
Statistica Sinica 24 (2014), 415-428

doi:http://dx.doi.org/10.5705/ss.2011.271

OPTIMAL DESIGNS FOR TWO-PARAMETER NONLINEAR

MODELS WITH APPLICATION TO SURVIVAL MODELS

Maria Konstantinou, Stefanie Biedermann and Alan Kimber

University of Southampton

Abstract: Censoring occurs in many industrial or biomedical ‘time to event’ ex-

periments. Finding efficient designs for such experiments can be problematic since

the statistical models involved are usually nonlinear, making the optimal choice

of design parameter dependent. We provide analytical characterisations of locally

D- and c-optimal designs for a class of models, thus reducing the numerical ef-

fort for design search substantially. We also investigate standadised maximin D-

and c-optimal designs. We illustrate our results using the natural proportional

hazards parameterisation of the exponential regression model. Different censor-

ing mechanisms are incorporated and the robustness of designs against parameter

misspecification is assessed.
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1. Introduction

There is a large literature on optimal designs for nonlinear models but there

is little on designs for models with potentially censored data. Ford, Torsney, and

Wu (1992) consider optimal designs for nonlinear models where the response is

distributed as a member of the exponential family and Sebastiani and Settimi

(1997) prove the optimality of these designs for a logistic regression model. Sitter

and Torsney (1992) study D-optimal designs for generalised linear models with

multiple design variables using the geometry of the design space in Ford, Torsney,

and Wu (1992), and Sitter and Torsney (1995) consider D- and c-optimal designs

for binary response models with two design variables. Neither paper considers

the case where the data are subject to censoring.

Becker, McDonald, and Khoo (1989) find D-optimal designs for proportional

hazards models with one or two parameters and specified baseline hazard. They

use geometric arguments and empirical values for the hazard to investigate how

censoring affects the D-optimal designs for different shapes of the design region.

López-Fidalgo, Rivas-López, and Del Campo (2009) propose an algorithm to find

D-optimal designs conditional on arrival time, where the design space is binary.

http://dx.doi.org/10.5705/ss.2011.271
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They consider a two-parameter exponential regression model that requires con-

straints on the parameters. For recent results on accelerated life testing see, for

example, Wu, Lin, and Chen (2006) and McGree and Eccleston (2010).

Our research was motivated by the following problem. Let T1, . . . , Tn be

independent survival times of n subjects in an experiment with t1, . . . , tn the

corresponding observed values. Let α and β be the unknown model parameters.

In survival models involving one explanatory variable, α relates to the baseline

hazard whereas β describes how the hazard varies with the explanatory variable.

Let xj ∈ X be the experimental condition at which the jth observation is taken.

In what follows, the design space X is either binary, X = {0, 1}, corresponding,
for example, to two different treatments, or an interval, X = [u, v], corresponding,

for example, to the doses of a drug.

The period of the experiment is the interval [0, c]. We consider two types

of censoring. Under Type I censoring all subjects enter the study at the same

time and are observed until time c or until failure, whichever is earlier; survival

times greater than c are therefore right-censored. Under random censoring, the

jth individual enters the study at a random time in [0, c], independent of the

survival time; the censoring time for the individual is random. The example

we use to illustrate our general results is the exponential regression model in its

proportional hazards parameterisation, naturally used in survival analysis (see,

for example, Collett (2003)) that is specified by the probability density function

f(tj , xj) with corresponding survivor function S(tj , xj),

f(tj , xj) = eα+βxje−tje
α+βxj

, S(tj , xj) = e−tje
α+βxj

, (tj > 0). (1.1)

This parameterisation avoids the need to specify constraints on the parameters.

Optimal design is concerned with finding the experimental conditions at

which measurements should be taken in order to draw the most precise conclu-

sions. We consider approximate designs of the form

ξ =

{
x1 . . . xm
ω1 . . . ωm

}
, 0 < ωi ≤ 1,

m∑
i=1

ωi = 1,

where the support points xi, i = 1, . . . ,m, m ≤ n, are the distinct experimental

conditions in the design, and the weights ωi represent the proportion of observa-

tions taken at the corresponding support point.

A recent trend in optimal design literature is to solve problems in more

generality. Hedayat, Zhong, and Nie (2004) characterise D-optimal designs for

a class of two-parameter models. But these results are not applicable to many

models such as at (1.1). Yang and Stufken (2009) consider Loewner optimality

and a more general class of models, showing that under some conditions, for



OPTIMAL DESIGNS FOR CENSORED DATA 417

each given design there is always a design from a simple class that is better in

the Loewner sense. These results were generalised to models with more than two

parameters by Yang (2010). Depending on the model, however, the conditions

can be difficult to verify, even with symbolic computational software.

We provide characterisations of D- and c-optimal designs under assumptions

that are somewhat less restrictive and easier to verify than those in Yang and

Stufken (2009), and which are satisfied by a large class of models, including (1.1),

for the censoring schemes considered. In Section 2 we develop this approach for

D-optimality. Section 3 contains the corresponding results for c-optimality when

only the slope parameter β is of interest. The results are applied to model (1.1)

with Type I and random censoring in Section 4. Section 5 provides analytical

characterisations of the standardised maximin D- and c-optimal designs when

a parameter space can be specified, even when the locally optimal designs are

not available in closed form. In Section 6, we assess the robustness of locally

optimal and parameter robust designs for (1.1) and compare their efficiency with

traditional designs currently in use. A brief discussion is given in Section 7. The

more technical proofs are in the Appendix.

2. D-optimal Designs

A D-optimal design maximises the determinant of the Fisher information

M(ξ, α, β) with respect to the design, thereby minimising the volume of the

confidence ellipsoid for the parameter estimators. A design ξ∗ is D-optimal if

ξ∗ = argmax
ξ

|M(ξ, α, β)|.

We consider two-parameter models with Fisher information of the form

M(ξ, α, β) =

m∑
i=1

ωiI(xi, α, β) =

m∑
i=1

ωiQ(θi)

(
1 xi
xi x2i

)
, (2.1)

where I(xi, α, β) is the Fisher information at the point xi and θi = α + βxi,

satisfying the conditions (a)−(d) below. Following Ford, Torsney, and Wu (1992),

an equivalent problem to maximising |M(ξ, α, β)| is to maximise the determinant

of this matrix with xi replaced by θi = α+ βxi, i = 1, . . . ,m, where β ̸= 0, also

denoted by M(ξ, α, β) in what follows. The parameter dependence of the design

problem thus enters only via the transformed design space Θ = α + βX where

β ̸= 0. For β = 0, Q(θ) = Q(α) and we have the trivial case of a linear model.

The assumptions are therefore given for θ ∈ R, so they are valid for all possible

ranges for Θ.

(a) The function Q(θ) at (2.1) is positive for all θ ∈ R and twice continuously

differentiable.
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(b) The function Q(θ) is strictly increasing on R.
(c) The second derivative g′′(θ) of the function g(θ) = 2/Q(θ) is an injective

function.

(d) For any s ∈ R, the function r(θ) = Q(θ)(s− θ)2 satisfies r′(θ) = 0 for exactly

two values of θ ∈ (−∞, s].

For the case of c-optimality we require an extra condition

(d1) : The function logQ(θ) is concave for θ ∈ R.

This implies (d) given that (a) and (b) hold. Our assumptions hold, for ex-

ample, for the Poisson, Gamma and Inverse Gamma regression models and for

parametric proportional hazards models with a hazard function of the form

h(t) = eαg(t)eβx, (2.2)

where eαg(t) is the baseline hazard. Further, our assumptions hold (but those

of Yang and Stufken (2009) do not) for certain accelerated failure time models

with two failure modes where the type of failure time distribution differs between

models, such as Gamma with shape parameter 2 and exponential depending on

the sign of θ.

To allow estimation of both parameters, a design must have at least two

support points. For the binary design space X = {0, 1} this means that both 0

and 1 are support points of the D-optimal design. From Lemma 5.1.3 in Silvey

(1980), it then follows that the D-optimal design has equal weights.

For the rest of this section we consider interval design spaces X = [u, v]. The

locally D-optimal design for given α and β, on an arbitrary interval [u, v], can be

obtained from the locally D-optimal design on the interval [0, 1] for parameter

values α̃ = α + βu and β̃ = β(v − u) by transforming its support points x∗i via

z∗i = u + (v − u)x∗i . Therefore without loss of generality we take X = [0, 1]. A

tool for characterising D-optimal designs and for checking the D-optimality of a

candidate design is the Equivalence Theorem (see, for example, Silvey (1980)).

Theorem 1. A design ξ∗ is D-optimal for a model with information matrix (2.1)

if the inequality

d(ξ∗, α, β) = tr{M−1(ξ∗, α, β)I(x, α, β)} ≤ 2,

holds for all x ∈ [0, 1], with equality in the support points of ξ∗.

From Caratheodory’s Theorem (see, for example, Silvey (1980)), there exists

a D-optimal design with at most three support points. Lemma 1 shows that this

number can be further reduced.
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Lemma 1. If β ̸= 0 and assumptions (a)−(c) are satisfied, then the D-optimal
design for a model with Fisher information (2.1) is unique and has two equally
weighted support points.

The proof of Lemma 1 is in the Appendix.

Theorem 2. Let assumptions (a)-(d) be satisfied.

(a) If β > 0, the design

ξ∗ =

{
x∗1 1

0.5 0.5

}
is D-optimal on X , where x∗1 = 0 if β < 2Q(α)/Q′(α); if not x∗1 is the unique
solution of the equation β(x1 − 1) + 2Q(α+ βx1)/Q

′(α+ βx1) = 0.

(b) If β < 0, the design

ξ∗ =

{
0 x∗2
0.5 0.5

}
is D-optimal on X , where x∗2 = 1 if β > −2Q(α+ β)/Q′(α+ β); if not x∗2 is
the unique solution of the equation βx2 + 2Q(α+ βx2)/Q

′(α+ βx2) = 0.

Theorem 2 (proved in the Appendix) provides a complete classification of
D-optimal designs. Depending on some easily verifiable conditions on the param-
eters, the design problem has been either reduced to an optimisation problem in
one variable or solved entirely.

3. c-optimal Designs

Interest often centers on estimating β while treating α as a nuisance pa-
rameter. For example, at (1.1) β is a log hazard ratio. Then an appropriate
optimality criterion is c-optimality for β which minimises the asymptotic vari-
ance of the maximum likelihood estimator β̂. A design ξ∗ is c-optimal for β if
(0 1)T ∈ range(M(ξ∗, α, β)) and

ξ∗ = argmin
ξ

(0 1)M−(ξ, α, β)

(
0

1

)
, (3.1)

where M− is a generalised inverse of the matrix M .

Lemma 2. For any real α, β ̸= 0 and any model with Fisher information (2.1)
there exists a c-optimal design for β with exactly two support points.

From Pukelsheim and Torsney (1991), we obtain an expression for the op-
timal weights. A c-optimal design ξ∗ for β with support points x∗1 and x∗2 is

ξ∗ =


x∗1 x∗2√

Q(α+βx∗
2)√

Q(α+βx∗
1)+

√
Q(α+βx∗

2)

√
Q(α+βx∗

1)√
Q(α+βx∗

1)+
√

Q(α+βx∗
2)

 . (3.2)
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The design problem for X = {0, 1} has thus been solved completely. It remains

to find the optimal support points when X = [u, v] ⊂ R.

Theorem 3. Let assumptions (a), (b) and (d1) be satisfied.

(a) If β > 0 the design ξ∗, with support points x∗1 and v and the optimal weights

given in (3.2), is c-optimal for β, where x∗1 = u if

β(u− v) +
2Q(α+ βu)

Q′(α+ βu)

(
1 +

√
Q(α+ βu)√
Q(α+ βv)

)
> 0. (3.3)

Otherwise x∗1 is the unique solution of

β(x1 − v) +
2Q(α+ βx1)

Q′(α+ βx1)

(
1 +

√
Q(α+ βx1)√
Q(α+ βv)

)
= 0. (3.4)

(b) If β < 0 the design ξ∗, with support points u and x∗2 and the optimal weights

given in (3.2), is c-optimal for β, where x∗2 = v if

β(u− v)− 2Q(α+ βv)

Q′(α+ βv)

(
1 +

√
Q(α+ βv)√
Q(α+ βu)

)
< 0.

Otherwise x∗2 is the unique solution of

β(u− x2)−
2Q(α+ βx2)

Q′(α+ βx2)

(
1 +

√
Q(α+ βx2)√
Q(α+ βu)

)
= 0.

4. Application to an Exponential Regression Model

We apply the previous results to model (1.1) for an interval design space.

We briefly discuss the special case of no censoring, corresponding to c = ∞, a

study running for as long as necessary to record all survival times. From (1.1),

the log-likelihood at xj is l(α, β, xj) = α + βxj − tje
α+βxj and thus the Fisher

information at the point xj is

I(xj , α, β) =

(
1 xj
xj x2j

)
,

since E(Tj) = 1/eα+βxj . In this case the Fisher information is the same as for

the linear model for iid errors. The D-optimal design for this model is equally

supported at the end points of the design space X (see, for example, Atkinson,

Donev, and Tobias (2007)) and coincides with the c-optimal design for β.
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4.1. Type I censoring

In Type I censoring the censoring time c is fixed and common for all indi-

viduals. This occurs, for example, when all individuals have been recruited at

the same time to a study of duration c. If the event of interest has not occurred

by the end of the study the observation is right-censored. Let Yj = min{Tj , c}
be the jth possibly censored observation and let Tj follow model (1.1). Then

E(Yj) =

∫ c

0
yeα+βxje−yeα+βxj

dy + cP (Yj = c) =
(1− e−ceα+βxj

)

eα+βxj
, (4.1)

and the log-likelihood at xj is l(α, β, xj) = δj(α+βxj)−yje
α+βxj , where δj is an

event indicator which is zero if yj is a censored observation and unity otherwise.

Hence the Fisher information at xj is

I(xj , α, β) = (1− e−ceα+βxj
)

(
1 xj
xj x2j

)
,

which yields (2.1) with Q(θ) = (1 − e−ceθ). It can be shown that assumptions

(a)−(d) and (d1) hold here. Hence Theorems 2 and 3 hold for Type I censoring.

4.2. Random censoring

Random censoring occurs, for example, if the jth individual enters the study

at random time Zj ∈ [0, c], where Zj is independent of the survival time Tj , so

the censoring time Cj = c − Zj for this individual is random. We assume that

Z1, . . . , Zn follow a uniform distribution on [0, c], thus C1, . . . , Cn also have a

uniform distribution on [0, c] with probability density function fc(cj) = 1/c. We

observe Yj = min{Tj , Cj} where E(Yj |Cj = cj) is given by the right hand side of

(4.1) with c replaced by cj . Thus

E(Yj) = E(E(Yj |Cj = cj)) =

∫ c

0

(1− e−cje
α+βxj

)

ceα+βxj
dcj

=

(
ceα+βxj + e−ceα+βxj − 1

)
ce2(α+βxj)

,

and the log-likelihood at xj is l(α, β, xj) = δj(− log c+α+βxj)−yje
α+βxj . Hence

the Fisher information at point xj is

I(xj , α, β) =

(
ceα+βxj + e−ceα+βxj − 1

)
ceα+βxj

(
1 xj
xj x2j

) .
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Again this is of the form (2.1) for Q(θ) = 1 + (e−ceθ − 1)/ceθ and assumptions

(a)−(d) and (d1) hold.

For β > 0 (< 0) these Q-functions are increasing (decreasing) with x. There-

fore from (3.2) the c-optimal weight corresponding to the smaller support point is

greater (smaller) than the other weight if β > 0 (< 0). This means, for example,

that more patients are allocated to the more effective dose.

5. Standardised Optimal Designs

The optimal designs found depend on model parameters that are unknown

in practice. Nevertheless, in many practical situations some information about

the parameter values can be provided by the experimenter. For example, α may

determine the baseline hazard for a standard treatment. Hence precise knowledge

of its value might be available, whereas for β the experimenter can specify a range

of values for a clinically significant improvement with new treatment. We further

assume that the experimenter has no preference for specific β-values and that the

total duration of the study, c, is known.

Following Dette (1997) we seek designs that maximise the worst efficiencies

with respect to the locally optimal designs over a range of parameter values.

This allows us to construct robust designs that protect against the worst case

scenario. Dette and Sahm (1998) compare a standardised and a nonstandardised

maximum variance optimality criterion and show that in some cases the optimal

designs based on the latter criterion can be inefficient. A design ξ∗ maximising

Φ(ξ) = min
{

|M(ξ,α,β)|
|M(ξ∗β ,α,β)|

β ∈ [β0, β1]
}

(5.1)

is called a standardised maximin D-optimal design, and a design ξ∗ maximising

Φ(ξ) = min

{
(0 1)M−(ξ∗β ,α,β)(

0
1)

(0 1)M−(ξ,α,β)(01)
β ∈ [β0, β1]

}
(5.2)

is called a standardised maximin c-optimal design for β, where ξ∗β is the locally

optimal design. Criteria (5.1) and (5.2) seek a design that maximises the worst

D-efficiency and c-efficiency respectively, given by

effD(ξ) =

(
|M(ξ, α, β)|
|M(ξ∗β, α, β)|

)1/2

, (5.3)

effc(ξ) =
(0 1)M−(ξ∗β, α, β)

(
0
1

)
(0 1)M−(ξ, α, β)

(
0
1

) . (5.4)

For a binary design space the locally D-optimal design is equally supported

at 0 and 1 for any parameter values, so no further investigation need be done. For
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an interval design space X = [0, 1], the following theorem provides an analytical

characterisation of the standardised maximin D-optimal two point design for a

given range of negative β-values; its proof is given in the Appendix.

Theorem 4. Let β ∈ [β0, β1] where β1 < 0, α be fixed, and assumptions (a)-(d)

and (d1) be satisfied. The standardised maximin D-optimal two-point design is

equally supported at points 0 and x∗2 where x
∗
2 = 1 if β0 > −2Q(α+β0)/Q

′(α+β0).

Otherwise x∗2 is the solution of

Q(α+ β0x)Q(α+ β1x(β1))x(β1)
2 = Q(α+ β1x)Q(α+ β0x(β0))x(β0)

2, (5.5)

where x(β0), x(β1) are the solutions of the equation βx+2Q(α+βx)/Q′(α+βx) =

0, 0 < x ≤ 1, for β0 and β1, respectively.

Note that Theorem 4 applies when β < 0. The proof used in this case is not

applicable when β > 0 and this is a topic for further investigation.

As shown in Section 3, the locally c-optimal designs for β depend on the

model parameters. Theorem 5, which is proven in the Appendix, gives an ana-

lytical characterisation of the standardised maximin c-optimal design for β, for

a binary design space.

Theorem 5. Let β ∈ [β0, β1], α be fixed, and assumptions (a), (b) and (d1) be

satisfied. If X = {0, 1}, the standardised maximin c-optimal two-point design is

ξ∗ =

{
0 1

ω∗ 1− ω∗

}
,

where ω∗ = (ω(β0) + ω(β1))/2, and ω(β0) (ω(β1)) is the optimal weight on zero

for the locally c-optimal design for β given in (3.2) for β0 (β1).

6. Robustness Analysis

We assess the robustness of our designs by calculating their efficiency if the

parameters have been misspecified. As a starting point we used the maximum

likelihood estimates for α and β from the Freireich data (see Collett (2003)),

-2.163 and -1.526 respectively, and c = 30. To compare the performance of an

arbitrary design ξ to a locally D-optimal design ξ∗, we used the D-efficiency

(5.3), whereas for the comparison of ξ to a locally c-optimal design ξ∗ we used

the c-efficiency (5.4). Type I censoring is assumed.

6.1. Locally D-optimal designs

We considered locally D-optimal designs for the vector of parameter val-

ues γ = (α, β). The value of the maximum likelihood estimator for α was
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Table 1. D-efficiencies for some selected locally D-optimal designs.

Design
Parameter vector ξγ0 ξγ1 ξγ2 ξγ3

γ0 = (−2.163,−0.1) 1 1 1 0.900
γ1 = (−2.163,−0.405) 1 1 1 0.905
γ2 = (−2.163,−1.526) 1 1 1 0.946
γ3 = (−2.163,−2.623) 0.992 0.992 0.992 1

Table 2. c-efficiencies for some selected locally c-optimal designs.

Design
Parameter vector Weight on 0 ξγ0 ξγ1 ξγ2 ξγ3

γ0 0.498 1 0.9998 0.9782 0.8772
γ1 0.491 0.9998 1 0.9824 0.8864
γ2 0.425 0.9787 0.9828 1 0.9552
γ3 0.323 0.8908 0.8991 0.9597 1

used, whereas the β-values were chosen to have small, medium and large treat-

ment effect. Table 1 gives the parameter vectors used and the corresponding

D-efficiencies of the locally D-optimal designs when the parameter values were

misspecified.

For the first three sets of parameter values, the locally D-optimal design

is the standard design supported at 0 and 1 with equal weights, whereas ξγ3 is

equally supported at 0 and 0.9. The standard design has high D-efficiency for

all values of the parameter vectors. Here ξγ3 seems to be a good alternative to

the standard design if, for example, the experimenter does not want to expose

patients to the highest drug doses.

6.2. Locally c-optimal designs

For the parameter vectors used in Section 6.1, their locally c-optimal designs

have support points 0 and 1. The weights corresponding to point 0 were found

using (3.2) and are shown in Table 2 along with the c-efficiencies of each of these

designs when the parameter values are misspecified.

The locally c-optimal designs have high c-efficiencies for all four sets of pa-

rameter values. The design ξγ2 , locally c-optimal for a parameter value near the

center of the parameter space, has a lowest efficiency of 0.9597 and hence is more

robust than the other three designs.

6.3. Standardised maximin optimal designs

We can find the standardised maximinD- and c-optimal designs for the range

of β-values used above, denoted by ξγ4 in both cases. Although we consider the
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case of an interval design space, the locally c-optimal designs found in Section
6.2 are supported at points 0 and 1 and so Theorem 5 can be used.

The standardised maximin D-optimal design is supported at 0 and 0.993,
with equal weights, and is locally D-optimal for γ4 = (−2.163,−2.380), whereas
the standardised maximin c-optimal design allocates 41.1% of the observations
at the experimental point 0 and the rest at point 1, and is locally c-optimal for
γ4 = (−2.163,−1.690). The minimum (median) efficiencies are 0.993 (0.993)
for the D-optimal design and 0.969 (0.974) for the c-optimal design. For both
designs the minimum efficiencies are obtained at γ0 and γ3.

6.4. Cluster designs

This is a modification (see Biedermann and Woods (2011)) of the method
introduced by Dror and Steinberg (2006). For each of 1,000 parameter vectors,
found by drawing 1,000 β-values from a uniform distribution on the interval
from −2.623 to −0.1, the locally D- and c-optimal designs were obtained. Then
a clustering algorithm was applied where the cluster centroids were chosen as
support points and each weight was chosen proportional to the corresponding
cluster size, reflecting the relative importance of each cluster.

The number of clusters for the D-optimal designs was chosen to vary from
2 to 6 and, for each value, the D-efficiency of a cluster design was calculated
via (5.3) relative to each of the 1,000 locally D-optimal designs. The two-point
cluster design was equally supported at 0 and 1 whereas the rest of the cluster
designs with more than two support points allocated half the observations at
point 0, very little weight at points other than 0 and 1 and the rest at point
1. The minimum and median efficiencies were found to be the same for all the
cluster designs (0.993 and 0.997 respectively) and this may be a result of the low
weight that all cluster designs gave to experimental points other than 0 and 1.

The support points of the 1,000 locally c-optimal designs were always 0 and
1, hence the cluster design had the same. The clustering here was applied to
design points, rather than support points as the support points of the locally c-
optimal points have differing weights. The resulting cluster design allocated 43%
of the observations to 0 and the rest to 1, and performed well as the minimum
(median) efficiencies found via (5.4) were 0.956 (0.990).

6.5. Comparison of designs

We compare the performance of eleven designs: the locallyD-optimal designs
ξγ0 , . . . , ξγ3 , the standardised maximin D-optimal design ξγ4 , the cluster designs
ξ1, . . . , ξ5 and the equally spaced design ξ0 with support points 0, 0.5, 1 and
equal weights. The D-efficiency (5.3) of each was calculated with respect to each
of the 1,000 locally optimal designs and the results are summarised in Figure 1.
Designs ξ0 and ξγ3 were omitted since they were clearly outperformed.
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Figure 1. Boxplots of D-efficiencies calculated for 9 different designs for
1,000 parameter vectors.

Figure 2. Boxplots of c-efficiencies calculated for 6 different designs for 1,000
parameter vectors.
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Figure 1 shows that the standardised maximin D-optimal design ξγ4 has
the highest minimum efficiency but lower median efficiency: there is a trade off
between protecting against the worst case scenario and having a worse median
efficiency. The cluster designs ξ2, . . . , ξ5 with more than two support points are
useful since they allow for linearity of the regression to be checked and do not
perform worse than the two-point cluster design ξ1. All cluster designs are good
alternatives to locally optimal designs and perform similarly to the standardised
maximin D-optimal design.

The locally c-optimal designs ξγ0 , . . . , ξγ3 , the standardised maximin c-op-
timal design ξγ4 and the two-point cluster design ξ1 are compared in Figure 2.
Among the locally c-optimal designs only ξγ2 performs well across the parameter
space. As for D-optimality, there is a trade off between best minimum efficiency
and a lower median efficiency for the standardised maximin c-optimal design ξγ4 .
Overall both ξγ4 and ξ1 are good alternatives to the locally optimal designs.

7. Discussion

Survival models used in applications are usually nonlinear, hence the optimal
designs depend on the unknown model parameters. To overcome this difficulty
robust designs must be constructed to perform well across a wide range of pa-
rameter values. A difficulty in finding optimal designs for these applications is
that the data are often subject to censoring.

For models with Fisher information of the form (2.1) that satisfy assump-
tions (a)−(d) and (d1) we have provided a complete classification of locally D-
and c-optimal designs. Our assumptions are somewhat less restrictive and easier
to check than those provided by Yang and Stufken (2009) and are satisfied by
many models. Our results were then applied to the proportional hazards param-
eterisation of the exponential regression model (1.1), for the cases of Type I and
random censoring. Under some conditions on the parameters the optimal design
is not the “standard design” supported at 0 and 1 with equal weights.

We have found optimal designs based on standardised maximin criteria, when
there is some knowledge about the parameter values, that maximise the worst
efficiency among all two-point designs. Cluster designs were built from locally
optimal designs for a specific set of parameter values and their computation was
facilitated by results for the locally optimal designs. In Section 6 we have shown
that alternatives to the locally optimal designs are cluster designs that in some
cases have more than two support points, thereby enabling the linearity of the
regression function to be checked.
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