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Abstract: We present new sampling methods in finite population that allow one

to control the joint inclusion probabilities of units and especially the spreading of

sampled units in the population. They are based on the use of renewal chains and

multivariate discrete distributions to generate the difference of population ranks be-

tween successive selected units. With a Bernoulli sampling design, these differences

follow a geometric distribution, and with a simple random sampling design they fol-

low a negative hypergeometric distribution. We propose to use other distributions

and introduce a large class of sampling designs with and without fixed sample size.

The choice of the rank-difference distribution allows us to control units joint inclu-

sion probabilities with a relatively simple method and closed form formula. Joint

inclusion probabilities of neighboring units can be chosen to be larger, or smaller,

compared to those of Bernoulli or simple random sampling, thus allowing more or

less spread of the sample in the population. This can be useful when neighboring

units have similar characteristics or, on the contrary, are very different. A set of

simulations illustrates the qualities of this method.
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1. Introduction

In this paper, we propose sampling methods for fixed and random sample

sizes. We more particularly focus on the spacings that are the difference of

population ranks between two successive selected units. We propose a large set of

new methods that allows one to control the spacings and thus the joint inclusion

probabilities of population units in the sample. These methods are useful in that

they allow one to make less (or more) likely the selection of neighboring units.

Indeed, when the variable of interest takes similar values on neighboring units,

spreading the sample improves estimation because the selection of similar units

is avoided.

A sampling design is a probability distribution on all the finite subsets of a

population. It can be implemented by means of sampling algorithms. Several dif-

ferent sampling algorithms can implement the same sampling designs. Examples
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are given in Tillé (2006) where a large number of algorithms is given for designs

like Simple Random Sampling (SRS) with and without replacement or maximum

entropy sampling designs. Algorithms such that the decision of selecting or not

a unit into the sample is taken for each population unit successively according to

the order of the population sampling frame are called “sequential” or “one-pass”

algorithms. These algorithms are particularly useful when the population list is

dynamic, like on a production chain or in real time sampling applications.

Systematic sampling is one of the most common sampling designs. It has

been studied among others by Madow and Madow (1944), Cochran (1946),

Madow (1949), Bellhouse and Rao (1975), Iachan (1982), Iachan (1983), Murthy

and Rao (1988), Bellhouse (1988), Bellhouse and Sutradhar (1988), and Pea,

Qualité and Tillé (2007). One advantage of systematic sampling is that it spreads

the sample very well over the population, thus allowing one to get precise esti-

mators for totals and averages in the case of “auto-correlated” interest variables.

Indeed, it can be shown to be an optimal design in this case under some con-

ditions (Bondesson (1986)). However, it presents the important drawback that

lots of unit couples have null joint inclusion probabilities. This makes impossible

an unbiased estimation of the variance.

This drawback has led to a quest for other sampling designs that would re-

tain good estimation properties. Deville (1998) proposed the Deville-systematic

method, also called ordered pivotal method by Chauvet (2012) (see also Tillé

(2006, pp.128-130)). Tillé (1996) proposed a moving stratification algorithm

that avoids the selection of neighboring units. Bondesson and Thorburn (2008)

and Grafström (2010) also proposed a method that allows one to control joint-

inclusion probabilities. Recently, Loonis and Mary (2015) proposed using de-

terminantal point processes that are known for their repulsiveness property (see

for example Daley and Vere-Jones (2002, p.138)). This last method necessitates

work with a huge matrix.

We advocate the use of point processes with simple specifications, motivated

by usual sampling designs: the systematic design has deterministic spacings be-

tween selected units, the Bernoulli sampling design (see for example Tillé (2006,

pp.43–44)) has geometrically distributed spacings, and circular spacings of the

simple random sampling design follow a negative hypergeometric distribution

(see Vitter (1984, 1985, 1987)). In this paper, we will use other distributions to

tune the joint selection probability of neighboring units. For each of these meth-

ods, we are able to compute positive joint inclusion probabilities and unbiased

variance estimators. Special attention to edge effects must be given to ensure
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correct first-order inclusion probabilities. Part of these sampling designs, with

independent and identically distributed spacings, were introduced by Bondesson

(1986).

The paper is organized as follows: Section 2 is devoted to the main definitions

of survey sampling theory. Sections 3 and 4 present renewal chain sampling

designs for random size samples. In Sections 5 and 6, we discuss fixed size

sampling obtained through the generation of circular spacings with multivariate

discrete distributions. Simulation results are given in Section 7. The paper ends

with our conclusions in Section 8.

2. Sampling from a Finite Population

Consider the finite population of N units, U = {1, . . . , N}. A sample without

replacement of U is a subset s ⊂ U . A sampling design P (·) is a probability

distribution on samples,

P (s) ≥ 0, s ⊂ U, such that
∑
s⊂U

P (s) = 1.

Let S denote the random sample, so that Pr(S = s) = P (s). The sample

size n = #S can be random or not. The inclusion probability of unit k is its

probability of being selected into a sample

πk = Pr(k ∈ S) =
∑
s3k

P (s).

The joint inclusion probability of units k and ` is their probability of being

selected together into a sample

πk` = π`k = Pr(k and ` ∈ S) =
∑
s3k,`

P (s).

Let Y be a variable of interest and let yk be the value of Y associated to unit

k of the population. The Horvitz and Thompson (1952) estimator is defined by

Ŷ =
∑
k∈S

yk
πk
.

It is an unbiased estimator of the population total

tY =
∑
k∈U

yk,

provided that πk > 0, k ∈ U . Let

∆k` =

{
πk` − πkπ` if k 6= `,

πk(1− πk) if k = `.
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The variance of the HT-estimator is

var
(
Ŷ
)

=
∑
k∈U

∑
`∈U

yky`
πkπ`

∆k`.

If the sampling design has a fixed size, the variance can also be written as (see

Sen (1953); Yates and Grundy (1953)):

var
(
Ŷ
)

= −1

2

∑
k∈U

∑
`∈U
`6=k

(
yk
πk
− y`
π`

)2

∆k`.

Estimators can be derived from these two expressions. For the general case, the

Horvitz and Thompson (1952) variance estimator is given by

v̂arHT

(
Ŷ
)

=
∑
k∈S

∑
`∈S

yky`
πkπ`

∆k`

πk`
, (2.1)

where πkk = πk. When the sample size is fixed, the Sen (1953) and Yates and

Grundy (1953) variance estimator is given by

v̂arSY G

(
Ŷ
)

= −1

2

∑
k∈S

∑
`∈S
`6=k

(
yk
πk
− y`
π`

)2 ∆k`

πk`
. (2.2)

These estimators are unbiased provided that πk` > 0, k 6= ` ∈ U . Estimator (2.2)

is non-negative when ∆k` ≤ 0, k 6= ` (Sen-Yates-Grundy conditions).

3. Renewal Chain Sampling Designs

The idea of selecting samples through the use of renewal processes is not new.

It can be traced back at least to Bondesson (1986) (see also Meister (2004)). We

give a different presentation in this section in that we focus on the parametriza-

tion of the distribution of spacings between selected units whereas Bondesson

(1986) and Meister (2004) focus on the parametrization of the so-called renewal

sequence, i.e. the conditional inclusion probabilities given the past. Their aim

was to provide solutions for real time sampling, and the proposed methods are in-

trinsically sequential, allowing one to spread the sample by introducing a negative

correlation between the sample inclusion indicators. Bondesson and Thorburn

(2008) generalize this idea using a splitting method (see Deville and Tillé (1998))

that allows use of unequal probability sampling designs for real time sampling.

3.1. Definition

In this section, we present a family of sampling algorithms that are parametrized

by a discrete probability distribution. By a careful choice of the generating dis-
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tribution, we obtain sampling designs with desirable properties. Consider a se-

quence J1, . . . , JN of independently and identically distributed (i.i.d.) random

variables in N∗ = {1, 2, 3, . . . }. The partial sums Sj =
∑j

i=1 Ji, j ≥ 1, form

a discrete process that is called a simple renewal chain (see for example Feller

(1971), Barbu and Limnios (2008, p.18)) by analogy with renewal processes (see

Cox (1962), Daley and Vere-Jones (2002), Mitov and Omey (2014)). Using these

Ji’s as jumps (or spacings) between successive units selected into the sample, we

obtain the family of sampling designs of Definition 1.

Definition 1. A sampling design is said to be a (simple) renewal chain sampling

design if its random sample can be written

S̃ = {1, . . . , N}
⋂{

j∑
i=1

Ji, 1 ≤ j ≤ N

}
,

where J1, . . . , JN are i.i.d. random variables in N∗.

The first-order inclusion probability of a renewal chain design can be obtained

from the common distribution f(·) of the Ji’s:

πk = Pr(k ∈ S̃) =

k∑
j=1

f j∗(k), (3.1)

where f j∗(·) is the distribution of the sum of j i.i.d. variables with distribution

f(·). Indeed, unit k is selected if J1 = k, or J1+J2 = k, or · · · , or J1+· · ·+Jk = k.

These events are non-overlapping thanks to the Ji’s being positive. We obtain

that:

πk =

k∑
j=1

Pr

(
j∑
i=1

Ji = k

)
,

which is exactly Equation (3.1). It is a well-known property of renewal process

theory given, for example in Barbu and Limnios (2008, p.21), Cox (1962, p.53),

or in Mitov and Omey (2014, pp.44-47).

Even with i.i.d. spacings, a simple renewal chain sampling design usually

has unequal first order inclusion probabilities, as we can see in Example 1.

Example 1. Let Ji, i ∈ N∗ be a sequence of i.i.d. variables such that Pr(Ji =

1) = 1/2 and Pr(Ji = 2) = 1/2. Then,

π1 = Pr(J1 = 1) =
1

2
,

π2 = Pr(J1 = 2) + Pr(J1 + J2 = 2) =
1

2
+

1

4
=

3

4
,
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π3 = Pr(J1 + J2 = 3) + Pr(J1 + J2 + J3 = 3) =
1

2
+

1

8
=

5

8
,

π4 = Pr(J1 + J2 = 4) + Pr(J1 + J2 + J3 = 4) + Pr(J1 + J2 + J3 + J4 = 4)

=
11

16
,

...

3.2. Equilibrium renewal chains

A delayed renewal chain is a discrete process (Sj)j∈N with Sj = J̃0 +
∑j

i=1 Ji,

where the Ji’s, i ≥ 1 are i.i.d. random variables taking values in N∗ and J̃0 is

an independent random variable taking values in N (see e.g. Barbu and Limnios

(2008, p.31)). Of particular interest is the delayed renewal chain obtained when

the distribution of J̃0 is obtained from the distribution of J1 using

Pr(J̃0 = k) =
Pr(J1 ≥ k + 1)

E(J1)
, k ∈ N, (3.2)

provided that E(J1) exists. The distribution of J̃0 is called the stationary or

equilibrium distribution of the renewal chain and the resulting delayed renewal

chain is called an equilibrium renewal chain. As written by Barbu and Limnios

(2008, Proposition 2.2), this choice of the initial distribution J̃0 of the delayed

renewal chain is the only one where all k ∈ N have the same probability of being

in the sample path. Proposition 1 is a general result of renewal process theory

(see for example Mitov and Omey (2014, p.46)) that we applied to the discrete

case. We propose a direct proof of Proposition 1 in Appendix.

Proposition 1. If f(·) is a probability distribution on N∗ with cumulative dis-

tribution function F (·), expectation µ, and if f0(·) is defined by f0(k) = f({k +

1, . . . })/µ, k ∈ N, then f0(·) is a probability distribution and

f0(k) +

k∑
t=1

f0(k − t)
t∑

j=1

f j∗(t) =
1

µ
, for all k ≥ 1. (3.3)

Corollary 1. Let Sj, j ∈ N be a delayed renewal chain with E(J1) = µ and J̃0

have the distribution of (3.2). For all k ∈ N, if πk is the probability that k is in

the sample path, then

πk = f0(k) +

k∑
t=1

f0(k − t)
t∑

j=1

f j∗(t), (3.4)

and is equal to 1/µ.
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Proof. The event {∃i ∈ N such that Si = k} can be decomposed as

{∃i ∈ N such that Si = k} =

k⋃
t=0

{
J̃0 = k − t

}⋂ t⋃
j=1

{
j∑
i=1

Ji = t

}
,

where all the events in the union are non-overlapping. It follows that

πk = f0(k) +

k∑
t=1

f0(k − t)
t∑

j=1

f j∗(t) =
1

µ
,

by Proposition 1.

Definition 2. Let X be a random variable with values in N and finite expectation.

A random variable XF is called a forward transform of X if its distribution is

given by

Pr(XF = k) =
Pr(X ≥ k)

E(X + 1)
, k ∈ N.

Remark 1. Moments of XF can be derived from those of X using the property,

proven in the Appendix, that if X is a random variable on N with finite moment

of order m + 1, E(Xm+1), m ≥ 0, then its forward transform XF has a finite

moment of order m and

E(Xm
F ) =

E[Fm(X)]

E(X + 1)
,

where Fm(x) is the Faulhaber polynomial integer function of degree m + 1:

Fm(x) =
∑x

k=0 k
m.

The equilibrium distribution J̃0 is the forward transform of the distribution

of J1−1, according to Definition 2. Spacing distributions considered in Section 4

are defined as shifted variables J1 = 1+X where X follows a classical probability

distribution on N. The reader can find in Table 4 a collection of distributions

that are used in Sections 4 and 6, as well as their forward transforms.

3.3. Equilibrium renewal chain sampling designs

By taking the intersection of the sample path of an equilibrium renewal chain

with the population U = {1, . . . , N}, one obtains a random sampling design.

Corollary 1 ensures that all units of the population have the same inclusion

probability. The distribution of the first selected unit index X1 satisfies

Pr(X1 = k) = Pr(J̃0 = k) + Pr(J̃0 = 0)Pr(J1 = k) =
Pr(J1 ≥ k)

E(J1)
, k ∈ U. (3.5)

By definition, the following sampled units are obtained by adding independent

variables distributed like J1.
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Definition 3. An equilibrium renewal chain sampling design is the distribution

of a random sample S with

S = {1, . . . , N}
⋂{

j∑
i=0

Ji, 0 ≤ j ≤ N − 1

}
,

where J1, . . . , JN−1 are i.i.d random variables in N∗ with finite expectation, and

J0 is an independent variable with distribution given by (3.5), Pr(J0 = k) =

Pr(J1 ≥ k)/E(J1), k ∈ U .

For J1 = 1 + X, the random variable J0 of (3.5) has the same distribution

as 1 +XF where XF is a forward transform of X.

The equilibrium renewal chain design that corresponds to the renewal distri-

bution of Example 1 is given in Example 2. Its first order inclusion probabilities

are equal.

Example 2. Consider the sequence Ji, i ∈ N∗ of Example 1, and define J0 to be

independent of the Ji’s, with P (J0 = 1) = 2/3 and P (J0 = 2) = 1/3 according

to (3.5). The new inclusion probabilities π̃i of this equilibrium renewal sampling

design are related to those of Example 1 by:

π̃1 = Pr(J0 = 1) =
2

3
,

π̃2 = Pr(J0 = 1)π1 + Pr(J0 = 2) =
1

3
+

1

3
=

2

3
,

π̃3 = Pr(J0 = 1)π2 + Pr(J0 = 2)π1 =
1

2
+

1

6
=

2

3
,

...

3.4. Joint inclusion probabilities

Joint inclusion probabilities of a renewal chain sampling design can be de-

rived from the Probability Mass Function (PMF) f(.) of J1. Indeed, the selection

of unit ` given that unit k, 0 < k < `, is selected can be decomposed according to

the number of selected units between k and `, and this number does not depend

on J0. We can write that:

Pr(` ∈ S|k ∈ S) =

`−k∑
j=1

f j∗(`− k).

The joint inclusion probability of units k 6= ` is thus given by Equation (3.6).

πk` = πk

`−k∑
j=1

f j∗(`− k), k < `. (3.6)
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3.5. Bernoulli sampling

The Bernoulli sampling design with inclusion probabilities π is obtained by

selecting or not units into the sample through independent Bernoulli trials with

parameter π (see for example Tillé (2006, p.43)). Its probability distribution is

given by:

P (s) = πn(1− π)N−n, s ⊂ U,

where n = #s is the size of sample s. The joint inclusion probabilities are equal

to πk` = π2, k 6= `. The usual algorithm used to select a sample according to the

Bernoulli sampling design simply consists of generating N independent Bernoulli

variables and selecting units according to the observed values.

Bernoulli sampling can also be implemented using Definition 1. Indeed,

it is clear that spacings of a Bernoulli sampling design are i.i.d. distributed

variables with shifted geometric distributions Ji = 1 + Xi where Pr(Xi = k) =

(1 − π)kπ, k ≥ 0. Bernoulli sampling is thus a simple renewal chain sampling

design satisfying Definition 1. On the other hand it is easy to prove that, if

Xi follows a geometric distribution, then Xi has the same distribution as its

forward transform (it is the only distributions on N that enjoy this property).

The random variable J0 of Definition 3.5 has the same distribution as J1 in this

particular case. Consequently, Bernoulli sampling is also an equilibrium renewal

chain sampling design according to Definition 3.

Using (3.6), we find the second order inclusion probabilities πk` = π2, k 6= `.

Indeed, the sum of j i.i.d. geometric random variables with parameter π follows

a negative binomial distribution with parameters j and π. The negative binomial

distribution with parameters j ≥ 1 and π in (0, 1) is defined by its PMF:

fNB(x) =

(
j + x− 1

x

)
(1− π)xπj , x ∈ N, (3.7)

where
(
a
b

)
= a!/[b!(a− b)!] if b ≤ a are non-negative integers, and

(
a
b

)
= 0 if a, b

or a− b is negative. Considering that

j∑
i=1

Ji = j +

j∑
i=1

Xi, j ≥ 1,

we have that

f j∗(x) =

(
x− 1

x− j

)
(1− π)x−jπj , x ≥ j.

From Equation (3.6), we get that the joint inclusion probabilities are equal to:
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πk` = π

`−k∑
j=1

f j∗(`− k), k < `

= π

`−k∑
j=1

(
`− k − 1

`− k − j

)
(1− π)`−k−jπj

= π2(π + 1− π)`−k−1 = π2.

3.6. Systematic sampling

Systematic sampling with rate 1/r, r ∈ N∗, from a population U = {1, . . . , N}
is obtained by generating a random start u with a uniform discrete distribution

between 1 and r, and selecting units k of U such that k ≡ u (mod r) into the

sample (see Madow and Madow (1944)). The first-order inclusion probabilities

of this sampling design are given by πk = 1/r, k ∈ U, and its joint inclusion

probabilities by

πk` = 1/r if k ≡ ` (mod r) and 0 otherwise.

If N = mr, with m, r ∈ N∗, the sample size is deterministic and equal to m.

Systematic sampling is an equilibrium renewal chain sampling design, agree-

ing with Definition 3 where the Ji’s, i ≥ 1 are deterministic and equal to r.

Indeed, the forward transform XF of X = r − 1, r ∈ N∗ is such that:

Pr(XF = k) =
Pr(X ≥ k)

E(X + 1)
=

1{r−1≥k}

r
, k ∈ N,

and XF follows a uniform distribution on {0, . . . , r − 1}. Hence J0 follows a

uniform distribution on {1, . . . , r}.
The joint inclusion probabilities are obtained from (3.6). Indeed, the sum of

j spacings Ji, i ≥ 1 is deterministic, equal to jr, and

f j∗(x) = 1{jr=x}, x ≥ 1.

We then have that, for k < `,

πk` = π

`−k∑
j=1

f j∗(`− k) =
1

r

`−k∑
j=1

1{jr=`−k} =
1

r
1{k≡` (mod r)}.

We confirm with this expression that most of the joint inclusion probabilities

are null, making it impossible to estimate the variance of Horvitz-Thompson

estimators without bias.

4. Spreading Renewal Chain Sampling Designs

We have seen in Sections 3.5 and 3.6 two examples of renewal chain sampling
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designs with very different spreading properties. In Bernoulli sampling, the selec-

tion of units are independent, even if they are adjacent in the population list. In

systematic sampling, the selection of adjacent units is impossible, provided that

the sampling rate is smaller than 1. This translates to the variance of the spac-

ings distribution: it is null for systematic sampling, that has perfect spreading

properties, and it is quite large, equal to (1− π)/π2, for Bernoulli sampling.

Using Definition 3, we can build sampling designs with any given spacing

distribution on N∗. The expectation of this distribution is forced by the sampling

rate, which is usually itself decided as a function of cost or precision constraints.

In Section 4.1, we give an application with shifted negative binomial spacings,

allowing for a limited control on the variance and spreading properties of the

design. As a limiting case, we find the shifted Poisson spacings of Section 4.2.

To have a variance that is arbitrarily small, in Section 4.3 we use shifted binomial

distributions that have a variance always smaller than their expectation.

These are only examples, and any distribution or family of distributions on

N∗ that offers sufficient control on its shape can be used. Table 4 in Appendix

contains a list of useful discrete probability distributions with their probability

mass functions, their supports, means and variances.

4.1. Negative binomial spacings

The definition of the negative binomial distribution in (3.7) can be extended

to parameters r > 0 and p in (0, 1) by considering the PMF:

fNB(r,p)(x) =
Γ(r + x)

x!Γ(r)
pr(1− p)x, x ∈ N,

where Γ(r) =
∫ +∞

0 tr−1e−t dt, r > 0 and Γ(k) = (k−1)!, k ∈ N∗. The expectation

of this distribution is r(1− p)/p and its variance is r(1− p)/p2.

We consider equilibrium renewal sampling designs with positive spacings Ji,

i ≥ 1 such that Ji − 1 follows a negative binomial distribution with parameters

r and p, denoted NB(r, p). For a given sampling rate π ∈ (0, 1), we find that

E(Ji) = 1/π implies that

p =
rπ

rπ + 1− π
.

It follows that

var(Ji) =
1− π
π

+
1

r

(
1− π
π

)2

. (4.1)

When r = 1, we find, as a special case, the Bernoulli sampling design. From (4.1),

we deduce that the variance of spacings is smaller than that of Bernoulli sam-
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Figure 1. πk,k+i in function of i for negative binomial spacings with π = 1/30, r =
1, 2, 4, 8, 30 and r = +∞ (Poisson spacings). When r = 1, we obtain the Bernoulli
sampling design and a flat line on the plot. Oscillations are stronger for larger values of
r.

pling when r > 1 and in that case there is a repulsion between selected units:

the sample is spread more evenly on the population than if drawings were in-

dependent. On the contrary, if r < 1, there is an attraction between units and

selecting neighbor units together is more likely.

The sum of j independent random variables with negative binomial distribu-

tion and parameters r, p, has a negative binomial distribution with parameters

jr and p.

Proposition 2. The second order inclusion probabilities of an equilibrium re-

newal chain sampling design with shifted negative binomial spacings, sampling

rate π and first parameter r are

πk` = π

`−k∑
j=1

Γ(jr + `− k − j)
(`− k − j)!Γ(jr)

pjr(1− p)`−k−j , k < `,

where p = rπ/(rπ + 1− π).

Proof. Since Ji − 1 has a NB(r, p) distribution,
(∑j

i=1 Ji

)
− j has a NB(jr, p)

distribution. Using (3.6) one gets the result.

These joint inclusion probabilities remain positive for any value of r. They

are plotted in Figure 1 for π = 1/30 and different values of r.
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In order to have an equilibrium renewal chain sampling design and equal first

order inclusion probabilities, the first sample unit index has to be generated from

a shifted forward negative binomial. We get that J0−1 ∼ ForNB(r, p), where the

definition of ForNB(r, p) can be found in Table 4.

4.2. Poisson spacings

The limit of negative binomial distributions when r tends to infinity and p

tends to 0, while keeping a constant expectation λ = r(1 − p)/p, is a Poisson

distribution P (λ) with parameter λ, which is also its expectation and its variance.

We consider the equilibrium renewal chain sampling design with shifted Pois-

son spacings: Ji − 1 ∼ P (λ), where λ = (1− π)/π, i ∈ N∗. The first inter arrival

J0 is selected using a shifted forward Poisson distribution: J0 − 1 ∼ ForP (λ),

where the definition of distribution ForP (λ) can be found in Table 4.

Proposition 3. The second order inclusion probabilities of an equilibrium re-

newal chain sampling design with shifted Poisson spacings and sampling rate π

are, with λ = (1− π)/π,

πk` = π

`−k∑
j=1

e−jλ (jλ)`−k−j

(`− k − j)!
, k < `.

4.3. Binomial spacings

The variance of spacings in Sections 4.1 and 4.2 are bounded from below, by

(1−π)/π. However, to get a sample spread close to that of systematic sampling,

we need to be able to have a variance that is arbitrarily close to 0. For this,

we consider the equilibrium renewal chain sampling design that is obtained with

shifted binomial spacings: Ji − 1 ∼ Bin(r, p), i ∈ N∗, r ∈ N, p ∈ [0, 1]. The

first inter-arrival J0 is selected using a shifted forward binomial distribution:

J0 − 1 ∼ ForBin(r, p), where the definition of distribution ForBin(r, p) can be

found in Table 4.

We find that with a sampling rate equal to π, r must necessarily be greater

or equal to (1− π)/π, and that

p =
1

r

(
1− π
π

)
.

The variance of spacings is then

var(Ji) =
1− π
π
− 1

r

(
1− π
π

)2

, i ∈ N∗. (4.2)

Considering the constraints on r and p, this variance is minimal when r is the
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Table 1. Renewal chain sampling designs and variance of their spacings.

Distribution of J1 − 1 var(J1)

Negative binomial, r > 0
1− π
π

+
1

r

(
1− π
π

)2

Poisson
1− π
π

Binomial, r ≥ (1− π)/π
1− π
π
− 1

r

(
1− π
π

)2

Systematic or binomial with r = (1− π)/π 0

smallest integer that is greater or equal to (1 − π)/π. With this r, the variance

of spacings is always smaller than 1, which is really small for an integer valued

random variable with a usually very large expectation 1/π. When 1/π is an

integer number, the variance of spacings is null when r = (1 − π)/π and p = 1.

The sampling design obtained then is just the systematic sampling design.

If r tends to infinity and p = (1 − π)/rπ, the binomial distribution with

parameters r and p converges in distribution toward the Poisson distribution

with parameter (1− π)/π. Hence, the sampling design of Section 4.2 is also the

limiting case of Binomial spacings renewal chain sampling design when r tends

to infinity.

Proposition 4. The second order inclusion probabilities of an equilibrium re-

newal chain sampling design with shifted binomial spacings, sampling rate π and

first parameter r are equal to

πk` = π

`−k∑
j=1

(
jr

`− k − j

)
p`−k−j (1− p)j(r+1)−`−k , k < `,

where p = (1− π)/rπ.

4.4. Summary

The different renewal chain sampling designs we considered are listed in Ta-

ble 1 with the variance of their spacings. If 1/π is not an integer, the variance of

spacings cannot be null and is at least (d1/πe − 1/π)(1/π − b1/πc). This lower

bound is not reached with shifted binomial spacings but the binomial renewal

chain sampling design enjoys the desirable property of having positive joint in-

clusion probabilities. Other spacing distributions can be used but we retained

only common families of distribution that have useful properties such as stability

under convolution.
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Figure 2. Illustration of a sample of 10 units, in a population of 50 units. The selected
units are in red.

5. Fixed Size Sampling Designs with Exchangeable Circular Spacings

Except in very special situations, renewal chain sampling designs do not have

fixed sample size. This is due to the independence of spacings. However, in many

applications fixed size is required. In this section, we propose to define sampling

designs using exchangeable instead of independent spacings. We obtain fixed size

designs with equal inclusion probabilities, and we are able to control the sample

spread by the choice of the random spacings distribution.

5.1. Circular spacings

A sampling design of fixed size n in a population U = {1, . . . , N} is entirely

specified by the joint distribution of one of the unit indexes, e.g. X1, and the

“circular” spacings Ji = Xi+1 − Xi, i = 1, . . . , n − 1, and Jn = N + X1 − Xn,

where X1 is the smallest sample unit index and Xn the largest. If we represent

the population U around a table, as in Figure 2, the Ji’s are the difference of

units position. Note that considering the population as circular is not new in

survey sampling and goes back at least to Fuller (1970).

We intend to work with Equation (5.1) that defines without loss of generality

the random sample S of a fixed size sampling design,

S = {Sj (mod N), j = 1, . . . , n} , (5.1)

where J1, . . . , Jn are positive integer random variables that sum to N , J0 is a

random variable in U , and
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Sj =

j∑
i=0

Ji.

5.2. First order inclusion probabilities

The first order inclusion probabilities of a sampling design that results from

Equation (5.1) depend on the joint distribution of the Ji’s, i = 0, . . . , n. Intu-

itively, one sees that, for a given joint distribution of J1, . . . , Jn with Sn = N ,

choosing J0 to be independent of the other Ji’s and uniform on {1, . . . , N} allows

to obtain equal first order inclusion probabilities. To prove this assertion, one

can compute in the general case the inclusion probability of a unit k. Consider

an independent J0, and let

f0(t) = Pr(J0 = t), fj(k) = Pr(Sj (mod N) = k), t, k ∈ U, 1 ≤ j ≤ n.

By conditioning on the event {J0 = t} and using the law of total probability on

the disjoint events {k > t}, {k = t} and {k < t}, we get that:

πk =

N∑
t=1

f0(t)

1t=k + 1t<k

k−t∑
j=1

fj(k − t) + 1t>k

N+k−t∑
j=1

fj(N + k − t)

 ,
with the convention that fj(k) = 0 if j > n. Hence we can write that vectors

π = (π1, . . . , πN ) and f0 = (f0(1), . . . , f0(N)) are solutions of the linear equation

π = Af0, (5.2)

where A is the square matrix of size N with general term

akt = 1t=k + 1t<k

k−t∑
j=1

fj(k − t) + 1t>k

N+k−t∑
j=1

fj(N + k − t), 1 ≤ k, t ≤ N. (5.3)

It is not our purpose to solve the system and find designs with any given inclusion

probabilities, especially since solutions depend on the fj(k)’s, but one arrives

rapidly to the result that all the lines of A sum to n (see Proposition 7 in

Appendix). Hence, if f0(t) = 1/N for all t, then the inclusion probabilities are

all equal to n/N .

5.3. Joint inclusion probabilities

Let ` > k in {1, . . . , N}, and consider Pr(` ∈ S|k ∈ S) so that, by definition,

πk` = πkPr(` ∈ S|k ∈ S). Knowing that k ∈ S, the event ` ∈ S can be

decomposed according to the number of units selected between k and `:
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πk` = πk

`−k∑
j=1

Pr (` ∈ S and #S ∩ {k + 1, . . . , `} = j|k ∈ S) . (5.4)

The term Pr (` ∈ S and #S ∩ {k + 1, . . . , `} = j|k ∈ S) is usually difficult to com-

pute: one must decompose according to which Si is equal to k. However, if the

joint distribution of J1, . . . , Jn has some additional properties, as in Proposition 5,

one can obtain a simple expression.

Proposition 5. Consider a positive integer random vector (J1, . . . , Jn) that sums

to N and such that the distributions of any sum of k successive Ji’s are equal,

this condition also holding for the “circular” sums of Jn−i up to Jn and J1 up to

Jk−i if i < k. Then, the second order inclusion probabilities are

πk` = πk

`−k∑
j=1

fj(`− k), k < `. (5.5)

Proof. Indeed, we then have that:

Pr (` ∈ S and #S ∩ {k + 1, . . . , `} = j|k ∈ S) = fj(`− k), j = 1, . . . , `− k,

and the result follows immediately.

In the situation of Proposition 5, we also get that the conditional inclusion

probability Pr(` ∈ S|k ∈ S) is a function of `− k (mod N):

Pr(` ∈ S|k ∈ S) =

`−k∑
j=1

fj(`− k), if k < `,

Pr(` ∈ S|k ∈ S) =

N+`−k∑
j=1

fj(N + `− k), if ` < k.

It also follows in that case that if the first order inclusion probabilities are all

equal, for example when J0 has a uniform distribution, then the joint inclusion

probabilities πk` depend only on `− k (mod N).

Actually, all distributions considered for spacings J1, . . . , Jn in this paper

enjoy a stronger property, they are exchangeable distributions (Aldous (1985),

Kallenberg (2005)).

Definition 4. A family J1, . . . , Jn of random variables is said to be exchangeable

if, for all 1 ≤ k ≤ n and permutation σ of {1, . . . , n}, the joint distribution of

(Jσ(1), . . . Jσ(k)) is equal to the joint distribution of (J1, . . . , Jk). If the Ji’s are

discrete distributions, this is equivalent to say that Pr(J1 = a1, . . . , Jn = an) is a

symmetric function of (a1, . . . , an).
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Exchangeable integer distributions J1, . . . , Jn that sum to N clearly satisfy

the conditions of Proposition 5. They are the natural equivalents to i.i.d. spacing

distributions used in Section 3 when the spacings are constrained, by the fixed

sample size, to sum to N .

Definition 5. Fixed size sampling designs with exchangeable circular spacings

and uniform inclusion probabilities are the sampling designs with random samples

S = {Sj (mod N), j = 1, . . . , n} where Sj =
∑j

i=0 Ji, J0 is a uniform random

distribution on {1, . . . , N} independent from J = (J1, . . . , Jn), and the Ji’s, i =

1, . . . , n, are exchangeable positive integer distributions that sum to N .

The PMF of a fixed size sampling design with exchangeable circular spacings

and uniform inclusion probabilities J1, . . . , Jn is given simply by

P (s) =
n

N
Pr(J1 = x2 − x1, . . . , Jn−1 = xn − xn−1, Jn = N + x1 − xn), (5.6)

where x1, . . . , xn are the ordered indexes of units sampled in s. Indeed, P (s) can

be decomposed according to the value of J0 into:

Pr(S = {x1, . . . , xn})
= Pr(J0 = x1)Pr(J1 = x2 − x1, . . . , , Jn−1 = xn − xn−1, Jn = N + x1 − xn)

+ Pr(J0 = x2)Pr(J1 = x3 − x2, . . . , Jn−1 = N + x1 − xn, Jn = x2 − x1)

...

+ Pr(J0 = xn)Pr(J1 = N + x1 − xn, . . . , Jn = xn − xn−1),

and the Pr(J0 = xi) are all equal to 1/N while the probabilities involving

J1, . . . , Jn are all equal due to the exchangeability of the circular spacings.

5.4. Simple Random Sampling

The Simple Random Sampling (SRS) without replacement design of fixed

sample size n is defined by:

P (s) =

(
N

n

)−1

if #s = n, and P (s) = 0 otherwise.

A SRS sample can be selected using the following algorithm (Fan, Muller and

Rezucha (1962), see also Tillé (2006, p.46)): define a counter j = 0, then, for

k = 1 to N , select unit k with probability (N−j)/(N−k−1) and update j = j+1

if k is selected. It is also possible to obtain this design by generating successive

jumps according to negative hypergeometric distributions with parameters that

depend on the previously selected units (see Vitter (1984, 1985, 1987)).

Proposition 6 asserts that SRS is a sampling design with exchangeable cir-
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cular spacings, where the spacings follow a shifted multivariate negative hyper-

geometric distribution. The (singular) multivariate negative hypergeometric dis-

tribution (see for example Johnson, Kotz and Balakrishnan (1997, pp.171-199))

of size n ≥ 1, with parameters m ∈ N and r = (r1, . . . , rn), ri > 0, i = 1, . . . , n

is a probability distribution on integer vectors (x1, . . . , xn) that sum to m. It is

denoted here by MNH (m, r), and has a PMF given by:

fMNH (m,r)(x1, . . . , xn) =
m!Γ(R)

Γ(m+R)

n∏
i=1

Γ(ri + xi)

Γ(ri)xi!
, (5.7)

where R =
∑n

i=1 ri.

Proposition 6. SRS is the sampling design of (5.1), where J0 has a uniform

distribution on U , is independent of the Ji’s, i ≥ 1, and the integer random

vector J = (J1, . . . , Jn) follows a shifted multivariate negative hypergeometric

distribution: J− 1n ∼ MNH (N − n,1n), where 1n is the n−vector of ones.

Proof. With parameter N − n and 1n, the PMF given in (5.7) reduces to

fMNH (N−n,1n)(x1, . . . , xn) =

(
N − 1

n− 1

)−1

,

where x1, . . . , xn are non-negative integers that sum to N − n. Hence, J has a

uniform distribution on the vectors of positive integer numbers that sum to N ,

Pr [J = (j1, . . . , jn)] =

(
N − 1

n− 1

)−1

,

for all positive integers (j1, . . . , jn) that sum to N . Moreover, this PMF is sym-

metric in its arguments and the Ji’s are exchangeable. Applying (5.6), we get

that

Pr(S = {x1, . . . , xn}) =
n

N

(
N − 1

n− 1

)−1

=

(
N

n

)−1

,

for all x1 < · · · < xn.

The marginal distributions of the circular spacings are shifted negative hy-

pergeometric distributions. Indeed, the marginal distributions of a MNH (m, r)-

distributed vector are negative hypergeometric distributions (see for example

Janardan and Patil (1972)) with respective parameters m, ri, R =
∑

j rj , and

PMF:

fNH (m,ri,R)(x) =
m!Γ(R)

Γ(m+R)

Γ(ri + x)

Γ(ri)x!

Γ(R− ri +m− x)

Γ(R− ri)(m− x)!
, x ≤ m, x ∈ N.

Their expectation and variance are, respectively, mri/R andm(ri/R)(1−ri/R)(R+

m)/(R + 1). It follows that Jk − 1 has a negative hypergeometric distribution
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with parameters N − n, 1, and n, k = 1, . . . , n. In particular we have that

E(Jk) =
N − n
n

+ 1 =
N

n
,

var(Jk) =
N − n
n

(
1− 1

n

)
N

n+ 1
.

The second order inclusion probabilities can be derived from (5.5). Indeed,

the sum of components of a multivariate negative hypergeometric distribution

follows a negative hypergeometric distribution (see Janardan and Patil (1972)).

Its parameters are derived from the parameters m and r by summing the ri’s

that correspond to the components that are in the sum. Hence we have that

j∑
i=1

Ji = j +Kj ,

where Kj follows a negative hypergeometric distribution with parameters N −n,

j and n. We can deduce that

fj(`− k) =
(N − n)!Γ(n)

Γ(N)

Γ(j + `− k − j)
Γ(j)(`− k − j)!

Γ(n− j +N − n− `+ j + k)

Γ(n− j)(N − n− `+ j + k)!

=
(N − n)!(n− 1)!(`− k − 1)!(N − `+ k − 1)!

(N − 1)!(j − 1)!(`− k − j)!(n− j − 1)!(N − n− `+ k + j)!

=
n− 1

N − 1

(
N − 2

`− k − 1

)−1(n− 2

j − 1

)(
N − n
`− k − j

)
,

and that

πk` =
n(n− 1)

N(N − 1)

`−k∑
j=1

(
N − 2

`− k − 1

)−1(n− 2

j − 1

)(
N − n
`− k − j

)
, k < `,

via (5.5). However, if we rename u = j−1, v = `−k−1, t = n−2 and s = N−2,

this last sum is (
s

v

)−1 v∑
u=0

(
t

u

)(
s− t
v − u

)
,

and Vandermonde’s identity ensures that it is equal to 1. Hence we find the well

known result:

πk` =
n(n− 1)

N(N − 1)
, k 6= `.

5.5. Systematic sampling

If N = rn with r ∈ N, the systematic sampling design presented in Sec-

tion 3.6 is a fixed size sampling design with exchangeable circular spacings.

It is trivially obtained by taking J0 uniform on U and Ji = r, i = 1, . . . , n.
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The joint inclusion probabilities can also easily be derived from (5.5) using that

fj(`− k) = 1{`=k+jr}.

6. Spreading Fixed Size Sampling Designs with Exchangeable Circular

Spacings

Similar to what we did in Section 4, we introduce in Sections 6.1, 6.2 and 6.3

new sampling designs with spreading properties by choosing different circular

spacings distributions.

Following the structure of Section 4, we work, in Section 6.1, on sampling de-

signs with multivariate negative hypergeometric spacings and a spreading control

parameter r > 0. When 0 < r < 1, there is an attraction between the selected

units: if a unit is selected, then its neighbors are more likely to be selected. If

r = 1, the design is SRS and if r > 1, the sampling is better spread than SRS. As

a limit case when r is large, we obtain the multinomial circular spacings design

of Section 6.2. The spacings variance of these sampling designs is bounded from

below. Smaller variances and better spreading properties are obtained with mul-

tivariate hypergeometric circular spacings in Section 6.3, furthering the parallel

with binomial spacings of Section 4.3.

6.1. Multivariate negative hypergeometric circular spacings

The multivariate negative hypergeometric distribution MNH (m, r) has ex-

changeable marginals exactly when r1 = · · · = rn, r = r1n for some positive real

number r. If J − 1n ∼ MNH (N − n, r1n), the sampling design of Definition 5

has circular spacings with a variance given by:

var(Jk) =
N − n
n

(
1− 1

n

)
rn+N − n
rn+ 1

, k = 1, . . . , n.

These variances are decreasing functions of r, with SRS corresponding to r = 1.

According to (5.6), the sampling design PMF is given by:

P (s) =
n

N

Γ(nr)

[Γ(r)]n
(N − n)!

Γ[N + n(r − 1)]

Γ(r +N + x1 − xn − 1)

(N + x1 − xn − 1)!
n−1∏
i=1

Γ(r + xi+1 − xi − 1)

(xi+1 − xi − 1)!
,

where x1, . . . , xn are the ordered indexes of units sampled in s. The second order

inclusion probabilities are obtained from (5.5):
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Figure 3. π1,1+i in function of i for a fixed size sampling design with shifted multivariate
negative hypergeometric circular spacings, n = 6, N = 500 and r = 1, 2, 4, 8, 30 and
r = +∞ (multinomial circular spacings). When r = 1, we obtain the SRS design and
constant joint inclusion probabilities. The larger r is, the more contrasted are the joint
inclusion probabilities.

πk` =
n

N

`−k∑
j=1

(
N − n
`− k − j

)
B[`− k + j(r − 1), N + n(r − 1)− `+ k − j(r − 1)]

B(jr, nr − jr)
,

k < `,

where B(·, ·) denotes the beta function, defined by:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0
ta−1(1− t)b−1dt,

if a and b are positive real numbers.

These joint inclusion probabilities are plotted in Figure 3 for different values

of r, including their limit when r → ∞. On this plot, we see strong oscillations

of the joint inclusion probabilities when r is large.

6.2. Multinomial circular spacings

Let MNom(m,p) be the multinomial distribution with parameters m ∈ N
and p = (p1, . . . , pn) ∈ [0, 1]n,

∑
i pi = 1. It is the probability distribution on

integer vectors (x1, . . . , xn) such that
∑

i xi = m with PMF:

fMNom(m,p)(x1, . . . , xn) =

(
m

x1 · · ·xn

) n∏
i=1

pxi

i , (6.1)
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where (
m

x1 · · ·xn

)
=

m!

x1! · · ·xn!
.

Its marginal distributions are binomial with respective parameters m and pi.

They are exchangeable exactly when p = n−11n
When r tends to infinity, the multivariate negative hypergeometric distri-

bution with parameters m and r1n tends to a multinomial distribution with

parameters m and 1/n (see, for instance, Terrell (1999, p.182)). Thus the fixed

size sampling design with shifted multinomial exchangeable circular spacings is

the limit case of multivariate negative hypergeometric spacings of Section 6.1

when r tends to infinity.

Spacings Jk follow a shifted binomial distribution with parameters N − n
and 1/n. The corresponding sampling design PMF is given by

P (s) =
n

N

1

nN−n
(N − n)!

(N + x1 − xn − 1)!
∏n
j=2(xj − xj−1 − 1)!

,

where x1, . . . , xn are the ordered indexes of units sampled in s. The sum of any j

components of a MNom(m,p) multinomial vector follows a binomial distribution

with parameters m and p where p is the sum of corresponding pi’s. Hence we

have here that

fi(`− k) =

(
N − n
`− k − j

)(
j

n

)`−k−j (
1− j

n

)N−n−`+k+j

,

πk` =
n

N

`−k∑
j=1

(
N − n
`− k − j

)(
j

n

)`−k−j (
1− j

n

)N−n−`+k+j

, k < `.

6.3. Multivariate hypergeometric circular spacings

Variances of circular spacings in Sections 6.1 and 6.2 are bounded from below.

In order to have smaller variances, one can use shifted multivariate hypergeomet-

ric spacings.

Let MH (m, r) be the (singular) multivariate hypergeometric distribution

with parameters m ∈ N and r = (r1, . . . , rn), r is an integer vector that sums

to R and m ≤ R. It is a probability distribution on integer vectors (x1, . . . , xn)

that sum to m, xi ≤ ri and has a PMF given by:

fMH (m,r)(x1, . . . , xn) =

(
R

m

)−1 n∏
i=1

(
ri
xi

)
. (6.2)

The marginal distributions of MH (m, r) are hypergeometric variables with re-
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spective parameters m, ri and R, and their variance is m(ri/R)(1 − ri/R)(R −
m)/(R− 1).

The multivariate hypergeometric distribution has exchangeable marginals

exactly when r = r1n for some integer r larger than m/n. Here, we consider the

fixed size sampling design with circular spacings J such that J− 1n ∼ MH (N −
n, r1n) with r ≥ N/n− 1. We get that the spacing variances are given by

var(Jk) =
N − n
n

(
1− 1

n

)
rn−N + n

rn− 1
.

The parameter r can be used to tune the variance. If r = (N − n)/n is integer,

we have var(Jk) = 0 and we obtain the systematic sampling design.

The sampling design PMF is obtained via (5.6):

P (s) =
n

N

(
rn

N − n

)−1( r

xi+1 − xi − 1

) n−1∏
i=1

(
r

N + x1 − xn − 1

)
,

where x1, . . . , xn are the ordered indexes of units sampled in s. The sum of

components of a MH (m, r) vector follows a hypergeometric distribution. In the

present case we find that

fj(x) =

(
rn

N − n

)−1( jr

x− j

)(
rn− jr

N − n− x+ j

)
, j ≤ x ≤ N − n,

and that the joint inclusion probabilities are

πk` =
n

N

(
rn

N − n

)−1 `−k∑
j=1

(
jr

`− k − j

)(
rn− jr

N − n− `+ k + j

)
, k < `.

Note that some joint inclusion probabilities may be null, even when r > (N−n)/n

and the design is not the systematic sampling design. For example, if N = 10,

n = 2, r = 5 and ` = k + 1, then

πk` =
1

5

(
10

8

)−1(5

0

)(
5

8

)
= 0.

6.4. Summary

The different fixed size sampling designs with exchangeable circular spacings

that we considered are listed in Table 2 with the variance of their spacings. Other

exchangeable circular spacings may be used, and are easily obtained as distribu-

tions of vectors of i.i.d. random variables conditioned on the sum of the vectors

components. The families of distribution of Section 6 encompass the SRS and

fixed-size systematic designs. They allow one to use designs with low spacings

variance, but it is not always possible to avoid having null joint inclusion prob-
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Table 2. Fixed size sampling designs and variance of their spacings.

Distribution of J− 1n var(Ji), i = 1, . . . , n

Multivariate negative hypergeometric, r > 0
N − n
n

(
1− 1

n

)
rn+N − n
rn+ 1

Multinomial
N − n
n

(
1− 1

n

)
Multivariate hypergeometric, r ≥ N/n− 1

N − n
n

(
1− 1

n

)
rn−N + n

rn− 1

Systematic or hypergeometric with r = N/n− 1 0

abilities with shifted multivariate hypergeometric spacings. Finally, the designs

are not strictly sequential as the population list may need to be run over twice

in order to finish selecting a sample.

7. Simulations

A single artificial population of N = 200 units was generated with an interest

variable Y that had a trend and are autocorrelated, yk = k + zk, where zk =

0.6zk−1 + εk and εk ∼ N(0, σε = 0.3). With this kind of autocorrelation, having

well spread samples ought to be an efficient strategy. The “spacing” N +x1−xn
between the last sampled unit and the first one is treated like any other spacing,

so that ideally one would also want to have some similarity between units at the

beginning of the population list and those at the end. This feature can easily be

obtained in a setting of continuous population sampling (see Wilhelm, Qualité

and Tillé (2017)), but is not common in finite population applications.

For each situation, a set of 100,000 samples was generated. All samples

were of fixed size n = 50 and were selected using the following sampling designs:

Multivariate negative hypergeometric (MNH) with r = 0.5, r = 1 (SRS), r = 5,

r = 10, r = 50; Multinomial (MULT); Multivariate hypergeometric (MH) with

r = 50, r = 10, r = 6, r = 4. We used different values for the tunings parameter r

in all kinds of sampling design in order to show the effect of this tuning parameter.

For each sample an estimate Ŷ of the mean and of the variance v̂arSY G(Ŷ )

(with the Sen-Yates-Grundy formula) were produced. Compiling our simulation

results, we computed the following values, presented in Table 3: the Bias Ratio

BR = 100
Esim(Ŷ − Y )[
varsim(Ŷ )

]1/2
,
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Table 3. Results of the 100,000 simulations. The designs are ordered in decreasing order
of the variance of the spacings.

BR SE REVAR CV Coverage
MNH r = 0.5 −0.25 0.46 0.45 0.48 93.97
SRS −0.12 0.35 0.35 0.23 94.52
MNH r = 5 0.08 0.23 0.23 0.21 94.39
MNH r = 10 −0.22 0.21 0.21 0.26 94.08
MNH r = 50 0.13 0.19 0.19 0.33 93.90
MULT 0.36 0.19 0.19 0.35 93.64
MH r = 50 −0.17 0.18 0.18 0.37 93.58
MH r = 10 −0.35 0.16 0.16 0.52 92.05
MH r = 6 −0.74 0.14 0.14 0.72 83.97
MH r = 4 −0.52 0.11 0.15 1.60 40.55

where Esim(·) and varsim(·) denote the empirical means and variances of the

simulation results; the standard error

SE =
[
varsim(Ŷ )

]1/2
;

the square root of the variance estimator average

REVAR =
{

Esim

[
v̂arSY G(Ŷ )

]}1/2
;

the coefficient of variation of the variance estimator

CV =

{
varsim

[
v̂arSY G(Ŷ )

]}1/2

varsim(Ŷ )
;

and the coverage rate of the 95% confidence interval.

The simulation results in Table 3 confirm, with column BR, that the esti-

mator of the mean is unbiased. The accuracy of the mean estimator improves

as the circular spacings variance decreases, from Design MNH r = 0.5 to Design

NH r = 4.

The conclusions are different for the variance estimator. For all situations

in our simulations, the joint inclusion probabilities are positive. The variance

estimator is unbiased, and this is confirmed by the fact that columns SE and

REVAR are mostly equal. However, when the variance of the spacings are close

to 0, the variance estimator is unstable. Indeed, with these parameters, some

joint inclusion probabilities are very small (less than 1/1,000) compared to others

(on average 0.0625). In column CV that the accuracy of the variance estimator

improves at first as the circular spacings variance decreases, from Design MNH

r = 0.5 to Design MNH r = 5, and then the coefficient of variation goes up again
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from Design MNH r = 0.5 to Design MH r = 4. The coverage rate deviates

strongly from its nominal value of 95% in the last couple of designs. Thus the

design that performs best for the point estimation of the mean does not allow one

to properly estimate the precision, and even gives seriously misleading confidence

intervals. The same kind of problem arises when a stratified sampling design is

used with too many strata.

An arbitration needs to be made between the accuracy of the point estimator

and that of its variance estimator. In our simulations, a reasonable solution

consists in choosing the sampling design with shifted multinomial distribution

(MULT). This method is simple to implement, more so than the MNH or MH.

It allows for accurate point estimation while presenting a correct coverage rate

of its confidence intervals.

8. Conclusions

In Sections 3 and 5, we proposed general methods to generate uniform in-

clusion probabilities sampling designs with i.i.d. or exchangeable spacings. We

used them in Sections 4 and 6 to obtain sample selection methods with controlled

spreading properties and gave, in Section 7, an example where such methods are

useful. If the response variable is similar among units that are close in the pop-

ulation list, the choice of the spreading parameter allows one to make a trade-off

between precision of the point estimator and precision of variance estimator.

Some of the designs that we consider have concentrated spacings, but, unlike

systematic sampling, they retain positive joint inclusion probabilities, and thus

allow for an unbiased estimation of variance. These joint inclusion probabilities

have computable closed-form expressions and depend only on the “distance” be-

tween units in the population list, thus at most N−1 joint inclusion probabilities

need to be computed. However, the ranks of sampled units in the population

must be known in order to compute a variance estimator.

We do not have a clear solution to extending these results in all generality to

unequal first order inclusion probabilities sampling designs. One partial solution

is to work on the distribution of J0. The choice of a different distribution for

J0 allows one to have a limited control on the inclusion probabilities via Equa-

tions (3.4) and (5.2), while leaving the spacings untouched. Another solution is

the thinning approach. It consists in selecting a large enough first phase sam-

ple with a spreading design and uniform inclusion probabilities and selecting a

second phase sub-sample with appropriate inclusion probabilities. However, this
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does not preserve the spreading properties.

Supplementary Materials

Some of the proofs, as well as a Table containing the definitions of some

distributions, are given in the Supplementary Materials.
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Appendix A: Proof of Proposition 1 and Remark 1

Lemma 1. If f(·) is a probability distribution on {1, 2, . . . , } with cumulative

distribution function F (·), and k, j ≥ 1, then

k∑
t=1

f (j+1)∗(t) =

k∑
t=1

f j∗(t)F (k − t).

Proof. Indeed, if 1A is the indicator function of set A,

k∑
t=1

f (j+1)∗(t) =

k∑
t=1

t∑
u=1

f j∗(u)f(t− u)

=
∑
t

∑
u

f j∗(u)f(t− u)1{1≤u≤t} 1{1≤t≤k}

=
∑
u

∑
t

f j∗(u)f(t− u)1{1≤u≤k} 1{1≤u≤t} 1{1≤t≤k}

=
∑
u

f j∗(u)1{1≤u≤k}

[∑
t

f(t− u) 1{1≤u≤t}1{1≤t≤k}

]

=

k∑
u=1

f j∗(u)

F (k − u)− F (0)︸︷︷︸
=0


=

k∑
t=1

f j∗(t)F (k − t).
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Proof of Proposition 1. f0(·) is a well-defined non-negative function on N. It is

sufficient to prove that
∑

k≥0 f({k + 1, . . . }) = µ, but∑
k≥0

f({k + 1, . . . }) =
∑
k≥0

∑
j≥k+1

f(j)

=
∑
j≥0

∑
k≥0

f(j)1k+1≤j

=
∑
j≥0

j · f(j)

= µ.

As f0(k − t) = [1− F (k − t)] /µ, to prove (3.3), it is sufficient to note that

k∑
t=1

[1− F (k − t)]
t∑

j=1

f j∗(t)

=
∑
t

∑
j

[1− F (k − t)] f j∗(t)11≤t≤k11≤j≤t

=
∑
j

∑
t

[1− F (k − t)] f j∗(t)11≤t≤k11≤j≤t

=
∑
j

[∑
t

f j∗(t)11≤t≤k11≤j≤t −
∑
t

F (k − t)f j∗(t)11≤t≤k11≤j≤t

]

=

k∑
j=1

 k∑
t=j

f j∗(t)−
k∑
t=j

F (k − t)f j∗(t)


=

k∑
j=1

[
k∑
t=1

f j∗(t)−
k∑
t=1

F (k − t)f j∗(t)

]
(indeed, f j∗(t) = 0 if t < j)

=

k∑
t=1

f1∗(t)−
k∑
t=1

F (k − t)fk∗(t) via Lemma 1

= F (k)−
k∑
t=1

f (k+1)∗(t) = F (k),

since f (k+1)∗(t) = 0 if t ≤ k, and the result follows immediately.

Proof of Remark 1. Consider X a random variable on N with finite moment of

order m + 1, E(Xm+1), m ≥ 0, and its forward transform XF according to

Definition 2. Then we can write:∑
k≥0

kmPr(XF = k) =
∑
k≥0

km
Pr(X ≥ k)

E(X + 1)
=
∑
k≥0

∑
i≥k

kmPr(X = i)

E(X + 1)
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=
1

E(X + 1)

∑
i≥0

∑
k≥0

1k≤ik
mPr(X = i)

=
1

E(X + 1)

∑
i≥0

(
i∑

k=0

km

)
Pr(X = i)

=
E[Fm(X)]

E(X + 1)
,

where Fm(x) =
∑x

k=0 k
m.

Appendix B

Proposition 7. The lines of matrix A with general term akt given at (5.3) all

sum to n.

Proof. We have

akt = 1t=k + 1t<k

k−t∑
j=1

fj(k − t) + 1t>k

N+k−t∑
j=1

fj(N + k − t),

with fj(t) = 0 if j < t, t ≤ 1, t > N or j > n. We also have that fn(N) = 1 and

fj(N) = 0 if j < n. The conclusion follows from

N∑
t=1

1t<k

k−t∑
j=1

fj(k − t)

=

N∑
t=1

N∑
j=1

fj(k − t)1j≤k−t1j≤n

=

n∑
j=1

N∑
t=1

fj(k − t) =

n∑
j=1

Pr(Sj ≤ k − 1), and

N∑
t=1

1t>k

N+k−t∑
j=1

fj(N + k − t)

=

N∑
t=1

N∑
j=1

fj(N + k − t)1j≤N+k−t1j≤n1t>k

=

n∑
j=1

N∑
t=1

fj(N + k − t)1t>k =

n∑
j=1

[Pr(Sj ≥ k)− fj(N)] .
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Appendix C: Discrete probability distributions

Let R+ denote the set of positive real numbers,

Γ(r, x) =

∫ +∞

x
tr−1e−t dt, γ(r, x) =

∫ x

0
tr−1e−t dt,

where r > 0, x > 0 and

Bx(a, b) =

∫ x

0
ta−1(1− t)b−1dt, Ix(a, b) =

Bx(a, b)

B(a, b)
,

with a > 0, b > 0, 0 < x < 1.

References

Aldous, D. (1985). Exchangeability and related topics. In Hennequin, P., editor, cole d’t de

Probabilits de Saint-Flour XIII 1983, volume 1117 of Lecture Notes in Mathematics, pages

1–198. Springer Berlin Heidelberg.

Barbu, V. and Limnios, N. (2008). Semi-Markov Chains and Hidden Semi-Markov Models To-

ward Applications: Their Use in Reliability and DNA Analysis. Springer, New York.

Bellhouse, D. R. (1988). Systematic sampling. In Krishnaiah, P. R. and Rao, C. R., editors,

Handbook of Statistics Volume 6: Sampling, pages 125–145, Amsterdam. Elsevier/North-

Holland.

Bellhouse, D. R. and Rao, J. N. K. (1975). Systematic sampling in the presence of a trend.

Biometrika 62(3), 694–697.

Bellhouse, D. R. and Sutradhar, B. C. (1988). Variance estimation for systematic sampling

when autocorrelation is present. The Statistician 37(3), 327–332.

Bondesson, L. (1986). Sampling of linearly ordered population by selection of units at successice

random distances. Technical Report 25, Swedish University of agricultural sciences, Section

of forest biometry, Ume̊a.

Bondesson, L. and Thorburn, D. (2008). A list sequential sampling method suitable for real-time

sampling. Scandinavian Journal of Statistics 35(3), 466–483.

Chauvet, G. (2012). On a characterization of ordered pivotal sampling. Bernoulli 18(4), 1320–

1340.

Cochran, W. G. (1946). Relative accuracy of systematic and stratified random samples for a

certain class of population. Annals of Mathematical Statistics 17(2), 164–177.

Cox, D. R. (1962). Renewal Theory. Methuen, London.

Daley, D. and Vere-Jones, D. (2002). An Introduction to the Theory of Point Processes: Volume

I: Elementary Theory and Methods. Springer, New York.

Deville, J.-C. (1998). Une nouvelle (encore une!) méthode de tirage à probabilités inégales.
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