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Abstract: With reference to regular fractions of general s-level factorials, we consider

the design criterion of general minimum lower order confounding (GMC) that aims,

in an elaborate manner, at keeping the lower order factorial effects unaliased with

one another to the extent possible. Using a finite projective geometric formulation,

this involves identification of the alias sets with the points of the geometry; we derive

explicit formulae connecting the key terms for this criterion with the complementary

set. These results are then applied to find optimal designs under the GMC criterion.
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1. Introduction

The problem of optimal selection of regular fractional factorial plans, under
model uncertainty, has received significant attention in the literature. The crite-
rion of minimum aberration (MA) has gained much popularity in this context.
In addition, criteria such as maximum estimation capacity (MEC) and clear ef-
fects have been proposed and studied. We refer to Mukerjee and Wu (2006) for
a review. All these criteria are based on the effect hierarchy principle (Wu and
Hamada (2000, p.112)) which treats factorial effects of the same order as equally
important and lower order effects as more important than higher order effects.
They all are motivated, in various senses, by the objective of keeping the lower
order factorial effects unaliased with one another to the extent possible. With
reference to two-level factorials, Zhang, Li, Zhao and Ai (2008, hereafter called
ZLZA) recently introduced and discussed at length a new criterion of general
minimum lower order confounding (GMLOC or GMC for short) that aims at
achieving the same objective in a more elaborate and explicit manner.

The purpose of the present work is to develop a theory for the GMC criterion
in terms of complementary sets. The results should be particularly useful in the
practically important nearly saturated situation where the complementary set is
relatively small in size and hence easy to handle. This approach has found much
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applicability in the study of optimal designs under the MA or MEC criteria.
Considerable additional work is, however, required for the present problem be-
cause we now need to obtain explicit relations connecting the aliasing pattern of
a design for the lower order factorial effects with the complementary set. In ad-
dition to being directly useful in the study of the GMC criterion, these identities
facilitate a more transparent understanding of such aliasing patterns. Identifi-
cation of the alias sets with the points of a finite projective geometry helps in
their derivation. In contrast with ZLZA, who studied the GMC criterion in the
two-level case, we consider general s-level factorials where s is a prime or prime
power. This enables us to include, for example, three-level factorials as well in
the present study.

2. Background and Preliminary Results

Consider an sn factorial involving n factors F1, . . . , Fn, each at s levels, where
s(≥ 2) is a prime or prime power. A typical pencil b = (b1, . . . , bn)′ is a nonnull
n-vector over the finite field GF (s), and pencils with proportional elements are
considered identical. A pencil with i nonzero elements is called an ith order pencil
(1 ≤ i ≤ n). If these nonzero elements occur at the j1th, . . ., jith positions, then
the pencil represents the ith order factorial effect Fj1 · · ·Fji . Since pencils with
proportional elements are identical, any ith order effect is represented by (s−1)i−1

pencils. The case i = 1 gives a main effect while the case i > 1 corresponds to
an interaction.

We will be interested in regular 1/sm fractions of an sn factorial (hereafter,
simply referred to as sn−m designs), where 1 ≤ m < n and, to avoid trivialities,
n ≥ 3. For 1 ≤ i ≤ n, let Ai be the number of ith order pencils appearing in the
defining relation of such a design. The resolution of the design is the smallest
integer i for which Ai > 0. Since the main effects are of utmost importance in
a factorial setting, in what follows only designs of resolution three or higher are
considered. These designs do not assign any main effect pencil to the defining
relation or entail aliasing of any two such pencils. Then A1 = A2 = 0 and the
sequence (A3, . . . , An) represents the wordlength pattern (WLP) of the design.
The criterion of minimum aberration (MA) aims at sequential minimization of
A3, A4, . . ..

Following ZLZA, we now introduce the GMC criterion, as applicable to an
sn−m design of resolution three or higher. An ith order pencil is said to be
aliased with jth order pencils at degree k if it does not appear in the defining
relation and is aliased with k jth order pencils (excluding itself, in case j =
i). Noting that there are Kj [=

(
n
j

)
(s − 1)j−1] jth order pencils altogether, for
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1 ≤ i, j ≤ n and 0 ≤ k ≤ Kj , define #
i C

(k)
j as the number of ith order pencils

that are aliased with jth order pencils at degree k, and write #
i Cj for the vector

(#i C
(0)
j , #

i C
(1)
j , . . . , #

i C
(Kj)
j ). Also, for 1 ≤ j ≤ n, let #

0Cj be a row vector of order
Kj + 1, with kth element 1 if Aj = k, and 0 otherwise (0 ≤ k ≤ Kj). The
sequence

#C = (#1C2,
#
2C1,

#
2C2,

#
0C3,

#
1C3,

#
2C3,

#
3C1,

#
3C2,

#
3C3, . . .) (2.1)

is called the aliased effect-number pattern (AENP) of the design. The AENP
incorporates the WLP via the terms #

0Cj in (2.1) and is, in fact, much more
informative than the WLP because of the terms #

i C
(k)
j (i, j ≥ 1) which explicitly

reflect the nature of aliasing. Note that (2.1) places #
i Cj ahead of #

i∗Cj∗ if and only
if either (i) max(i, j) < max(i∗, j∗), or (ii) max(i, j) = max(i∗, j∗) and i < i∗,
or (iii) max(i, j) = max(i∗, j∗), i = i∗ and j < j∗. As discussed by ZLZA in
detail, this entails an arrangement of the terms #

i Cj in (2.1) in decreasing order
of importance from left to right, under the effect hierarchy principle. In addition,
for any fixed i and j, the first element #

i C
(0)
j of #

i Cj signifies no aliasing, while

the subsequent elements #
i C

(k)
j signify progressively more severe aliasing as k

increases from 1 to Kj . From these perspectives, the GMC criterion proposed
by ZLZA aims at sequential maximization of the elements of #C , from left to
right. A more precise definition appears below.

At this stage, we note that some of the terms in (2.1) are uniquely determined
by others that precede them and hence are redundant under the GMC criterion.
In a design of resolution three or higher, any jth order pencil (j ≥ 2) is aliased
with at most one first order pencil, and the number of jth order pencils that are
aliased with one first order pencil equals

∑
k≥1 k #

1C
(k)
j . Hence

#
j C

(1)
1 =

∑
k≥1

k #
1C

(k)
j , #

j C
(0)
1 = Kj − #

j C
(1)
1 − Aj ,

#
j C

(k)
1 = 0 (k ≥ 2).

Furthermore, an inspection of the manners in which a defining pencil can entail
aliasing of a first order pencil with a jth order one shows that∑

k≥1

k #
1C

(k)
j = (n − j + 1)(s − 1)Aj−1 + j(s − 2)Aj + (j + 1)Aj+1, (2.2)

where An+1 = 0. Thus the #
0Cj(j ≥ 3) in (2.1) can be dropped as they are

uniquely determined by the preceding terms #
1Cu, 2 ≤ u ≤ j − 1. Similarly, the

#
j C1(j ≥ 2) are redundant because of the terms #

1Cu, 2 ≤ u ≤ j. As a result, the
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GMC criterion can be defined on the basis of a simpler version of (2.1), as given
by

#C = (#1C2,
#
2C2,

#
1C3,

#
2C3,

#
3C2,

#
3C3, . . .). (2.3)

Definition 1. Let #Cl be the lth element of #C in (2.3), and #C(d1) and #C(d2)
be the AENPs of designs d1 and d2 respectively. Suppose t is the smallest integer
such that #Ct(d1) 6= #Ct(d2). If #Ct(d1) > #Ct(d2) then d1 is said to have less
general lower order confounding (GLOC) than d2. A design d is said to have
general minimum lower order confounding (GMC) if no other design has less
GLOC than d and, in this case, d is called a GMC design.

A geometric formulation helps in characterizing GMC designs. Write Lw =
(sw − 1)/(s− 1). Let P denote the set of the Ln−m points of the finite projective
geometry PG(n − m − 1, s). For any nonempty subset Q of P , define V (Q) as
the matrix given by the points of Q as columns. Then the following well-known
lemma holds (see e.g., Mukerjee and Wu (2006, p.40)).

Lemma 1. Any sn−m design d of resolution three or higher is represented by an
n-subset T of P such that V (T ) has full row rank and
(a) the rows of V (T ) span the treatment combinations in d,

(b) any pencil b appears in the defining relation of d if and only if V (T )b = 0,

(c) any two pencils b(1) and b(2), neither of which is a defining pencil, are aliased
with each other in d if and only if V (T )b(1) and V (T )b(2) are proportional to
the same point of P .

In view of Lemma 1, hereafter, an sn−m design of resolution three or higher
is denoted simply by the corresponding set T . Lemma 1(c), exhibiting a one to
one correspondence between the Ln−m points of P and the Ln−m alias sets, will
be very useful. We now introduce some more notation. Consider any point γ of
P and any nonempty subset Q of P . Let q denote the cardinality of Q and Ωiq

be the set of q-vectors over GF (s) having i nonzero elements. For i ≥ 1, define

Ai(Q)=(s−1)−1#{λ : λ ∈ Ωiq, V (Q)λ = 0}, (2.4)

Bi(Q, γ)=(s−1)−1#{λ : λ ∈ Ωiq, V (Q)λ is nonnull and proportional to γ}, (2.5)

where # denotes the cardinality of a set. In particular, if V (Q) has full row rank
then Q represents an sq−(q−n+m) design; in this case, by Lemma 1(b), (c), Ai(Q)
is the same as the Ai in the WLP of Q, and Bi(Q, γ) is the number of ith order
pencils appearing in the alias set, corresponding to γ, of Q. Even if V (Q) is not
of full row rank, the expressions in (2.4) and (2.5) are well-defined, albeit without
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the above interpretation. We are now in a position to present Lemma 2 below.
Here Q, of cardinality q = Ln−m − q, is the complement of Q in P , and

G3(q, q) =
1
6
(s − 1){q(q − 1) + q(q − 1) − qq}, (2.6)

G4(q, q) =
1
24

(s − 1)[(s − 1){q(q − 1)(q − q − 2) − q(q − 1)(q − q − 2)}

−(3s − 5){q(q − 1) + 3q(q − 1) − 2qq}]. (2.7)

Lemma 2.
(a) A3(Q) = G3(q, q) − A3(Q),

(b) A4(Q) = G4(q, q) + (3s − 5)A3(Q) + A4(Q),

(c) if γ /∈ Q, then Ai(Q ∪ {γ}) = Ai(Q) + Bi−1(Q, γ), for i = 3, 4,

(d) if γ ∈ Q, then A3(Q) = A3(Q\{γ}) + B2(Q, γ) and A4(Q) = A4(Q\{γ}) +
B3(Q, γ) − (s − 2)B2(Q, γ).

Parts (a) and (b) of Lemma 2 are due to Suen, Chen and Wu (1997), who
gave expressions for G3 and G4 involving Krawtchouk polynomials. Additional
algebra yields the more explicit forms shown in (2.6) and (2.7) above. These
can also be obtained generalizing the approach in Tang and Wu (1996) to the
s-level case. Unlike what happens with the MA criterion, we now require the
details on G3 and G4 in order to obtain certain relationships in explicit forms
which can actually be needed in discriminating among designs; see Theorem 1
and Example 2 below. Lemma 2(c) follows from Lemma 2 in Mukerjee and Wu
(1999). Finally, Lemma 2(d) follows replacing Q by Q\{γ} in Lemma 2(c) and
then invoking the following lemma.

Lemma 3. If γ ∈ Q, then

(i) B2(Q\{γ}, γ) = B2(Q, γ), and

(ii) B3(Q\{γ}, γ) = B3(Q, γ) − (s − 2)B2(Q, γ).

Proof. Since the points of P are nonnull and no two of them are proportional
to each other, no nonnull linear combination of γ and a point from Q \ {γ},
with both combining coefficients nonzero, can be proportional to γ. Hence (i)
follows from (2.5). Next suppose the relation λ1γ

(1) + λ2γ
(2) + λ3γ

(3) = λ0γ

holds for some nonzero elements λ1, λ2, λ3, λ0 of GF (s) and some three points
γ(1), γ(2), γ(3) of Q. Then either each of γ(1), γ(2), γ(3) belongs to Q\{γ}, or one
of them, say γ(1), equals γ and the other two belong to Q\{γ}. In the latter
case λ1 6= 0, λ0, because no two points of P are proportional to each other, so
that there are s−2 possibilities for λ1. Recalling (2.5), these considerations yield
B3(Q, γ) = B3(Q\{γ}, γ) + (s − 2)B2(Q\{γ}, γ) which, in conjunction with (i),
yields (ii).
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3. Expressions in Terms of the Complementary Set

Consider now an sn−m design of resolution three or higher, represented by
an n-subset T of P as envisaged in Lemma 1. Let T be the complement of T in
P . The cardinality of T is f = Ln−m − n. As before, γ is any point of P . Then
the following result holds.
Theorem 1.
(a) B1(T, γ) equals 1 if γ ∈ T , and 0 if γ /∈ T .

(b) If γ ∈ T then B2(T, γ) = (1/2)(s − 1)(n − f − 1) + B2(T , γ).

(c) If γ /∈ T then B2(T, γ) = (1/2)(s − 1)(n − f + 1) + B2(T , γ).

(d) If γ ∈ T then B3(T, γ) = H31(n, f) − (2s − 3)B2(T , γ) − B3(T , γ), where

H31(n, f) =
1
6
(s − 1)[(s − 1){(n − 1)(n − 2) + f(f + 3) − nf} − (n + f − 1)].

(e) If γ /∈ T then B3(T, γ) = H32(n, f) − (2s − 3)B2(T , γ) − B3(T , γ), where

H32(n, f) =
1
6
(s−1)[(s−1){(n−1)(n−2)+f(f +3)−nf−6}+2(n−2f +2)].

Proof.
(a) This is obvious from (2.5).

(b) By Lemma 2(a),(c),(d), if γ ∈ T then

A3(T \{γ}) + B2(T, γ) = A3(T ) = G3(n, f) − A3(T ),

A3(T \{γ}) = G3(n − 1, f + 1) − A3(T ∪ {γ})
= G3(n − 1, f + 1) − A3(T ) − B2(T , γ).

The truth of (b) now follows because G3(n, f)−G3(n− 1, f +1) = (1/2)(s−
1)(n − f − 1) by (2.6).

(c) Follows from (b), interchanging the roles of T and T and hence those of n

and f .
(d) By Lemma 2(b),(c),(d), if γ ∈ T then

A4(T \{γ}) + B3(T, γ) − (s − 2)B2(T, γ)

= A4(T ) = G4(n, f) + (3s − 5)A3(T ) + A4(T ),

A4(T \ {γ}) = G4(n − 1, f + 1) + (3s − 5)A3(T ∪ {γ}) + A4(T ∪ {γ})
= G4(n − 1, f + 1) + (3s − 5){A3(T ) + B2(T , γ)}

+A4(T ) + B3(T , γ).
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Hence

B3(T, γ) = G4(n, f) − G4(n − 1, f + 1) + (s − 2)B2(T, γ) − (3s − 5)B2(T , γ)

−B3(T , γ).

Using part (b), the result now follows noting that by (2.7),

G4(n, f) − G4(n − 1, f + 1) +
1
2
(s − 2)(s − 1)(n − f − 1) = H31(n, f).

(e) If γ /∈ T then interchanging the roles of T and T , and hence those of n and f

in (d), B3(T , γ) = H31(f, n)− (2s− 3)B2(T, γ)−B3(T, γ), whence the result
follows using part (c) and the fact that H31(f, n) − (1/2)(2s − 3)(s − 1)(n −
f + 1) = H32(n, f).

With reference to the design T , recall that Bi(T, γ) is the number of ith
order pencils appearing in the alias set that corresponds to γ. Hence, for this
design,

#
i C

(k)
i = (k + 1)#{γ : γ ∈ P, Bi(T, γ) = k + 1}, 0 ≤ k ≤ Ki, 1 ≤ i ≤ n, (3.1)

#
i C

(k)
j =

∑
jkBi(T, γ), 0 ≤ k ≤ Kj , 1 ≤ i 6= j ≤ n, (3.2)

where
∑

jk is the sum over γ such that γ ∈ P and Bj(T, γ) = k. Theorem 1 can
now be readily applied to (3.1) and (3.2) to yield expressions, in terms of the
complementary set T , for the leading terms #

1C2,
#
2C2,

#
1C3,

#
2C3,

#
3C2,

#
3C3 in the

AENP given by (2.3). Thus

#
1C

(k)
2 = #

{
γ : γ ∈ T,

1
2
(s − 1)(n − f − 1) + B2(T , γ) = k

}
, (3.3)

#
2C

(k)
2 = (k + 1) [#{γ : γ ∈ T,

1
2
(s − 1)(n − f − 1) + B2(T , γ) = k + 1}

+#{γ : γ ∈ T ,
1
2
(s − 1)(n − f + 1) + B2(T , γ) = k + 1} ], (3.4)

#
1C

(k)
3 = #{γ : γ ∈ T, H31(n, f) − (2s − 3)B2(T , γ) − B3(T , γ) = k}, (3.5)

#
2C

(k)
3 = Σ(1)

3k

{1
2
(s − 1)(n − f − 1) + B2(T , γ)

}
+Σ(2)

3k

{1
2
(s − 1)(n − f + 1) + B2(T , γ)

}
, (3.6)

and so on, where
∑(1)

3k is sum over γ such that γ ∈ T and H31(n, f) − (2s −
3)B2(T , γ) − B3(T , γ) = k, while

∑(2)
3k is sum over γ such that γ ∈ T and

H32(n, f) − (2s − 3)B2(T , γ) − B3(T , γ) = k.
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The aforesaid expressions in terms of the complementary set T depend on T

only through B2(T , γ) and B3(T , γ), γ ∈ P. The calculation of these quantities
is facilitated if one writes T = {π1, . . . , πf}, considers the collections of vectors

M2 = {πi + απj : 1 ≤ i < j ≤ f ; α(6= 0) ∈ GF (s)}, (3.7)

M3 = {πi + α1πj + α2πu : 1 ≤ i < j < u ≤ f ; α1, α2( 6= 0) ∈ GF (s)}, (3.8)

and observes from (2.5) that B2(T , γ) and B3(T , γ) are nothing but the numbers
of vectors, respectively in M2 and M3, that are nonnull and proportional to γ.
Thus one only needs to prepare frequency distributions, separately for M2 and
M3, on the basis of the proportionality of the vectors therein to the various
γ(∈ P ). This is quite straightforward, even by hand calculation, for relatively
small f , in which case M2 and M3 are also small in size. Here is an illustrative
example.

Example 1. To simplify notation, denote any point (x1, . . . , xn−m)′ of P by
1x12x2 · · · (n − m)xn−m , with ixi dropped if xi = 0. Consider a 3n−m design
represented by a set T of P such that T = {1, 2, 12, 122, 3}. Then f = 5, and since
f < Ln−m, we get n−m ≥ 3, i.e., n = Ln−m − f ≥ 8. Write T

∗ = {1, 2, 12, 122},
T ∗ = {13, 132, 23, 232, 123, 1232, 1223, 12232}, and note that T

∗ ⊂ T , T ∗ ⊂ T .
From (3.7), it can be seen that there are 20 vectors in M2, of which three are
proportional to each point of T

∗ and one is proportional to each point of T ∗.
Similarly, by (3.8), out of the 40 vectors in M3, four are null and three are
proportional to each point of T

∗ and T ∗. Thus among the five points of T ,
the four from T

∗ have B2(T , γ) = B3(T , γ) = 3 and the remaining one has
B2(T , γ) = B3(T , γ) = 0. Similarly, among the n points of T , the eight from
T ∗ have B2(T , γ) = 1, B3(T , γ) = 3, and the remaining n − 8 have B2(T , γ) =
B3(T , γ) = 0. Since H31(n, f) = (1/3)(2n2 − 17n + 80) in this example, from
(3.3)−(3.5) it now follows that for the design T ,

#
1C

(n−6)
2 = n − 8, #

1C
(n−5)
2 = 8, #

1C
(k)
2 = 0 for every other k;

#
2C

(n−7)
2 = (n − 6)(n − 8), #

2C
(n−6)
2 = 8(n − 5), #

2C
(n−5)
2 = n − 4,

#
2C

(n−2)
2 = 4(n − 1), #

2C
(k)
2 = 0 for every other k;

#
1C

(k)
3 = 8 if k =

1
3
(2n2 − 17n + 80) − 6,

#
1C

(k)
3 = n − 8 if k =

1
3
(2n2 − 17n + 80), #

1C
(k)
3 = 0 for every other k.

While the results in this section cover the six leading terms in the AENP
given by (2.3), similar techniques will work, at the expense of heavier algebra, if
we wish to find their counterparts for the subsequent terms. However, this will
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not be needed because, as seen in the next section, the results reported above are
quite comprehensive for discrimination among designs under the GMC criterion.
Moreover, as ZLZA point out, in many applications it is reasonable to assume
the absence of factorial effects beyond the third order, in which situation the six
leading terms listed in (2.3) completely determine the AENP.

4. GMC Designs via Complementary Sets

The results of the last section are now applied to characterize GMC designs
for relatively small values of f which, as indicated earlier, are practically impor-
tant. Special attention is given to two- and three-level factorials. We consider
f ≥ 3, since all designs are isomorphic for f = 1, 2.

For a design T , let δ(T ) = (δ1(T ), . . . , δn(T )) be the vector with elements
B2(T , γ), γ ∈ T , arranged in nondecreasing order. If

g(T ) = #{γ : γ ∈ T,B2(T , γ) > 0}, (4.1)

then the first n − g(T ) elements of δ(T ) are zero, and the rest are positive. The
next two propositions will be useful. The first of these emerges from (2.3), (3.3)
and Definition 1, and the second, giving a necessary condition for a design to
have GMC, is evident from the first.

Proposition 1. Consider two designs T1 and T2. Suppose δ(T1) 6= δ(T2) and let
t be the smallest integer such that δt(T1) 6= δt(T2). If δt(T1) < δt(T2), then T1

has less GLOC than T2 and hence dominates the latter under the GMC criterion.

Proposition 2. A design T can have GMC only if it minimizes g(T ).

As an immediate application of Proposition 2, suppose f = Lw, 2 ≤ w ≤
n−m−1. Then by (2.5) and (4.1), g(T ) vanishes if and only if T is a (w−1)-flat
of P , i.e., an Lw-subset of P that is closed (up to proportionality) under the
formation of nonnull linear combinations. Since all (w − 1)-flats are isomorphic,
it is clear that in this case a design T has GMC if and only if T is a (w− 1)-flat.
Such a design is also known to have MA and MEC (Suen, Chen and Wu (1997)
and Cheng and Mukerjee (1998)).

Turning to two-level factorials, we now obtain GMC designs for 3 ≤ f ≤ 15.
This will facilitate comparison with Tang and Wu (1996) who gave MA designs
for 3 ≤ f ≤ 11. The cases f = 3, 7 and 15 are settled from the discussion in the
last paragraph. The following lemma helps in the remaining cases.

Lemma 4. Let s = 2.
(a) If f = 4, 5 or 6, then a design T can have GMC only if T is contained in a

2-flat.



372 RUNCHU ZHANG AND RAHUL MUKERJEE

(b) If 8 ≤ f ≤ 14, then a design T can have GMC only if T is contained in a
3-flat.

Proof. Only (b) is proved. The proof of (a) is similar and simpler. Let 8 ≤ f ≤
14. Then n − m ≥ 4. If n − m = 4, then T is contained in a 3-flat for every
design and there is nothing to prove. Suppose n − m ≥ 5. For 8 ≤ f ≤ 14, we
can always choose T as a subset of a 3-flat. For such a choice, say T 0, all sums
involving a pair of points of T 0 belong to the same 3-flat. Since this 3-flat has
15 points of which f are in T 0, there are at most 15− f points outside T 0 which
equal one of these sums. By (2.5) and (4.1), therefore, g(T0) ≤ 15 − f . In view
of Proposition 2, it now suffices to show that

g(T ) > 15 − f, (4.2)

whenever T is not contained in a 3-flat, i.e., rank[V (T )] ≥ 5. If rank[V (T )] = ρ,
then T has ρ linearly independent points which span

(
ρ
2

)
additional points as

pairwise sums. These
(
ρ
2

)
points are distinct and, among them, at most f −ρ are

in T , i.e., at least
(
ρ
2

)
− (f − ρ) [=

(
ρ+1
2

)
− f ] are outside T . Hence by (2.5) and

(4.1), g(T ) ≥
(
ρ+1
2

)
− f , and the truth of (4.2) follows for ρ ≥ 6. For ρ = 5, we

get g(T ) ≥ 15− f . If equality holds here then T consists of the five independent
points, say π1, . . . , π5, and f − 5 (> 0) of the 10 pairwise sums arising out of
π1, . . . , π5. The remaining 15 − f of these 10 pairwise sums are outside T . In
addition if, say, π1 +π2 is one of the f − 5 pairwise sums in T , then both π1 +π2

and π3 are in T but not their sum. Thus, outside T , there are at least 16 − f

points each of which equals the sum of two points of T . Hence by (2.5) and (4.1),
the truth of (4.2) follows again.

For two-level factorials, Chen and Hedayat (1996) showed that if 2w−1 ≤ f ≤
2w − 1, then the leading term A3 in the WLP is minimized only if T is contained
in a (w−1)-flat. One may wonder if this result can lead to a more general version
of Lemma 4. However, as A3 = (1/3)

∑
k≥1 k #

1C
(k)
2 by (2.2), no exact connection

between minimization of A3 and the GMC criterion, that incorporates sequential
maximization of #

1C
(k)
2 , 0 ≤ k ≤ K2, emerges in an obvious manner. At any

rate, Lemma 4 itself will suffice for the present purpose of characterizing GMC
designs for 3 ≤ f ≤ 15. The next example illustrates how it reduces the search
for T through the use of the catalog of 16-run designs given by Chen, Sun and
Wu (1993).

Example 2. Let s = 2 and f = 11. By Lemma 4(b), a design T can have
GMC only if T is contained in a 3-flat. But then T itself represents a 211−7

design, and following Chen, Sun and Wu (1993), one needs to consider only
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three nonisomorphic choices of T , namely,

T1 = {1, 2, 3, 4, 12, 13, 23, 14, 24, 134, 234},
T2 = {1, 2, 3, 4, 12, 13, 23, 123, 14, 24, 34},
T3 = {1, 2, 3, 4, 12, 13, 23, 123, 14, 24, 124}.

The same notation as in Example 1 is used here for the points of P . Considering
the pairwise sums arising out of T1, T2 and T3, we get δ(T1) = (0n−4, 4, 5, 5, 5),
δ(T2) = δ(T3) = (0n−4, 4, 4, 4, 4), where 0u is the null row vector of order u.
Hence by Proposition 1, both T2 and T3 dominate T1 under the GMC criterion.
Moreover, as δ(T2) = δ(T3), by (3.3), the designs T2 and T3 have the same #

1C2,
and one has to consider the next term #

2C2 in the AENP (2.3) in order to compare
them. To that effect, one can proceed as in Example 1 and employ (3.4) to show
that for T2,

#
2C

( 1
2
n−7)

2 = (
1
2
n − 6)(n − 4), #

2C
( 1
2
n−3)

2 = 9(
1
2
n − 2),

#
2C

( 1
2
n−2)

2 = 3(n − 2), #
2C

(k)
2 = 0 for every other k,

while for T3,

#
2C

( 1
2
n−7)

2 = (
1
2
n − 6)(n − 4), #

2C
( 1
2
n−3)

2 = 6(n − 4),

#
2C

( 1
2
n−1)

2 =
3
2
n, #

2C
(k)
2 = 0 for every other k.

Since n ≥ 20 for f = 11, it follows that T3 yields a larger #
2C

(n/2−3)
2 than T2.

Thus T3 represents the GMC design. Interestingly, here T2 is the MA design
(Tang and Wu (1996)) and hence the MA and GMC criteria differ. Observe that
the comparison of T2 and T3 under the GMC criterion involves the use of (3.4)
which, in turn, requires explicit knowledge of G3 as shown in (2.6).

For s = 2 and 3 ≤ f ≤ 15, Table 1 shows the sets T for GMC designs. In
particular, this table yields 64-run 2n−(n−6) GMC designs for n ≥ 48 and 128-
run 2n−(n−7) designs for n ≥ 112, and hence supplements the tables in ZLZA. A
comparison with Tang and Wu (1996) shows that the designs given in Table 1
also have MA except when f = 10(n − m ≥ 5) and f = 11.

We next consider three-level factorials and obtain GMC designs for 3 ≤ f ≤
13. This will facilitate comparison with Suen, Chen and Wu (1997) who gave
MA designs over the same range of f . The case f = 3 is straightforward and
the cases f = 4 and 13 are settled from the discussion below Proposition 2. The
following lemma, with a proof analogous to that of Lemma 4, helps in the other
cases.

Lemma 5. Let s = 3. If 5 ≤ f ≤ 12, then a design T can have GMC only if T
is contained in a 2-flat.
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Example 3. Let s = 3 and f = 5. In view of Lemma 5, following Chen, Sun and
Wu (1993) as in the previous example, one needs to consider only three noniso-
morphic choices of T , namely, T1 = {1, 2, 3, 12, 1223}, T2 = {1, 2, 3, 12, 13}, and
T3 = {1, 2, 3, 12, 122}. Note that T3 is the same as T of Example 1. Hence pro-
ceeding as in that example, δ(T1) = (0n−8, 1, 2, 2, 2, 2, 2, 2, 4), δ(T2) = (0n−8, 1, 1, 1,

1, 2, 2, 3, 3), δ(T3) = (0n−8, 1, 1, 1, 1, 1, 1, 1, 1), and it is clear from Proposition 1
that T3 is the GMC design.

For s = 3 and 3 ≤ f ≤ 13, Table 2 shows the sets T for GMC designs. In
particular, this table yields 27-run 3n−(n−3) GMC designs for 4 ≤ n ≤ 13. A
comparison with Suen, Chen and Wu (1997) shows that the designs shown in
Table 2 also have MA. This, however, does not imply that the two criteria lead
to the same ranking of all designs over this range of f . For instance with f = 8,
even though the best design remains the same for both criteria, the rankings of
other designs differ.
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Appendix

Table 1. The sets T for 2n−m designs.

f T

3 {1, 2, 12}
4 {1, 2, 12, 3}
5 {1, 2, 12, 3, 13}
6 {1, 2, 12, 3, 13, 23}
7 {1, 2, 12, 3, 13, 23, 123}
8 {1, 2, 12, 3, 13, 23, 123, 4}
9 {1, 2, 12, 3, 13, 23, 123, 4, 14}
10 (n − m = 4) {1, 2, 12, 3, 13, 23, 4, 14, 24, 34}
10 (n − m ≥ 5) {1, 2, 12, 3, 13, 23, 123, 4, 14, 24}
11 {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124}
12 {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34}
13 {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134}
14 {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234}
15 {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234, 1234}
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Table 2. The sets T for 3n−m designs.

f T

3 {1, 2, 12}
4 {1, 2, 12, 122}
5 {1, 2, 12, 122, 3}
6 {1, 2, 12, 122, 3, 13}
7 {1, 2, 12, 122, 3, 1223, 12232}
8 {1, 2, 12, 122, 3, 232, 1223, 12232}
9 {1, 2, 122, 3, 132, 232, 1232, 1223, 12232}
10 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123}
11 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123, 1232}
12 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123, 1232, 12232}
13 {1, 2, 12, 122, 3, 13, 132, 23, 232, 123, 1232, 1223, 12232}
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