the naive

“available-case analysis” (ACA) approach by deleting observations with miss-

ing values is usually invalid unless the missing rate is very low or the data are

missing completely at random (MCAR) (Little and Rubin (2002)). Two existing

approaches for handling missing values in this case are propensity score adjust-

ment (PSA) and sequential regression multiple imputation (SRMI). Details of

these two methods are given in Supplementary Material and their performances

compared to our proposed method are presented in Section 4.

3. Fully Efficient Joint Fractional Imputation

In this section we present our proposed joint fractional imputation approach

to bivariate ordinal responses with missing values. We combine the modelling

strategies from the SRMI method with the specific feature of ordinal variables to

create a single fractionally imputed data set which is well suited for both marginal
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and joint analyses. The efficiency of the approach is demonstrated through a

maximum likelihood interpretation of the procedure, asymptotic properties of

the estimators and results of simulation studies.

3.1. Joint fractional imputation

The imputation models we use are inspired by the transitional modelling

mentioned in Section 1 and the sequential regression modelling used by the SRMI

method. We impose a marginal regression model on one of the responses and a

transitional regression model on the other with the first response as a predictor.

To be more specific, we consider the following models

Marginal: g1(ηr1) = αr1 − β′1x,

Transitional: g2(ηj2) = αj2 − β′2x−
R∑

r=2

νrI(y1 = r),
(3.1)

where ηr1 = P (y1 ≤ r |x) and ηj2 = P (y2 ≤ j | y1,x) are the cumulative

probabilities given the covariates, and g1 and g2 are link functions. Let θ1 =

(α11, . . . , αR1,β
′
1)
′ be the parameters in the marginal model and θ2 = (α12, . . . ,

αJ2,β
′
2, ν2, . . . , νR)′ be the parameters in the transitional model. Both models

in (3.1) belong to the cumulative link model family. Popular choices for the

link functions include the logit, probit and c-log-log functions. There exists an

interesting latent variable interpretation for models with different links. See She

(2017) for further details. Our proposed method can be easily adapted to more

complex parametric forms of (3.1), for example, one with nonlinear systematic

components, and other ordinal regression models based on continuation ratios or

adjacent-categories.

A practical question regarding (3.1) is on which response variable to be used

for the marginal model. The decision could be based on results from two pre-

liminary model fittings for each response variable using available-case analysis,

choosing the better fitted model. Another important factor to consider is the

observed sample sizes for the four groups of units discussed in Section 2. Mod-

elling the response with a larger proportion of observed values provides a more

accurate starting point. Let y1 be the response variable chosen for the marginal

model.

The joint, marginal, and conditional probabilities of (y1, y2) given x are

fully determined by (3.1). Here P (y1 = r |x;θ1) and P (y2 = j |x, y1 = r;θ2) are

directly available from (3.1), and hence

P (y1 = r, y2 = j |x;θ1,θ2) = P (y1 = r |x;θ1)P (y2 = j |x, y1 = r;θ2) . (3.2)
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Table 1. A simple example of fractionally imputed data set with n = 4 and R = J = 2.

i yi1 yi2 δi1 δi2 xi1 xi2 xi3 m w∗
m

1 y11 y12 1 1 x11 x12 x13 1 w∗
1

2 y21 1 1 0 x21 x22 x23 2 w∗
2

2 y21 2 1 0 x21 x22 x23 3 w∗
3

3 1 y32 0 1 x31 x32 x33 4 w∗
4

3 2 y32 0 1 x31 x32 x33 5 w∗
5

4 1 1 0 0 x41 x42 x43 6 w∗
6

4 1 2 0 0 x41 x42 x43 7 w∗
7

4 2 1 0 0 x41 x42 x43 8 w∗
8

4 2 2 0 0 x41 x42 x43 9 w∗
9

It follows that

P (y2 = j |x;θ1,θ2) =

R∑
r=1

P (y1 = r, y2 = j |x;θ1,θ2) , (3.3)

which further leads to

P (y1 = r |x, y2 = j;θ1,θ2) =
P (y1 = r, y2 = j |x;θ1,θ2)

P (y2 = j |x;θ1,θ2)
. (3.4)

The two models specified by (3.1) and the relations described in (3.2)-(3.4)

are used for our proposed joint fractional imputation method. The single imputed

data set is created in two stages.

Stage One: Create imputed values for the bivariate ordinal responses

We impute each missing value by using all possible outcomes while keeping

observed values unchanged. For fully observed units in R, the corresponding

observations remain the same. Imputed values for the missing responses are

created based on the missing patterns.

(1) For units in P1 with only y2 missing, we replicate each observation J times

and impute the missing y2 with values 1, 2, . . . , J .

(2) For units in P2 with only y1 missing, we replicate each observation R times

and impute the missing y1 with values 1, 2, . . . , R.

(3) For units in M with both y1 and y2 missing, each observation is replicated

RJ times with the missing responses (y1, y2) replaced by all possible com-

binations (r, j), r = 1, 2, . . . , R and j = 1, 2, . . . , J .

Table 1 shows the structure of the imputed data set for a toy example with

n = 4 observations, one for each of the four groups R, P1, P2 and M. The
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bivariate ordinal response variables each has two levels (R = J = 2) and there

are three auxiliary variables. The imputed data set is an enlarged data file

with the same number of variables as the initial sample and a total number of

n∗ = nr + Jnp1 +Rnp2 +RJnm observations, where nr, np1, np2 and nm are the

sizes of groups R, P1, P2 and M, respectively. For the simple example shown

in Table 1 we have nr = np1 = np2 = nm = 1, J = R = 2 and n∗ = 9. We re-

index the imputed data set with subscript m and the fractionally imputed data

can be represented by D∗ =
{

(y∗m, δ
∗
m,x

∗
m, w

∗
m), m = 1, . . . , n∗

}
, where values of

y∗m = (y∗m1, y
∗
m2) are either observed or imputed, indicated by δ∗m = (δ∗m1, δ

∗
m2).

The imputed data file has an added column for the fractional weights w∗m. This

is a crucial part of the data file production and details are given below in “Stage

Two”. For public-use data files, the columns for δ∗m1 and δ∗m2 and those for

components of x that are of sensitive nature might be removed before the release

of the file for confidentiality considerations.

Stage Two: Calculate fractional weights

Each observation in the imputed data set is accompanied by a fractional

weight w∗m that can be calculated iteratively as follows.

(1) Choose initial values θ
(0)
1 ,θ

(0)
2 for the parameters in the models (3.1).

(2) Define the general weight function as

W (y, δ,x;θ1,θ2) = δ1δ2 + δ1(1− δ2)P (y2 = y2 |x, y1 = y1;θ2)

+ (1− δ1)δ2 P (y1 = y1 |x, y2 = y2;θ1,θ2)

+ (1− δ1)(1− δ2)P (y1 = y1, y2 = y2 |x;θ1,θ2). (3.5)

By the relations described in (3.2) - (3.4), the weight function is fully de-

termined by the models in (3.1).

(3) Calculate the initial fractional weights

w∗(0)m = W (y∗m, δ
∗
m,x

∗
m;θ

(0)
1 ,θ

(0)
2 ), m = 1, . . . , n∗. (3.6)

(4) Fit the two models in (3.1) using the imputed data set D∗ with the weights

w
∗(0)
m for the first iteration or the weights w

∗(1)
m from Step (5) for subsequent

iterations and obtain updated estimates θ
(1)
1 and θ

(1)
2 .

(5) Update the fractional weights as

w∗(1)m = W (y∗m, δ
∗
m,x

∗
m;θ

(1)
1 ,θ

(1)
2 ), m = 1, . . . , n∗.
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(6) Repeat Steps (4) and (5) until the fractional weights converge. Denote the

final converged weights by w∗ = (w∗1, . . . , w
∗
n∗).

From the general weight function defined in Step (2), it can be seen that

fully observed units from R receive weight 1. The imputed observations for units

from the other three groups receive different fractional weights depending on

which group the corresponding original unit belongs to.

The initial values θ
(0)
1 ,θ

(0)
2 in Step (1) can be the estimates obtained by the

available-case analysis method for the models in (3.1): we can fit the marginal

model with data from R and P1, and fit the transitional model with data from R
alone and use the resulting estimates as θ

(0)
1 ,θ

(0)
2 . A practical issue is that, when

the size of group R is too small, the transitional model may not be numerically

identifiable. Should that be the case, we take initial values of νr in the transitional

model as 0 and estimate the remaining parameters in θ2 with data from R and

P2. Further details on using weights for Step (4) are given in Section 3.2. Issues

with convergence for the final fractional weights are addressed in Section 3.3.

3.2. Analysis with fractionally imputed data set

With fractionally imputed data sets, estimation methods for complete data

can be applied with a simple modification to incorporate the fractional weights.

For example, the cell probabilities πrj can be estimated by

π̂firj =

∑n∗

m=1w
∗
mI(y∗m1 = r, y∗m2 = j)∑n∗

m=1w
∗
m

, (3.7)

where the superscript “fi” denotes “fractional imputation”. It is apparent from

the procedures described in Section 3.1 that
∑n∗

m=1w
∗
m = n. The marginal

probabilities πr+ of y1 can be similarly estimated by

π̂fir+ =

∑n∗

m=1w
∗
mI(y∗m1 = r)∑n∗

m=1w
∗
m

. (3.8)

The association parameter γ can be estimated by γ̂fi =
(
Cfi−Dfi

)
/
(
Cfi+Dfi

)
,

where Cfi = 2
∑

r<k

∑
j<l π̂

fi
rj π̂

fi
kl and Dfi = 2

∑
r<k

∑
j>l π̂

fi
rj π̂

fi
kl . In general, for

parameters defined as g(π) where g(·) is a differentiable function, we can use the

simple plug-in estimator g(π̂fi), where π̂fi = (π̂fi11, . . . , π̂
fi
1J , . . . , π̂

fi
R1, . . . , π̂

fi
RJ)

with elements given in (3.7).

Fitting regression models such as (3.1) with fractionally imputed data sets

and the incorporation of the fractional weights can be carried out in similar ways

as in (3.7) and (3.8) by solving weighted estimating equations. Further details can

be found in She (2017). Variance estimation for fractionally imputed estimators
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will be discussed in Section 3.5.

3.3. Maximum likelihood interpretation

We now demonstrate that the weights from the proposed joint fractional

imputation procedure do converge to a set of stable values. We show this by

starting from the likelihood approach to estimating parameters in (3.1). In this

section, the probability mass function of a discrete random variable is denoted

by f(·). The likelihood function of the observed data is given by

Lobs =

n∏
i=1

∫
f(δi |xi,yi)f(yi |xi;θ1,θ2)dµ(yi,mis) ,

where yi,mis is the missing part of the bivariate responses. Under the MAR

assumption, f(δ |x,y) = f(δ |x,yobs), which does not involve ymis and hence

can be taken to the outside of the integral. We can re-write Lobs as

Lobs =

n∏
i=1

f(δi |xi,yi,obs)

n∏
i=1

∫
f(yi1, yi2 |xi;θ1,θ2)dµ(yi,mis),

with only the second part involving parameters θ1 and θ2. As y1, y2 are discrete

variables, the integrals can be written as summations over all possible values. By

considering the four groups of sampled units separately, we can re-write Lobs as

Lobs ∝
∏
i∈R

f(yi1, yi2 |xi;θ1,θ2)×
∏
i∈P1


J∑

y2=1

f(yi1, y2 |xi;θ1,θ2)


×
∏
i∈P2


R∑

y1=1

f(y1, yi2 |xi;θ1,θ2)

 , (3.9)

where f(y1, y2 |x;θ1,θ2) = f(y1 |x;θ1)f(y2 | y1,x;θ2), which can be obtained

from (3.1). The term involving groupM vanishes because the double summation

of the joint probability mass function equals 1. By taking derivatives of lobs =

logLobs with respect to θ1 and θ2 and setting them equal to zero, we obtain the

set of score functions as

0 =
∑

i∈R,P1

S1(yi1,xi;θ1) +
∑
i∈P2

R∑
y1=1

S1(y1,xi;θ1)f(y1 | yi2,xi;θ1,θ2),

0=
∑
i∈R

S2(yi2, yi1,xi;θ2)+
∑
i∈P2

R∑
y1=1

S2(yi2, y1,xi;θ2)f(y1 | yi2,xi;θ1,θ2), (3.10)

where S1(y1,x;θ1) = ∂ log f(y1 |x;θ1)/∂θ1 and S2(y2, y1,x;θ2) = ∂ log f(y2|y1,
x;θ2)/∂θ2 are the score functions of θ1 and θ2 when the marginal model and



FRACTIONAL IMPUTATION FOR ORDINAL RESPONSES 419

the transitional model are fitted separately with complete data, and

f(y1 | y2,x;θ1,θ2) =
f(y1 |x;θ1)f(y2 | y1,x;θ2)∑R

y1=1 f(y1 |x;θ1)f(y2 | y1,x;θ2)
(3.11)

is the derived conditional probability mass function of y1 given y2 and x.

It is difficult to solve the score equations (3.10) directly. An alternative

approach is to apply the EM algorithm (Dempster, Laird and Rubin (1977)) to

find the maximum likelihood estimators of θ1,θ2. Let θ = (θ′1,θ
′
2)
′ be all the

parameters and θ(t) = (θ
(t)
1

′
,θ

(t)
2

′
)′ be the values after the tth iteration.

E-step: Calculate Q(θ |θ(t)) = E
{∑n

i=1 log f(yi |xi;θ) |yobs, δ,x;θ(t)
}

, where

yobs denotes the observed part of y. Following the same partition as used for

Lobs, we can re-write Q(θ |θ(t)) as:

Q(θ |θ(t)) =
∑
i∈R

log f(yi1, yi2 |xi;θ)

+
∑
i∈P1

J∑
y2=1

{
log f(yi1, y2 |xi;θ)

}
f(y2 | yi1,xi;θ

(t)
2 )

+
∑
i∈P2

R∑
y1=1

{
log f(y1, yi2 |xi;θ)

}
f(y1 | yi2,xi;θ

(t)
1 ,θ

(t)
2 )

+
∑
i∈M

R∑
y1=1

J∑
y2=1

{
log f(y |xi;θ)

}
f(y |xi;θ

(t)) . (3.12)

M-step: Obtain θ(t+1) to maximize Q(θ |θ(t)) with respect to θ. Here θ1 and

θ2 in Q(θ |θ(t)) are separable. This leads to simpler forms of score functions.

For example, for θ1, the maximum point satisfies

0 =
∑
i∈R

S1(yi1,xi;θ1) +
∑
i∈P1

J∑
y2=1

f(y2 | yi1,xi;θ
(t)
2 )S1(yi1,xi;θ1)

+
∑
i∈P2

R∑
y1=1

f(y1 | yi2,xi;θ
(t)
1 ,θ

(t)
2 )S1(y1,xi;θ1)

+
∑
i∈M

R∑
y1=1

J∑
y2=1

f(y |xi;θ
(t))S1(y1,xi;θ1) . (3.13)

For our following arguments, (3.13) are the same as the score equations

obtained by fitting the marginal model with the imputed data set weighted by

w∗(t) = (w
∗(t)
1 , . . . , w

∗(t)
n∗ ), where w

∗(t)
m = W (y∗m, δ

∗
m,x

∗
m;θ

(t)
1 ,θ

(t)
2 ). The same

results can be shown for θ2. Thus our proposed joint fractional imputation



420 SHE AND WU

procedures have the same spirit as the EM algorithm.

The convergence properties of the EM algorithm were studied by Wu (1983).

In our case, Q(θ |θ(t)) is continuous with respect to θ and θ(t), and hence the EM

sequence
{
θ
(t)
1 ,θ

(t)
2

}
converges to a stationary point (θ̂1, θ̂2) that is the solution

to the score equations (3.10).

Theorem 1. The fractional weights
{
w∗(t)

}
defined in the proposed joint frac-

tional imputation procedures converge to a stable set of values denoted by w∗ as

t→∞, and the mth element of w∗ is given by

w∗m = W (y∗m, δ
∗
m,x

∗
m; θ̂1, θ̂2),

where (θ̂1, θ̂2) is the solution to the score equations (3.10).

From (3.9), data from group M can be omitted for estimating θ1 and θ2,

which makes the fourth term in (3.12) unnecessary. This implies that our pro-

posed JFI procedures can be simplified by excluding imputed units of group M
in iterations of Steps (4) and (5), only updating the fractional weights for these

units with the final estimates θ̂1, θ̂2.

3.4. Asymptotic properties of fractionally imputed estimators

We begin with the estimator π̂fi = (π̂fi11, . . . , π̂
fi
1J , . . . , π̂

fi
R1, . . . , π̂

fi
RJ)′ of the

vector π of joint cell probabilities, where π̂firj is given in (3.7). Note that π̂firj is

a weighted sum of indicator functions of “non-independent” observations in the

imputed data file. To investigate the asymptotic behaviour of π̂firj , it is essential

to write it in the form of the original sample.

For the joint fractionally imputed data set, each observation in the original

sample with one or both missing responses corresponds to a “bundle of obser-

vations” in the imputed file. For example, the i0th observation (yi01, ∗, 1, 0,xi0)

from group P1 with yi02 missing corresponds to the bundle
{

(yi01, 1, 1, 0,xi0), . . . ,

(yi01, J, 1, 0,xi0)
}

. Suppose that this bundle of J imputed data points are listed

from the m0th to (m0 + J − 1)th observations in the imputed data file D∗. By

the definition of w∗m in Theorem 1, it is easy to see that
∑m0+J−1

m=m0
w∗m = 1. Since

the J imputed values for yi02 are deterministically filled as 1, . . . , J , we further

have
m0+J−1∑
m=m0

w∗mI(y∗m1 = r, y∗m2 = j) =

m0+J−1∑
m=m0

w∗mI(yi01 = r,m−m0 + 1 = j),

and at most one term on the right hand side is non-zero, w∗m0+j−1 I(yi01 =

r) = W ((yi01, j), (1, 0),xi0 ; θ̂1, θ̂2)I(yi01 = r). Similar arguments can be made
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for observations from other groups. Define the estimating function for πrj as

Urj(y, δ,x;πrj ,θ1,θ2) = δ1δ2 I(y1 = r, y2 = j)

+ δ1(1− δ2)W ((y1, j), (1, 0),x;θ1,θ2)I(y1 = r)

+ (1− δ1)δ2W ((r, y2), (0, 1),x;θ1,θ2)I(y2 = j)

+ (1− δ1)(1− δ2)W ((r, j), (0, 0),x;θ1,θ2)− πrj .
(3.14)

It can be seen that π̂firj given in (3.7) is the same as the solution to the estimating

equation

0 =

n∑
i=1

Urj(yi, δi,xi;πrj , θ̂1, θ̂2), (3.15)

which depends on preliminary estimators of θ1 and θ2. This two-step estimator

π̂rj can be more conveniently handled as a component of solutions to an extended

system of estimating equations. Let

S
(1)
obs(y, δ,x;θ1,θ2) = E

{
S1(y1,x;θ1) |yobs, δ,x;θ1,θ2

}
,

S
(2)
obs(y, δ,x;θ1,θ2) = E

{
S2(y2, y1,x;θ2) |yobs, δ,x;θ1,θ2

}
. (3.16)

The estimators (θ̂1, θ̂2) are initially defined as the solution to the score equations

(3.10) and can be re-written as the solution to

0 =

n∑
i=1

S
(1)
obs(yi, δi,xi;θ1,θ2),0 =

n∑
i=1

S
(2)
obs(yi, δi,xi;θ1,θ2). (3.17)

LetU(π,θ1,θ2) = (U11, . . . , U1J , . . . , UR1, . . . , URJ)′, Sobs(θ1,θ2) = (S
(1)
obs

′
,S

(2)
obs

′
)′

and S(θ1,θ2) = (S′1,S
′
2)
′, where Urj , S

(1)
obs, S

(2)
obs, S1, and S2 are short forms of

functions defined in (3.14), (3.10), and (3.16). The following theorem summa-

rizes the asymptotic properties of π̂fi. Proofs are outlined in the Supplementary

Material.

Theorem 2. Let π0, θ10 and θ20 be the true values of π, θ1, and θ2. Under

the regularity conditions specified in Supplementary Material, π̂fi with elements

given by (3.7) is a consistent estimator of π. Furthermore,

n1/2(π̂fi − π0) ∼N
(
0, V ar

(
U(π0,θ10,θ20) + κI−1obsSobs(θ10,θ20)

))
,

where “∼” represents “is asymptotically distributed as”,

Iobs =

(
E

{
−∂Sobs(θ1,θ2)

∂θ1

}
, E

{
−∂Sobs(θ1,θ2)

∂θ2

})
,

evaluated at the true values of the parameters, κ = (κ′11, . . . , κ
′
1J , . . . , κ

′
R1, . . . ,
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κ′RJ)′, and

κrj = E
[
I(y1 = r, y2 = j)

{
S((r, j),x;θ10,θ20)− Sobs((r, j), δ,x;θ10,θ20)

}′]
.

Corollary 1. Let g(π) be a differentiable function of π, either scalar or vector

valued. If the asymptotic variance of n1/2(π̂fi−π0) given in Theorem 3.2 is Σfi,

then g(π̂fi) is a consistent estimator of g(π) and

n1/2
{
g(π̂fi)− g(π0)

}
∼N

(
0,ΓΣfiΓ′

)
,

where Γ = ∂g(π)/∂π and is evaluated at π0.

The corollary follows directly from the Continuous Mapping Theorem and

the Delta method. The marginal probabilities, various types of odds ratios,

and association measures are all special cases with different g(·). For exam-

ple, the marginal probabilities of y1 can be written as π1 = Cπ, where C =

diag(1′, . . . ,1′) is a R× (RJ) block diagonal matrix and 1 = (1, . . . , 1)′ with

length J . It follows that Γ = C in this case.

3.5. Variance estimation

We now briefly discuss issues with variance estimation. The linearization

method uses the expressions of asymptotic variances given in Corollary 3.2.1 and

replaces unknown population quantities by estimates using the imputed data set.

For example, the quantity κrj defined in Theorem 3.2 can be estimated by κ̂rj ,

which is computed as

1

n

n∗∑
m=1

I(y∗m1 = r, y∗m2 = j)
{
S((r, j),x∗m; θ̂1, θ̂2)− Sobs((r, j), δ

∗
m,x

∗
m; θ̂1, θ̂2)

}
.

The linearization method, however, requires detailed derivations of the asymp-

totic variance, which can be cumbersome for parameters with a complex structure

such as γ. More importantly, the linearization method relies on full access to the

information used in the imputation procedure, including the response indicators

δi and all of the covariates xi. For public-use data files, some information is

suppressed and not available to the data users, in which cases, the linearization

method is not applicable.

Resampling methods such as the jackknife (Rao and Shao (1992)) and the

bootstrap (Efron (1994)) are an attractive alternative approach for variance esti-

mation with imputed estimators. Let bi = (yi, δi,xi) denote the ith observation

in the original data file D. The bootstrap variance estimator of g(π̂fi) can be

computed through the following steps.
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(1) Draw a simple random sample of size n from the original sample D with

replacement; denote the bootstrap sample as B1 = {b̃(1)i , i = 1, . . . , n}.

(2) Apply the joint fractional imputation procedure to the bootstrap sample B1;
let θ̂(1) = (θ̂

(1)′

1 , θ̂
(1)′

2 )′ and π̂(1) be the resulting estimate of θ = (θ′1,θ
′
2)
′

and π; compute g
(
π̂(1)

)
.

(3) Repeat Steps (1) and (2) a large numberB times; let
{
g
(
π̂(1)

)
, . . . , g

(
π̂(B)

)}
be the resulting estimates from the repeated bootstrap samples. The boot-

strap variance estimator of g(π̂fi) is computed as

var
(
g(π̂fi)

)
=

1

B

B∑
k=1

{
g
(
π̂(k)

)
−B−1

B∑
k=1

g
(
π̂(k)

)}2

.

The validity of the bootstrap variance estimator is discussed in the Sup-

plementary Material. The resampling methods are often preferred for creating

public-use files, where the fractional weights based on the bootstrap samples are

attached as additional columns of replication weights to the data file and vari-

ance estimation is done by repeatedly applying the standard analysis with these

replication weights.

A practical issue with the resampling methods, especially for the bootstrap

approach, is that when the sample size is small, the algorithm may not converge

numerically for some bootstrap samples. In our simulation studies discussed

in Section 4 with sample size n = 200 and n = 500, the occurrence rate of

such “singular” cases is negligible. For smaller sample sizes, this problem needs

to be properly dealt with. From the arguments given in the Supplementary

Material, most of the variation of the bootstrap estimator θ̂(k) = (θ̂
(k)′

1 , θ̂
(k)′

2 )′

can be captured by first-order Taylor expansion around θ̂. Therefore, a possible

workaround is to use the one-step Newton method discussed in Yang and Kim

(2016), where for every bootstrap sample, θ̂(k) is calculated by one-step iteration

from θ̂ = (θ̂′1, θ̂
′
2)
′:

θ̂(k) = θ̂ −


n(k)∗∑
m=1

◦

H(y∗m, δ
∗
m,x

∗
m; θ̂1, θ̂2)


−1

n(k)∗∑
m=1

H(y∗m, δ
∗
m,x

∗
m; θ̂1, θ̂2)

 ,

where n(k)∗ is the size of the imputed data file created in Stage One based on the

kth bootstrap sample,

H(y, δ,x;θ1,θ2) = W (y, δ,x;θ1,θ2)S(y,x;θ1,θ2),

and
◦

H(θ1,θ2) = ∂H(θ1,θ2)/∂(θ′1,θ
′
2). We then obtain the fractional weights
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Table 2. ARB (in %) and MSE (×104) for estimating π+1.

RP n COMP ACA PSA SRMI5 JFI
5,221 200 ARB 0.2 7.1 0.04 1.0 0.03

MSE (8.9) (14.7) (12.1) (11.8) (11.6)
500 ARB 0.33 7.7 0.3 0.2 0.3

MSE (3.6) (8.3) (5.2) (5.0) (4.9)
2,341 200 ARB — 8.8 0.008 1.5 0.1

MSE — (20.6) (12.9) (12.5) (12.2)
500 ARB — 8.5 0.2 0.2 0.3

MSE — (10.5) (5.1) (5.1) (4.9)

and estimator π̂(k) based on θ̂(k).

4. Simulation Studies

We report results from simulation studies on the finite sample performance of

the proposed estimators under the joint fractional imputation, with comparisons

to existing methods. We considered bivariate ordinal responses (y1, y2), each

with three categories, and two covariates: a continuous variable x1 generated

from Exp (1) and a discrete variable x2 following Bernoulli (0.5). The responses

(y1, y2) followed the marginal and the transitional models given in (3.1). To

apply the PSA method, we simulated the response indicators in a way that the

propensity scores followed a baseline-category logit model.

The parameters in the propensity score models were carefully chosen such

that the proportions of units in the four groups R, P1, P2 andM were controlled

to have desirable patterns to mimic two real-world scenarios. The first scenario

had the majority of the sample fully observed, with proportions (0.5, 0.2, 0.2, 0.1)

for the four groups. For the second scenario, only one of the two responses was ob-

served for the majority of sampled units, with the proportions (0.2, 0.3, 0.4, 0.1).

The simulation studies consisted of three parts: point estimators, variance esti-

mators, and tests of independence.

Table 2 presents results from the first part of the simulation on Absolute

Relative Bias (ARB, in %) and Mean Squared Error (MSE, multiplied by 104)

of different estimators of the first element π+1 of the marginal probabilities of

y2 under the two response patterns (RP, indicated by 5,221 and 2,341) and two

sample sizes n = 200 and n = 500. The complete sample estimator without any

missing values is denoted by COMP and is listed as the gold-standard reference;

the estimator from available-case analysis is denoted as ACA; the propensity score

adjusted estimator is indicated by PSA; the SRMI method with 5 imputed data
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Table 3. ARB (in %) and MSE (×104) for estimating γ.

RP n COMP ACA PSA SRMI5 JFI
5,221 200 ARB 0.5 8.7 0.9 1.5 0.04

MSE (7.3) (15.0) (25.4) (13.2) (12.7)
500 ARB 0.04 9.1 0.4 1.1 0.1

MSE (2.8) (6.9) (13.1) (5.3) (5.0)
2,341 200 ARB — 10.9 5.0 10.6 0.5

MSE — (42.3) (87.8) (27.9) (25.1)
500 ARB — 12.5 3.9 7.8 0.03

MSE — (17.2) (56.8) (11.3) (9.5)

sets is denoted by SRMI5. Our proposed joint fractional imputation estimator is

denoted by JFI. Simulation results for the association measure γ are summarized

in Table 3.

The simulation results show clearly that the ACA estimator is not consistent

for either the marginal probability π+1 or the association measure γ, while PSA,

SRMI5, and JFI provide comparable results for estimating marginal probabil-

ities with negligible biases. For the estimation of γ, the PSA estimator is far

less efficient than the two imputation-based estimators. The SRMI estimator

is close to the proposed JFI estimator under the first response pattern but has

unreasonably large biases under the second scenario where there are only 20% of

the sampled units having both responses observed. Our proposed JFI estimator

performs well for all cases and is uniformly better than the alternative methods

considered in the simulation.

The second part of the simulation was on variance estimation. For the SRMI

method, the variance estimator used Rubin’s combining rule; for the JFI method,

two versions of variance estimators were considered: the linearization method

(JFIL) and the bootstrap method (JFIB). Table 4 reports the Absolute Relative

Bias (ARB, in %) of the variances estimators for the parameters π+1 and γ. For

estimating π+1, all variance estimators have acceptable ARB. For estimating γ,

the variance estimator of the SRMI estimator has large negative biases, which

suggests that the variance estimator based on Rubin’s combining rule underes-

timates the true variance. Both the linearization and the bootstrap variance

estimators for the JFI method are consistent.

The third part of the simulation was on tests of independence between the

two ordinal responses. We used the Wald-type test statistic given in (2.2) based

on a particular pair of point and variance estimators with significance level of

0.05. By tuning the parameters in (3.1), we simulated the power of tests for a
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Table 4. ARB (in %) of variance estimators for π+1 and γ.

π+1 γ
RP n SRMI5 JFIL JFIB SRMI5 JFIL JFIB
5,221 200 3.0 5.7 3.7 (−)16.9 5.1 3.3

500 8.0 1.3 2.2 (−)16.0 4.1 3.6
2,341 200 4.4 4.0 3.7 (−)24.2 1.4 4.5

500 7.5 2.1 1.3 (−)26.4 2.3 2.3

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6
Gamma

JFI_non
JFI_nul
SRMI

Figure 1. Power function with n = 200 and pattern 2,341.

series of cases in which the true value of the association measure γ increased from

0 to 1, departing gradually from the null hypothesis of independence.

The power of a test was computed as the simulated rejection probability

under the given scenario. Plots of the power function for missing pattern 2,341

are shown in Figures 1 and 2, corresponding to sample sizes at n = 200 and

500. Each plot shows the power functions of three tests: JFI_non, JFI_nul and

SRMI. The first test uses the regular linearization variance estimator without

considering the null hypothesis; the second test uses the linearization variance

estimator under the null hypothesis (i.e., πrj = πr+π+j); the third test uses the

regular point and variance estimators for the SRMI method. Test results using

bootstrap variance estimators are very similar to the ones using linearization

variance estimators and are not reported here. The horizontal line in each figure

represents the nominal value 0.05 for the level of the test. Plots for missing

pattern 5,221 are presented in Supplementary Material.
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0.75
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JFI_nul
SRMI

Figure 2. Power function with n = 500 and pattern 2,341.

Here are three observations from the power functions. The test based on

the SRMI method has type I errors bigger than the nominal value 0.05, and

it becomes more pronounced when the sample size is small or the proportion of

units in R is small. The type I errors for the two JFI-based tests are very close to

the nominal value and both tests have similar power. The response patterns have

significant impact on the power of the tests, with the pattern 5,221 producing

more powerful tests than the pattern 2,341. The first observation is in line with

the results on underestimation of variance for the SRMI method. The second

observation shows that there is no significant advantage of using the variance

estimator under the null hypothesis. The last observation is in agreement with

common sense, since data with the pattern 5,221 provide more information on

the association between the two response variables than the other pattern.

5. Concluding Remarks

Statistical analysis with missing data faces two scenarios. It could be a data

set of small or moderate size collected for specific scientific purposes with the

analysis carried out by specific researchers who have full access to the data set

and are equipped with a solid knowledge of statistics. It is increasingly common,

however, that data sets are collected by a large research team or a statistical

agency and contain information on many variables. The researchers handling

missing data only serve as data suppliers who create one or several complete data
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sets with missing values properly treated. The processed data sets are supposed

to be released to or can be accessed by multiple users with possibly restricted

access for different research objectives. Imputation for missing values is widely

accepted for creating public-use data files to provide a consistent platform for

multiple users.

Our proposed joint fractional imputation method for bivariate ordinal re-

sponses possesses several attractive features. It is fully capable of dealing with

the first scenario. The procedure produces a single imputed data set that leads to

valid and efficient inferences for commonly encountered analysis problems. Our

discussions on validity and efficiency of analysis with the fractionally imputed

data set have focused on estimation of joint and marginal probabilities and as-

sociation measures and on test of independence. Regression analysis was only

discussed as part of the model building process for the imputation procedure. It

is shown in She (2017) that the fractionally imputed data set also leads to valid

regression analysis involving one or both ordinal responses if the set of regressors

for the analysis model is the same or a subset of the covariates used in the im-

putation model (3.1). The proposed procedure accompanied by the resampling

methods described in Section 3.5 is ideally suited for creating public-use data

files in the second scenario, particularly for large complex survey data. The fac-

tional weights become part of the survey weights and variance estimation is done

through the use of additional columns of replication weights. The proposed pro-

cedure still provides valid inference even when the data users only have partial

access to the available information.

Supplementary Materials

The Supplementary Material contains discussions on modeling techniques for

complete ordinal responses and a detailed review on existing methods for handling

missing ordinal observations. Regularity conditions, the proof of Theorem 2, and

justification of the bootstrap variance estimator, as well as two additional plots

for the power functions of the tests, are also presented.
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