
Statistica Sinica: Supplementary Material

Supplementary Material for

“Sample Empirical Likelihood and the Design-based

Oracle Variable Selection Theory”

Puying Zhao1, David Haziza2 and Changbao Wu3

1Yunnan University, 2University of Ottawa and 3University of Waterloo

Abstract: This supplementary material contains technical details and proofs of the

major theoretical results presented in the main paper and additional simulation

results on point estimation, hypothesis tests and variable selection for linear re-

gression and quantile regression models.

Key words and phrases: Design-based variable selection theory, Empirical likelihood

ratio test, General hypothesis test, Nondifferentiable estimating functions, Quantile

regression analysis, Survey weighted estimating equations.

Let fN = nB/N . One of the technical details is to replace π−1
i in the con-

straints by π−1
i fN . The two versions of constraints

∑
i∈S pi{π

−1
i gi(θ)} = 0

and
∑

i∈S pi{π
−1
i fNgi(θ)} = 0 are equivalent, but the latter version facili-

tates the usual asymptotic orders under Condition 3(ii). Let

l(θ, λ) = n−1
B

∑
i∈S

log{1 + λTπ−1
i fNgi(θ)} .
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The maximum sample empirical likelihood estimator of θN , which is the

minimum point of ln(θ, λ) given in (2.3) of the main paper, is equivalently

given by

θ̂SEL = arg min
θ∈Θ

sup
λ∈Λ̂n(θ)

l(θ, λ) ,

where Λ̂n(θ) = {λ | λTπ−1
i fNgi(θ) > −1, i ∈ S} for the given θ.

Let λ̂SEL = arg supλ∈Λ̂n(θ̂SEL) l(θ̂EL, λ). Let “w.p.a.1” denote “with prob-

ability approaching 1” and “
p→” denote “converge in probability” under the

design-based asymptotic framework. We also use “c” to denote a generic

constant whenever the actual value of “c” is not a crucial part of the argu-

ment.

S1 Regularity Conditions

Let It denote the t× t identity matrix. Let ‖A‖ = {trace(ATA)}1/2 for any

matrix or vector A. The following regularity conditions are used for the

main theoretical results presented in the paper.

C1. The finite population parameter θN ∈ Θ is the unique solution to

UN(θ) = 0 and Θ is a compact set in the p-dimensional Euclidean

space.

C2. There exists a function U(θ) such that UN(θ) → U(θ) as N → ∞,
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uniformly for all θ ∈ Θ. The limiting function U(θ) also satisfies the

following conditions:

(i) There exists a unique solution to U(θ) = 0, which is an interior

point of Θ;

(ii) Uniformly for all θ ∈ Θ, the limiting function U(θ) is absolute

continuous with first derivative Γ(θ) = ∂U(θ)/∂θ, and Γ(θ) has

full column rank p for any θ ∈ Θ.

C3. The sampling design along with the expected sample size nB satisfies

(i) nB = O(N%) for some % such that 1/2 < % ≤ 1;

(ii) c1 < πiNn
−1
B < c2, i ∈ S for some positive constants c1 and c2.

C4. The functions UN(θ) and U(θ) satisfy

(i) For any sequence of positive numbers {δN} with δN = op(1),

sup
θ∈Θ(δN )

‖[UN(θ)− UN(θN)]− [U(θ)− U(θN)]‖ = o(N−1/2);

where Θ(δN) =
{
θ ∈ Θ : ‖θ − θN‖ ≤ δN

}
;

(ii) For any sequence cN = O(N−η) with η ∈ (1/4, 1/2],

sup
θ∈Θ

1

N

N∑
i=1

‖gi(θ)− gi(θ + cN)‖ = O(|cN |) ;

(iii) There exists a positive constant c such that

sup
θ∈Θ(δ)

Var
{

[ÛN(θ)− ÛN(θN)] | FN
}
≤ cn−1

B |δ| ,
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for any δ > 0, where Θ(δ) =
{
θ ∈ Θ : ‖θ − θN‖ ≤ δ

}
.

C5. The finite population values FN , the estimating functions gi(θ) =

g(Xi, Yi, θ) and the sampling design satisfy

(i) maxi∈S supθ∈Θ ‖gi(θ)‖ = op(n
1/2
B );

(ii) The Horvitz-Thompson estimator
∑

i∈S π
−1
i gi(θN) is asymptoti-

cally normally distributed with mean zero and the design-based

variance-covariance matrix at the order O(n−1
B N2).

C6. For any vector Z satisfying (1/N)
∑N

i=1 ‖Zi‖2+σ <∞ with some σ > 0,

Var(µ̂Z | FN) ≤ c0n
−1
B (N − 1)−1

∑N
i=1(Zi − µZ)(Zi − µZ)T for some

constant c0, where µZ = (1/N)
∑N

i=1 Zi and µ̂Z = (1/N)
∑

i∈S π
−1
i Zi.

Remark 1. Condition C1 ensures the identifiability of the parameter θN .

Condition C2 specifies a smooth limiting function for the finite population

function UN(θ). We allow that UN(θ) could be non-differentiable with re-

spect to θ but impose a continuity assumption on its limiting function U(θ),

while the existing survey sampling literatures (e.g., Chen and Kim (2014);

Oguz-Alper and Berger (2016)) impose a continuity assumption directly on

g(X, Y, θ) with respect to θ. Assume that the finite population {(Xi, Yi), i =

1, · · · , N} is an independent and identically distributed sample from a su-

perpopulation model with cumulative distribution function F (x, y). Then
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in the model-based context, we have that U(θ) = EF{g(X, Y, θ)}, which is

differentiable with respect to θ regardless of whether the estimating func-

tion g is differentiable or non-differentiable. Here EF{·} represents the

expectation taken with respect to F (x, y). Condition C3 is satisfied by

most commonly used sampling designs. Conditions C4(i) and C4(ii) put

a bound on the variation of population quantities, which is a typical con-

dition in dealing with non-smooth estimating functions similar to those

used in Bahadur representations and could be easily verified under a super-

population model. Condition C4(iii) is about the correlation between two

Horvitz-Thompson estimators at two close points of θ, which is similar to

Condition 6 in Francisco and Fuller (1991) but without assuming a specific

sampling design, and is a trivial condition when gi(θ) is a smooth function

of θ. It is used for the development of an approximation to the difference

ÛN(θ)− ÛN(θN) on
{
θ ∈ Θ : ‖θ − θN‖ ≤ δ

}
for non-differential estimating

functions. Conditions (i), (ii) and (iii) in C5 are the regularity conditions

commonly used for estimating equations with complex surveys. Condition

C6 specifies that the variance-covariance matrix of the Horvitz-Thompson

estimator under the given sampling design does not differ in terms of order

of magnitude from the one under simple random sampling.

The following two conditions (Fan and Li (2001)) are assumed for the
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penalty function and the tuning parameter τn on design-based variable se-

lection.

C7. As nB →∞, n
1/2
B τn →∞ and lim infnB→∞ lim infθ→0+ τ

−1
n p′τn(θ) > 0.

C8. maxj∈A p
′
τ (|θN [j]|) = o(n

−1/2
B ) and maxj∈A p

′′
τ (|θN [j]|) = o(1).

S2 Lemmas

Lemma 1. Suppose that Conditions C1, C3 and C5 hold. Then

sup
θ∈Θ,λ∈Λn,i∈S

|λTπ−1
i fNgi(θ)| = op(1) ,

where Λn = {λ | ‖λ‖ ≤ cn
−1/2
B } for a given c > 0. In addition, w.p.a.1,

Λn ⊆ Λ̂n(θ) for all θ ∈ Θ.

Proof. It can be shown that maxi∈S supθ∈Θ ‖π−1
i fNgi(θ)‖ = op(n

1/2
B ) by Con-

ditions C3(ii) and C5(i). The use of Cauchy-Schwarz inequality leads to

sup
θ∈Θ,λ∈Λn,i∈S

|λTπ−1
i fNgi(θ)| ≤ ‖λ‖max

i∈S
sup
θ∈Θ
‖π−1

i fNgi(θ)‖ = op(1) .

Moreover, w.p.a.1, λTπ−1
i fNgi(θ) ∈ (−1,∞) for all θ ∈ Θ and ‖λ‖ ≤ n

−1/2
B .

Lemma 2. Suppose that Conditions C1, C3 and C5 hold, θ̄ ∈ Θ, θ̄
p→ θN

and ‖ÛN(θ̄)‖ = Op(n
−1/2). Then, λ̄ = arg supλ∈Λ̂n(θ̄) l(θ̄, λ) exists w.p.a.1,

λ̄ = Op(n
−1/2
B ), and supλ∈Λ̂n(θ̄) l(θ̄, λ) ≤ Op(n

−1
B ).
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Proof. Let Dn(θ) = n−1
B

∑
i∈S π

−2
i f 2

Ngi(θ)gi(θ)
T. Applying a second order

Taylor series expansion, we have l(θ̄, λ) = λTÛN(θ̄)− 1
2
λTDn(θ̄)λ. This fur-

ther leads to the first order condition: ÛN(θ̄) − Dn(θ̄)λ = 0. By Condition

C5(iii), ‖Dn(θ̄) −W‖ = op(1), where W = nBN
−2
∑N

i=1 π
−1
i gi(θN)gi(θN)T.

It can be seen that, w.p.a.1, the smallest eigenvalue of Dn(θ̄) is bounded

away from zero due to the nonsingularity of W . We conclude that, w.p.a.1,

λ̄ = arg supλ∈Λ̂n(θ̄) l(θ̄, λ) exists.

By Lemma 1, we further have |λ̇Tπ−1
i fNgi(θ̄)| = op(1), uniformly over

i ∈ S. It follows that maxi∈S{1 + λ̇Tπ−1
i fNgi(θ̄)}−2 > 1/2 w.p.a.1. Apply-

ing a second order Taylor series expansion with respect to λ, we have that

for some λ̇ on the line segment between λ̄ and 0,

l(θ̄, λ̄) = λ̄TÛN(θ̄)− 1

2
λ̄T

(
1

nB

n∑
i∈S

π−2
i f 2

Ngi(θ̄)gi(θ̄)
T

{1 + λ̇Tπ−1
i fNgi(θ̄)}2

)
λ̄

≤ ‖λ̄T‖‖ÛN(θ̄)‖ − c‖λ̄T‖2.

Since λ̄ is the maximizer, l(θ̄, λ̄) ≥ l(θ̄, 0) = 0. This, coupled with the

assumption that ‖ÛN(θ̄)‖ = Op(n
−1/2), implies that ‖λ̄‖ = Op(n

−1/2
B ). We

also conclude that l(θ̄, λ̄) = supλ∈Λ̂n(θ̄) l(θ̄, λ) ≤ Op(n
−1
B ).

Lemma 3. Suppose that Conditions C1, C3 and C5 hold. Then ‖ÛN(θ̂SEL)‖

= Op(n
−1/2
B ).
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Proof. Let λ̃ = n
−1/2
B ÛN(θ̂SEL)/‖ÛN(θ̂SEL)‖. It follows from Lemma 1 that

max
i∈S
|λ̃Tπ−1

i fNgi(θ̂SEL)| p−→ 0

and λ̃ ∈ Λ̂n(θ̂SEL). Moreover, by the Cauchy–Schwarz inequality and Con-

dition C5(iii), it can be shown that

n−1
B

∑
i∈S

π−2
i f 2

Ngi(θ̂SEL)gi(θ̂SEL)T ≤ n−1
B

∑
i∈S

π−2
i f 2

N sup
θ∈Θ
‖gi(θ)‖2Ir

p−→ cIr .

By using the Taylor series expansion, we have

l(θ̂SEL, λ̃) = λ̃TÛN(θ̂SEL)− 1

2
λ̃T

(
1

nB

n∑
i∈S

π−2
i f 2

Ngi(θ̂SEL)gi(θ̂SEL)T

{1 + λ̇Tπ−1
i fNgi(θ̂SEL)}2

)
λ̃

≥ n
−1/2
B ‖ÛN(θ̂SEL)‖ − (c/4)n−1

B .

This, together with the fact that θ̂SEL and λ̂SEL are a saddle point, implies

that

n
−1/2
B ‖ÛN(θ̂SEL)‖ − (c/4)n−1

B ≤ l(θ̂SEL, λ̃) ≤ l(θ̂SEL, λ̂SEL)

≤ sup
λ∈Λ̂n(θN )

l(θN , λ)

≤ Op(n
−1
B ).

The two sets of inequalities lead to ‖ÛN(θ̂SEL)‖ ≤ Op(n
−1/2
B ).

Now, we consider λ̄ = εnÛN(θ̂SEL) with any εn → 0. Similarly, we have

that

εn‖ÛN(θ̂SEL)‖2 − (c/4)ε2
n‖ÛN(θ̂SEL)‖2 ≤ Op(n

−1
B ).



Sample EL and Design-based Variable Selection 9

It can be shown that εn‖ÛN(θ̂SEL)‖2 = Op(n
−1
B ) by noting that 1−(c/4)εn >

0 for nB large enough. Then we can show ‖ÛN(θ̂SEL)‖ = Op(n
−1/2
B ).

Lemma 4. Suppose that Conditions C1–C6 hold. Then, for any sequence

of positive numbers {δN} with δN = op(1),

sup
θ∈Θ(δN )

‖[ÛN(θ)− ÛN(θN)]− [U(θ)− U(θN)]‖ = op(n
−1/2
B ) ,

where Θ(δN) =
{
θ ∈ Θ : ‖θ − θN‖ ≤ δN

}
.

Proof. Note that ÛN(θ)− ÛN(θN)− U(θ) + U(θN) = AN(θ) +BN(θ), where

AN(θ) = ÛN(θ)− ÛN(θN)−UN(θ) +UN(θN) and BN(θ) = UN(θ)−UN(θN)−

U(θ) + U(θN). By Conditions C3 and C4(i), it can be shown that

sup
θ∈Θ(δN )

‖BN(θ)‖ = o(n
−1/2
B ).

We now consider the asymptotic property of ‖AN(θ)‖. We have

E[‖AN(θ)‖2 | FN ] = trace
{

E[AN(θ)AN(θ)T | FN ]
}

= E[AN(θ)T | FN ]E[AN(θ) | FN ] + trace
{

Var[AN(θ) | FN ]
}
.

It can be seen that E{AN(θ) | FN} = 0 and Var{AN(θ) | FN} = Var{[ÛN(θ)−

ÛN(θN)] | FN} for all θ in Θ(δN). In addition, it follows from Condition

C4(iii) that

Var
{

[ÛN(θ)− ÛN(θN)] | FN
}
≤ cn−1

B o(1),

uniformly for θ in Θ(δN) with δN = o(1). Then E[‖AN(θ)‖2 | FN ] = op(n
−1
B )
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uniformly for θ in Θ(δN). This leads to supθ∈Θ(δN ) ‖AN(θ)‖ = op(n
−1/2
B ),

which completes the proof.

Lemma 5. Suppose that Conditions C1–C6 hold. Then

sup
θ∈Θ
‖ÛN(θ)− UN(θ)‖ = op(1) .

Proof. We prove the lemma by using the covering approach (van der Vaart

and Wellner (1996); Wang and Opsomer (2011)). Let 1/2 < δ < %. Since

Θ is compact, we can partition Θ into N δ subsets such that Θ = ∪Nδ

j=1Θj

and ‖θ′j − θj‖ ≤ cN for any θ′j, θj ∈ Θj, where cN = O(N−δ). Then, for any

θj ∈ Θj, j = 1, 2, · · · , N δ, we have

supθ∈Θ ‖ÛN(θ)− UN(θ)‖

≤ maxj ‖ÛN(θj)− UN(θj)‖

+ maxj supθ∈Θj
‖{ÛN(θ)− UN(θ)} − {ÛN(θj)− UN(θj)}‖ .

By Condition C6, we have

Var{ÛN(θj)− UN(θj) | FN}

≤ c0
1

nB

1

N − 1

N∑
i=1

{gi(θj)− UN(θj)}{gi(θj)− UN(θj)}T

= O(n−1
B ) .

Since δ < %, we have that for any ε > 0,

Pr
(

maxj ‖ÛN(θj)− UN(θj)‖ ≥ ε | FN
)
≤

Nδ∑
j=1

E{‖ÛN(θj)− UN(θj)‖2}
ε2

= O(N δ−%) ,
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with O(N δ−%) → 0. Let Ii = I(i ∈ S) be the sample inclusion indicators.

By Condition C3(ii), we have |Ii/πi− 1| ≤ cN/nB for some c > 0 uniformly

over i. By Conditions C3(i) and C4(ii), we have that

max
j

sup
θ∈Θj

‖{ÛN(θ)− UN(θ)} − {ÛN(θj)− UN(θj)}‖

= max
j

sup
θ∈Θj

∥∥∥ 1

N

N∑
i=1

(
Ii
πi
− 1

)
{gi(θ)− gi(θj)}]

∥∥∥
≤ c

N

nB
max
j

sup
θ∈Θj

1

N

N∑
i=1

‖{gi(θ)− gi(θj)}]‖

= O(N1−%−δ) ,

and O(N1−%−δ)→ 0. Combining all the above arguments, we conclude that

supθ∈Θ ‖ÛN(θ) −UN(θ)‖ = op(1).

S3 Proofs of Theorems

Proof of Theorem 1. We first consider the consistency of the maximum sam-

ple empirical likelihood estimator θ̂SEL. Note that {θ : ‖θ − θN‖ ≥ ε} =

Θ− {θ : ‖θ − θN‖ < ε} is also a compact subset of Θ for any ε > 0. Thus,

there exists θ1 ∈ {θ : ‖θ − θN‖ ≥ ε} such that

inf
θ:‖θ−θN‖≥ε

‖UN(θ)‖ = ‖UN(θ1)‖.

Since θN is the unique solution to UN(θ) = 0 and θ1 6= θN , ‖UN(θ1)‖ > 0.

Thus infθ:‖θ−θN‖≥ε ‖UN(θ)‖ > 0 for all ε > 0. This implies that for every
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ε > 0 there exists a number η(ε) > 0 such that ‖UN(θ)‖ ≥ η(ε) > 0 for every

θ with ‖θ−θN‖ > ε. Thus, the event {‖θ−θN‖ > ε} is contained in the event

{‖UN(θ)‖ ≥ η(ε) > 0}, and Pr(‖θ̂SEL − θN‖ > ε | FN) ≤ Pr(‖UN(θ̂SEL)‖ ≥

η(ε) | FN) for all ε > 0. It suffices to show that ‖UN(θ̂SEL)‖ = op(1).

Applying the triangle inequality and by Lemma 3 and Lemma 5, it can be

show that

‖UN(θ̂EL)‖ ≤ ‖UN(θ̂EL)− ÛN(θ̂EL)‖+ ‖ÛN(θ̂EL)‖ = op(1).

The consistency of θ̂SEL then follows.

The proof of the asymptotic normality of θ̂SEL can be carried out in

three steps.

Step 1. Show that ‖θ̂SEL − θN‖ = Op(n
−1/2
B ). Using triangle inequalities,

we have that

‖U(θ̂SEL)− U(θN)‖ ≤ ‖U(θ̂SEL)− U(θN)− ÛN(θ̂SEL) + ÛN(θN)‖

+‖ÛN(θ̂SEL)‖+ ‖ÛN(θN)‖.

It follows from Lemma 3 that ‖ÛN(θ̂SEL)‖ = Op(n
−1/2
B ) and, by Condi-

tions C2(ii) and C5(iii), ‖U(θN)‖ = Op(n
−1/2
B ) and ‖ÛN(θN)‖ = Op(n

−1/2
B ).

Lemma 4 implies that

‖ÛN(θ̂SEL)− ÛN(θN)−U(θ̂SEL) +U(θN)‖ ≤ (1 + n
1/2
B ‖θ̂SEL− θN‖)op(n−1/2

B ) .
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Hence,

‖U(θ̂SEL)− U(θN)‖ ≤ (1 + n
1/2
B ‖θ̂SEL − θN‖)op(n−1/2

B ) +Op(n
−1/2
B ) .

It follows that ‖U(θ̂SEL) − U(θN)‖ ≥ C‖θ̂SEL − θN‖ because U(θ) is differ-

entiable at θN . We have

n
1/2
B ‖θ̂SEL − θN‖ ≤ (1 + n

1/2
B ‖θ̂SEL − θN‖)op(1) +Op(1) ,

which leads to (1 − op(1))n
1/2
B ‖θ̂SEL − θN‖ ≤ Op(1) and ‖θ̂SEL − θN‖ =

Op(n
−1/2
B ).

Step 2. Show that l(θ, λ) can be approximated by the quadratic function

L(θ, λ) = [Γ(θN)(θ − θN)]Tλ+ ÛN(θN)Tλ− 1

2
λTWλ

when (θ, λ) is in the neighbourhood of (θN , 0), where

W = nBN
−2

N∑
i=1

π−1
i gi(θN)gi(θN)T.

This can be achieved by showing that

|l(θ̂SEL, λ̂SEL)− L(θ̂SEL, λ̂SEL)| = op(n
−1
B ) . (S3.1)

The second order Taylor series expansion for l(θ̂SEL, λ̂SEL) at λ = 0 gives

l(θ̂SEL, λ̂SEL) = λ̂T

SELÛN(θ̂SEL)

−1

2
λ̂T

SEL

(
1

nB

n∑
i∈S

π−2
i f 2

Ngi(θ̂SEL)gi(θ̂SEL)T

{1 + λ̇Tπ−1
i fNgi(θ̂SEL)}2

)
λ̂SEL
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for some λ̇ on the line segment between λ̂SEL and 0. This leads to

|l(θ̂SEL, λ̂SEL)− L(θ̂SEL, λ̂SEL)|

≤ |[ÛN(θ̂SEL)− ÛN(θN)− Γ(θN)(θ̂SEL − θN)]Tλ̂SEL|

+
1

2

∣∣∣∣λ̂T

SEL

(
1

nB

∑
i∈S

π−2
i f 2

Ngi(θ̂SEL)gi(θ̂SEL)T

{1 + λ̇Tπ−1
i fNgi(θ̂SEL)}2

−W
)
λ̂SEL

∣∣∣∣ .
It can be shown that∥∥∥∥ 1

nB

∑
i∈S

π−2
i f 2

Ngi(θ̂SEL)gi(θ̂SEL)T −W
∥∥∥∥ = op(1) .

This, together with Lemmas 1 and 2, implies that∣∣∣∣λ̂T

SEL

(
1

nB

∑
i∈S

π−2
i f 2

Ngi(θ̂SEL)gi(θ̂SEL)T

1 + λ̇Tπ−1
i fNgi(θ̂SEL)

−W
)
λ̂SEL

∣∣∣∣ ≤ ‖λ̂SEL‖2op(1) = op(n
−1
B ) .

We also have that

‖ÛN(θ̂SEL)− ÛN(θN)− Γ(θN)(θ̂SEL − θN)‖

≤ ‖ÛN(θ̂SEL)− ÛN(θN)− U(θ̂SEL) + U(θN)‖

+‖U(θ̂SEL)− U(θN)− Γ(θN)(θ̂SEL − θN)‖

≤ (1 + n
1/2
B ‖θ̂ − θN‖)op(n−1/2

B ) + op(‖θ̂SEL − θN‖)

= op(n
−1/2
B ) ,

which further leads to

|[ÛN(θ̂SEL)− ÛN(θN)− Γ(θN)(θ̂SEL − θN)]Tλ̂SEL| = op(n
−1
B ) .

The statement in equation (S3.1) follows immediately.
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We now consider the alternative problem minθ∈Θ supλ∈R L(θ, λ). Since

L(θ, λ) is concave in λ and Θ is compact, the first-order conditions (i.e.,

setting each of the derivatives to be zero) for an interior global maximum

are satisfied at (θ̃T, λ̃T)T and are given by

Γ(θN)Tλ̃ = 0 , Γ(θN)(θ̃ − θN) + ÛN(θN)−Wλ̃ = 0 . (S3.2)

The two systems of equations can be combined and rewritten as 0

−ÛN(θN)

−
 0 Γ(θN)T

Γ(θN) −W


 θ̃ − θN

λ̃− 0

 = 0 .

Let Γ = Γ(θN), Σ = (ΓTW−1Γ)−1, H = ΣΓTW−1 and P = W−1 −

W−1ΓΣΓTW−1. Using the result on the inverse of a block matrix, we have θ̃ − θN

λ̃− 0

 =

 Σ H

HT −P


 0

−ÛN(θN)

 .

It follows that θ̃ − θN = −HÛN(θN) = −(ΓTW−1Γ)−1ΓTW−1ÛN(θN). The

asymptotic normality of θ̃ follows from Condition C5(iii) and the asymptotic

variance-covariance matrix of θ̃ is given by

V1 = (ΓTW−1Γ)−1ΓTW−1ΩW−1Γ(ΓTW−1Γ)−1 ,

where Ω = Var
{
ÛN(θN) | FN

}
= Var

{
N−1

∑
i∈S π

−1
i g(Xi, Yi, θN) | FN

}
.

Step 3. We show that θ̂SEL− θ̃ = op(n
−1/2
B ), i.e., θ̂SEL and θ̃ are asymptot-

ically equivalent. By the differentiability of the limiting function U(θ) at
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θN , it can be shown that

‖U(θ̃)− U(θN)‖ ≤ ‖Γ(θN)(θ̃ − θN)‖+ op(‖θ̃ − θN‖) = Op(n
−1/2) .

Using similar arguments to the proof of Lemma 4, together with Assumption

2(ii), we have

‖ÛN(θ̃)‖ ≤ ‖ÛN(θ̃)− ÛN(θN)− U(θ̃) + U(θN)‖

+‖ÛN(θN)‖+ ‖U(θ̃)− U(θN)‖

≤ (1 + n
1/2
B ‖θ̃ − θN‖)op(n−1/2

B ) +Op(n
−1/2
B )

= Op(n
−1/2
B ) .

It follows from similar arguments to (S3.1) that |l(θ̃, λ̂SEL)− L(θ̃, λ̂SEL)| =

op(n
−1
B ). Noting that l(θ̂SEL, λ̂SEL) ≤ l(θ̃, λ̂SEL), we have

L(θ̂SEL, λ̂SEL)− op(n−1
B ) ≤ l(θ̂SEL, λ̂SEL) ≤ l(θ̃, λ̂SEL) ≤ L(θ̃, λ̂SEL) + op(n

−1
B ).

Since L(θ̂SEL, λ̂EL) ≥ L(θ̃, λ̂SEL), we conclude that L(θ̂SEL, λ̂SEL)−L(θ̃, λ̂SEL) =

op(n
−1
B ), which further leads to [−Γ(θN)(θ̂SEL − θ̃)]Tλ̂SEL = op(n

−1
B ). It

follows that θ̂SEL − θ̃ = op(n
−1/2
B ) since Γ(θN) has full rank and λ̂SEL =

Op(n
−1/2
B ).

Proof of Corollary 1. Part (i) of Corollary 1 is straightforward since both

Γ and W are invertible p× p matrices when r = p.

Under single-stage PPS sampling with replacement, the Horvitz-Thompson

estimator ÛN(θN) = N−1
∑

i∈S π
−1
i gi(θN) can be re-written as the Hanson-
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Hurwitz estimator N−1n−1
∑

i∈S z
−1
i gi(θN) with πi = nzi. Treating θN as a

known quantity, the design-unbiased variance estimator is given by

var
{
ÛN(θN) | FN

}
= N−2{n(n− 1)}−1

{∑
i∈S z

−2
i gi(θN)gi(θN)T − nR̂(θN)R̂(θN)T

}
,

where R̂(θN) = n−1
∑

i∈S z
−1
i gi(θN) =

∑
i∈S π

−1
i gi(θN) = Op(Nn

−1/2). It

follows that the last term involving R̂(θN) can be dropped and var
{
ÛN(θN) |

FN
}

is asymptotically equivalent to n−1
B W = N−2

∑N
i=1 π

−1
i [gi(θN)][gi(θN)]T.

In other words, we can replace Ω by n−1
B W in V1, which reduces to V3. The

result is also valid for single-stage PPS sampling without replacement with

negligible sampling fractions.

Proof of Theorem 2. It follows from the proof of Theorem 1 that

2nBl(θ̂SEL, λ̂SEL) = 2nBL(θ̃, λ̃) + op(1)

= 2nB{[Γ(θN)(θ̃ − θN)]Tλ̃+ ÛN(θN)Tλ̃− 1

2
λ̃TWλ̃}+ op(1) .

By the first-order condition Γ(θN)(θ̃− θN) + ÛN(θN)−Wλ̃ = 0 from (S3.2),

we have

2nBl(θ̂SEL, λ̂SEL) = nBλ̃
TWλ̃+ op(1) .

Recall that P = W−1 −W−1ΓΣΓTW−1 is defined in the proof of Theorem

1 and λ̃ = PÛN(θN). It follows from PWP = P that

2nBl(θ̂SEL, λ̂SEL) = nBÛN(θN)TPÛN(θN) + op(1) .
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We also have 2nBl(θN , λ) = nBÛN(θN)TW−1ÛN(θN) + op(1). It follows that

Tn(θN) = 2{ln(θN , λ)− ln(θ̂SEL, λ̂SEL)}

= n
1/2
B ÛN(θN)TW−1ΓΣΓTW−1n

1/2
B ÛN(θN) + op(1).

The final result follows from the asymptotic normality of n
1/2
B ÛN(θN) with

mean 0 and variance-covariance matrix nBΩ.

Proof of Theorem 3. The restricted estimators θ̂∗SEL and λ̂∗SEL under H0:

Φ(θN) = 0 are the optimizers of minθ∈Θ supλ∈Rq{ln(θ, λ) + ξTΦ(θ)}, where

ξ is a k × 1 vector of Lagrange multipliers. Recall that ln(θ, λ) can be

approximated by the quadratic form

L(θ, λ) = [Γ(θN)(θ − θN)]Tλ+ ÛN(θN)Tλ− 0.5λTWλ .

Let θ̃∗ and λ̃∗ be the optimizers of minθ∈Θ supλ∈Rq{L(θ, λ)+ξTΦ(θ)}. Using

similar arguments to the proof of Theorem 1, we can show that ‖θ̂∗SEL−θ̃∗‖ =

op(n
−1/2
B ) and ‖λ̂∗SEL − λ̃∗‖ = op(n

−1/2
B ). Hence we only need to focus on θ̃∗

and λ̃∗. The first-order conditions for an interior global maximum are given

by

ΓT(θN)λ̃∗ + Ψ(θ̃∗)Tξ̃∗ = 0 ,

Γ(θN)(θ̃∗ − θN) + ÛN(θN)−Wλ̃∗ = 0 ,

Φ(θ̃∗) = 0 ,

where Ψ(θ) = ∂Φ(θ)/∂θ. An identical argument to that in Step 1 of the

proof of Theorem 1 shows that ‖θ̃∗ − θN‖ = Op(n
−1/2
B ). We have Ψ(θ̃∗) =
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Ψ(θN) +Op(n
−1/2
B ) and Φ(θ̃∗) = Ψ(θN)(θ̃∗− θN) + op(n

−1/2
B ). It follows from

λ̃∗ = Op(n
−1/2
B ) that we also have ξ̃∗ = Op(n

−1/2
B ). The first-order conditions

become

Γ(θN)Tλ̃∗ + Ψ(θN)Tξ̃∗ = op(n
−1/2
B ) ,

Γ(θN)(θ̃∗ − θN) + ÛN(θN)−Wλ̃∗ = 0 ,

Ψ(θN)(θ̃∗ − θN) = op(n
−1/2
B ) ,

which can be rewritten in the following matrix form
−W Γ 0

ΓT 0 ΨT

0 Ψ 0




λ̃∗

θ̃∗ − θN

ξ̃∗

 =


−ÛN(θN)

0

0

+ op(n
−1/2
B ) ,

where Ψ = Ψ(θN) and Γ = Γ(θN). Let

M =


−W Γ 0

ΓT 0 ΨT

0 Ψ 0

 =:

 M11 M12

M21 M22

 ,

with M11 = −W , M12 = (Γ, 0), M21 = MT
12 and

M22 =

 0 ΨT

Ψ 0

 .

Using results from block matrix inversions, we have

M−1 =

 M−1
11 0

0 0

+

 −M−1
11 M12

I

D−1(−M21M
−1
11 I) ,
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where

D = M22 −M21M
−1
11 M12 =

 Σ−1 ΨT

Ψ 0

 .

Applying the result from block matrix inversions to D, we have

D−1 =

 Σ− ΣΨT(ΨΣΨT)−1ΨΣ −ΣΨT(ΨΣΨT)−1

−(ΨΣΨT)−1ΨΣ (ΨΣΨT)−1

 .

It leads to  θ̃∗ − θN

ξ̃∗

 = D−1M21M
−1
11 ÛN(θN) + op(n

−1/2
B ) ,

and λ̃∗ = −[M−1
11 +M−1

11 M12D
−1M21M

−1
11 ]ÛN(θN) + op(n

−1/2
B ). Additionally,

we have that

θ̃∗ − θN = −P ∗1 ΓTW−1ÛN(θN) + op(n
−1/2
B ),

ξ̃∗ = (ΨΣΨT)−1ΨΣΓTW−1ÛN(θN) + op(n
−1/2
B ),

λ̃∗ = P ∗2 ÛN(θN) + op(n
−1/2
B ) ,

where P ∗1 = Σ − ΣΨT(ΨΣΨT)−1ΨΣ and P ∗2 = W−1 −W−1ΓP ∗1 ΓTW−1. It

follows that the restricted estimator θ̃∗ is asymptotically normal with mean

θN and variance-covariance matrix V ∗ = P ∗1 ΓTW−1ΩW−1ΓP ∗1 , which is the

result for Part (i) of the theorem.

We are now ready to derive the asymptotic distribution of the sample

empirical log-likelihood ratio statistic Tn(θN | H0) = −2{ln(θ̂SEL, λ̂SEL) −
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ln(θ̂∗SEL, λ̂
∗
SEL)}. Using the same arguments to the proof of Theorem 2, we

can show that

2nBl(θ̂
∗
SEL, λ̂

∗
SEL) = nBλ̃

∗TWλ̃∗ + op(1) .

This, together with P ∗2WP ∗2 = P ∗2 and λ̃∗ = P ∗2 ÛN(θN) + op(n
−1/2
B ), leads to

2nBl(θ̂
∗
SEL, λ̂

∗
SEL) = nBÛN(θN)TP ∗2 ÛN(θN) + op(1) .

In the proof of Theorem 2, we have already obtained

2nBl(θ̂SEL, λ̂SEL) = nBÛN(θN)TPÛN(θN) + op(1) ,

where P = W−1 −W−1ΓΣΓTW−1. Therefore,

Tn(θN | H0) = n
1/2
B ÛN(θN)TP ∗3 n

1/2
B ÛN(θN) + op(1) ,

where P ∗3 = P ∗2 − P = W−1Γ(Σ− P ∗1 )ΓTW−1. The sample empirical likeli-

hood ratio statistic Tn(θN | H0) converges in distribution to QT∆∗Q, where

Q ∼ N(0, Ir) and ∆∗ = nBΩ1/2W−1Γ(Σ− P ∗1 )ΓTW−1Ω1/2.

Proof of Corollary 2. The simplification of the result follows from using

nBΩ = W , which leads to

nBΩ1/2W−1ΓΣΓTW−1Ω1/2 = W−1/2ΓΣΓTW−1/2 .

Let ∆ = W−1/2ΓΣΓTW−1/2. It is clear that ∆ is symmetric and idempotent,

trace(∆) = trace{ΓΣΓTW−1} = trace{ΣΓTW−1Γ} = p .
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Hence, the empirical log-likelihood ratio statistic Tn(θN) is asymptotically

distributed as χ2(p).

Proof of Corollary 3. We have nBΩ = W under the given sampling designs,

which leads to

V ∗ = V3 − V3ΨT(ΨV3ΨT)−1ΨV3 ,

where V3 = (nBΓTW−1Γ)−1. Furthermore, we have

nBΩ1/2W−1ΓΣΓTW−1Ω1/2 = W−1/2ΓΣΓTW−1/2 =: D∗1 ,

nBΩ1/2W−1ΓP ∗1 ΓTW−1Ω1/2 = W−1/2ΓP ∗1 ΓTW−1/2 =: D∗2 ,

and the two matrices D∗1 and D∗2 satisfy

trace(D∗1) = trace{ΣΓTW−1Γ} = trace{Ip} = p ,

trace(D∗2) = trace{P ∗1 ΓTW−1Γ}

= trace{Ip} − trace{ΣΨT(ΨΣΨT)−1Ψ} = p− k .

It follows that the test statistic Tn(θN | H0) converges in distribution to a

χ2 random variable with p− (p−k) = k degrees of freedom as N →∞.

Proof of Theorem 4. We consider the following penalized sample empirical

likelihood function

lτn(θ, λ) = n−1
B

∑
i∈S

log{1 + λTπ−1
i fNgi(θ)}+

p∑
j=1

pτn(|θj|) .
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It follows from the proof of Theorem 1 that lτn(θ, λ) can be approximated

by

Lτn(θ, λ) = [Γ(θN)(θ − θN)]Tλ+ ÛN(θN)Tλ− 1

2
λTWλ+

p∑
j=1

pτn(|θj|) .

Using the same notation Γ = Γ(θN), we obtain that

∂Lτn(θ, λ)/∂θj = {ΓTλ}j + p′τn(|θj|)sign(θj)

for θ ∈
{
θ : ‖θ − θN‖ ≤ cn

−1/2
B

}
with the jth component θj, where {ΓTλ}j

denotes the jth component of vector ΓTλ. It can be shown that {ΓTλ}j =

Op(n
−1/2
B ). Thus, for every j ∈ AC (the set of zero coefficients), we have

∂Lτn(θ, λ)/∂θj = τn
{
τ−1
n p′τn(|θj|)sign(θj) +Op(n

−1/2
B /τn)

}
.

With Condition C7, we can show that p′τn(|θj|)sign(θj) dominates the sign

of ∂Lτn(θ, λ)/∂θj for all j ∈ AC. Therefore, we can show that for any

j ∈ AC and with probability tending to one,

∂Lτn(θ, λ)

∂θj
< 0 for θj ∈ (0, εn) ,

∂Lτn(θ, λ)

∂θj
> 0 for θj ∈ (−εn, 0)

for any εn = cn
−1/2
B and a given c > 0. It follows from the arguments of Fan

and Li (2001) that, with probability approaching to 1, θ̂j = 0 for all j ∈ AC.

Recall that θN = (θT
N1, θ

T
N2)

T, where θN2 = 0, and θ̂PSEL = (θ̂T
P1, θ̂

T
P2)

T. We

have proved Part (i) of the theorem that P(θ̂P2 = 0 | FN)→ 1 as N →∞.

Let H1 and H2 be the two matrices such that H1θN = θN1 and H2θN =

θN2. Estimation of θN1 is equivalent to estimation of θN under the constraints
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H2θN = 0. Following the same techniques used in the proof of Theorem 3,

which were previously used by Qin and Lawless (1995) and Tang and Leng

(2010), we see that finding the minimizer of Lτn(θ, λ) is asymptotically

equivalent to solving the minimization of the objective function

[Γ(θN)(θ − θN)]Tλ+ ÛN(θN)Tλ− 1

2
λTWλ+

p∑
j=1

pτn(|θj|) + νTH2θ ,

where ν is a (p−d)×1 vector of Lagrange multipliers. Without loss of gener-

ality, we denote the minimizer of above objective function by (θ̂PSEL, λ̂PSEL,

ν̂PSEL). The first-order conditions for the global minimizer are given by
λ̂PSEL

θ̂PSEL − θN

ν̂PSEL

 = K−1


−ÛN(θN)

0

0

+ op(n
−1/2
B ) ,

where

K =


−W Γ 0

ΓT 0 HT
2

0 H2 0

 .

Using similar arguments to those given in the proof of Theorem 3, we can

show that

θ̂PSEL − θN = −{I − ΣHT

2 (H2ΣHT

2 )−1H2}ΣΓTW−1ÛN(θN) + op(n
−1/2
B )

and

θ̂P1 − θN1 = −{H1 −H1ΣHT

2 (H2ΣHT

2 )−1H2}ΣΓTW−1ÛN(θN) + op(n
−1/2
B ) .
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Asymptotic normality of θ̂P1 follows immediately with mean θN1 and variance-

covariance matrix given by

V1A = {H1 −H1ΣHT

2 (H2ΣHT

2 )−1H2}V1{HT

1 −HT

2 (H2ΣHT

2 )−1H2ΣHT

1 } ,

where V1 = ΣΓTW−1ΩW−1ΓΣ is given in Theorem 1. Simple algebraic

manipulations show that

V1A = H1V1H
T

1 −H1V1H
T

2 (H2ΣHT

2 )−1H2ΣHT

1

−H1ΣHT

2 (H2ΣHT

2 )−1H2V1H
T

1

+H1ΣHT

2 (H2ΣHT

2 )−1H2V1H
T

2 (H2ΣHT

2 )−1H2ΣHT

1

= V111 − V112Σ−1
22 Σ21 − Σ12Σ−1

22 V121 + Σ12Σ−1
22 V122Σ−1

22 Σ21 .

This completes the proof of Theorem 4.

Proof of Theorem 5. Recall that the penalized sample empirical likelihood

is defined as

lτn(θ, λ) = n−1
B

∑
i∈S

log{1 + λTπ−1
i fNgi(θ)}+

p∑
j=1

pτn(|θj|) .
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It follows from the proof of Theorem 1 that

2nBlτn(θ̂PSEL, λ̂PSEL) = 2nBL(θ̂PSEL, λ̂PSEL) + 2nB

p∑
j=1

pτn(|θ̂j|) + op(1)

= 2nB

{
[Γ(θN)(θ̂PSEL − θN)]Tλ̂PSEL + ÛN(θN)Tλ̂PSEL

−1

2
λ̂T

PSELWλ̂PSEL

}
+ 2nB

p∑
j=1

pτn(|θ̂j|) + op(1)

= nBλ̂
T

PSELWλ̂PSEL + 2nB

p∑
j=1

pτn(|θ̂j|) + op(1) ,

where θ̂j is the j-th component of θ̂PSEL. From the proof of Theorem 2 and

for the penalized sample empirical likelihood method, we have

λ̂PSEL = {W−1 −W−1ΓŻ11ΓTW−1}ÛN(θN) + op(n
−1/2
B ),

where Ż11 = Σ − ΣHT
2 (H2ΣHT

2 )−1H2Σ. Note that there exists H̃2 such

that H̃2θN = θN2 and H̃2H̃
T
2 = Ip−d+q. Denote θ̌PSEL = minBθ1=0 Lp(θ, λ).

Similar to the proof of Theorem 3, we obtain that under H0 : BθN1 = 0,

2nBlp(θ̌PSEL, λ̌PSEL) = nBλ̌
T
PSELWλ̌PSEL + 2nB

p∑
j=1

pτn(|θ̌j|) + op(1),

where

λ̌PSEL = {W−1 −W−1ΓZ̈11ΓTW−1}ÛN(θN) + op(n
−1/2
B ) ,

Z̈11 = Σ− ΣH̃T

2 (H̃2ΣH̃T

2 )−1H̃2Σ ,

and θ̌j is the j-th component of θ̌PSEL. On the other hand, it follows from
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Condition C7 and the oracle property of θ̂PSEL that

nB

p∑
j=1

{pτn(|θ̂j|)− pτn(|θ̌j|)} = op(1)

as nB → ∞. Define Ṗ = {W−1 − W−1ΓŻ11ΓTW−1} and P̈ = {W−1 −

W−1ΓZ̈11ΓTW−1}. It can be shown that (i) Ż11, Z̈11, Ṗ and P̈ are sym-

metric; and (ii) Ż11Σ−1Ż11 = Ż11, Z̈11Σ−1Z̈11 = Z̈11, ṖWṖ = Ṗ and

P̈WP̈ = P̈ . Combining above arguments, we have

Tτn(θN1 | H0) = {n1/2
B W−1/2ÛN(θN)}T{P̃ − P}{n1/2

B W−1/2ÛN(θN)}+ op(1),

where

P̃ = W 1/2ΣH̃T

2 (H̃2ΣH̃T

2 )−1H̃2ΣW 1/2 ,

P = W 1/2ΣHT

2 (H2ΣHT

2 )−1H2ΣW 1/2 .

Both matrices P̃ and P are idempotent. Since the matrix P̃ − P is also

idempotent with rank(P̃ − P) = q, the result of Theorem 5 follows imme-

diately.

Proof of Corollary 4. If r = p, then Γ and W are both invertible p × p
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matrices and V1 reduces to V2 = (ΓTΩ−1Γ)−1 = Γ−1Ω(ΓT)−1. We have

V1A = H1V2H
T

1 −H1V2H
T

2 (H2ΣHT

2 )−1H2ΣHT

1

−H1ΣHT

2 (H2ΣHT

2 )−1H2V2H
T

1

+H1ΣHT

2 (H2ΣHT

2 )−1H2V2H
T

2 (H2ΣHT

2 )−1H2ΣHT

1

= V211 − V212Σ−1
22 Σ21 − Σ12Σ−1

22 V221 + Σ12Σ−1
22 V222Σ−1

22 Σ21

=: V2A .

Part (i) of Corollary 4 then follows.

Under single-stage PPS sampling with replacement, we have Ω = n−1
B W ,

and V1 reduces to V3 = (nBΓTW−1Γ)−1 = n−1
B Σ. Then

V1A = H1V3H
T

1 −H1V3H
T

2 (H2V3H
T

2 )−1H2V3H
T

1

−H1V3H
T

2 (H2V3H
T

2 )−1H2V3H
T

1

+H1V3H
T

2 (H2V3H
T

2 )−1H2V3H
T

2 (H2V3H
T

2 )−1H2V3H
T

1

= H1V3H
T

1 −H1V3H
T

2 (H2V3H
T

2 )−1H2V3H
T

1

= V311 − V312V
−1

322V321

=: V3A .

This completes the proof of Corollary 4.
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S4 Practical Implementation on Variance Estimation

One of the most crucial practical implementations for the proposed meth-

ods is the estimation of the third quantity Ω = Var[ÛN(θN) | FN ], which

amounts to design-based variance estimation for the Horvitz-Thompson es-

timator. This is one of the major topics in survey sampling and is not

unique to the sample empirical likelihood methods developed in this paper.

For single-stage PPS sampling without replacement with small sampling

fractions, the results presented in Sections 2 and 3 do not require the es-

timation of Ω. We provide details for three other commonly encountered

sampling designs in survey practice. Each of these designs was examined

in the simulation studies.

S4.1 Single-stage PPS sampling with non-negligible sampling

fractions

The challenge for design-based variance estimation is the requirement on

second order inclusion probabilities πij = P(i, j ∈ S), which are typically

unavailable to survey data users. For single-stage PPS sampling with non-

negligible sampling fractions, there exist approximate variance formulas

which do not involve the πij; see Haziza et al. (2008) for a review of the

topic with relevant references. For high entropy sampling designs such as
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the well-known Rao-Sampford method, we can estimate Ω by

Ω̂ =
1

N2

∑
i∈S

ci
[
π−1
i gi(θ̂SEL)− B̂

][
π−1
i gi(θ̂SEL)− B̂

]T
,

where

B̂ =
{∑

i∈S

ciπ
−1
i gi(θ̂SEL)

}
/
{∑

i∈S

ci

}
and ci = {n(1− πi)}/{n− 1} .

Haziza et al. (2008) showed through simulation studies that the approximate

variance estimator has excellent performance even for small sample sizes.

S4.2 Stratified sampling

Suppose that the finite population U is divided into H strata with stratum

population sizes N1, N2, · · · , NH. Let Sh be the sample of size nh selected

from the hth stratum with inclusion probabilities {πhi, i ∈ Sh} for h =

1, · · · , H, independent among different strata. Let n =
∑H

h=1 nh be the size

of the overall stratified sample.

Empirical likelihood methods for stratified survey samples can take two

different forms. The first treats the stratified survey sample as a multiple

sample problem, with the nonparametric probability measure (ph1, · · · , phnh)

normalized for each stratum sample, i.e.,
∑

i∈Sh phi = 1, h = 1, · · · , H as

in Berger and Torres (2016). We propose to use the second form, the

pooled sample approach where the sample empirical log-likelihood is com-
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puted and the constraints are formulated by treating the stratified sam-

ple as a single pooled sample, with the single normalization constraint∑
H

h=1

∑
i∈Sh phi = 1. The pooled sample approach provides a unified com-

putational framework for both stratified and non-stratified sampling, since

all procedures for non-stratified sampling can be used directly for strati-

fied sampling. The stratified sampling design feature is taken into account

through the estimation of Ω, which takes the form

Ω =
1

N2

H∑
h=1

Var
{∑
i∈Sh

π−1
hi ghi(θN) | FN

}
.

If the stratum samples Sh are selected by a PPS sampling design with

small sampling fractions, we can estimate Ω by

Ω̂ =
1

N2

H∑
h=1

∑
i∈Sh

[
π−1
hi ghi(θ̂SEL)− Ûh(θ̂SEL)

][
π−1
hi ghi(θ̂SEL)− Ûh(θ̂SEL)

]T
,

where Ûh(θ) = (1/nh)
∑

i∈Sh π
−1
hi ghi(Xhi, Yhi, θ). If the sampling fraction

is not small, approximate variance formulas can be used for each stratum

sample to get an estimate for the overall variance Ω.

S4.3 Cluster sampling

We consider two-stage cluster sampling designs where the first stage clus-

ters are selected by a PPS sampling method, with inclusion probabilities

proportional to cluster sizes, and the second stage units are selected by
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simple random sampling without replacement. Let K be the total number

of clusters in the population and {M1,M2, · · · ,MK} be the cluster sizes.

The population size is given by N =
∑

K

i=1 Mi.

Let Sc be the set of k clusters selected from the population, with in-

clusion probabilities π1i = P(i ∈ Sc) proportional to Mi, i.e., π1i = kMi/N ,

where the subscript “1i” represents “first stage unit i”. Let Si be the set

of m (≤Mi) second-stage units selected from cluster i, i ∈ Sc, using simple

random sampling without replacement. The second-stage inclusion proba-

bilities are given by πj|i = P(j ∈ Si | i ∈ Sc) = m/Mi. The final first order

inclusion probability for unit (ij) is given by π(ij) = P(i ∈ Sc, j ∈ Si) =

km/N . This is the well-known two-stage sampling design which leads to

self-weighting for the Horvitz-Thompson estimator.

Let g(ij)(θ) denote the estimating function for unit (ij). The task under

the two-stage survey design is to estimate

Ω = Var
{

(km)−1
∑
i∈Sc

∑
j∈Si

g(ij)(θN) | FN
}

. Let Ḡi = m−1
∑

i∈Si g(ij)(θ̂SEL), Ḡ = (km)−1
∑

i∈Sc
∑

j∈Si g(ij)(θ̂SEL). A

design-unbiased estimator of Ω is given by

Ω̂ =
1

k(k − 1)

∑
i∈Sc

[
Ḡi − Ḡ

][
Ḡi − Ḡ

]T
.

The results described in (1), (2) and (3) can be used to deal with strat-
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ified multi-stage sampling to obtain an estimate for Ω under such designs.

S5 Computational Issues

It is a rather challenging task to maximize the sample empirical likelihood

function under a set of constraints when the estimating functions are not

smooth and the gradient methods are not well defined. The development

of certain derivative-free optimization algorithms becomes necessary. In

this paper, we apply the idea of the Nelder-Mead (NM) simplex algorithm

(Nelder and Mead (1965)) to both the un-penalized and penalized sample

empirical likelihood functions.

We first use the method described in Owen (2001) to overcome the

bounded support problem of the logarithm function through the following

pseudo-logarithm function

log∗(x) =


log(x) , if x ≥ ζ ,

log(ζ)− 1.5 + 2x/ζ − x2/(2ζ2) , if x < ζ ,

where ζ is usually chosen to be n−1. For the maximization of the sample

empirical likelihood, we use l∗n(θ) =
∑

i∈S log∗{1 + λTπ−1
i gi(θ)} as a sur-

rogate for ln(θ), which is computationally more stable than the original

sample empirical likelihood.

For the penalized sample empirical likelihood estimator, we use the
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local quadratic form of Fan and Li (2001) to approximate the penalty term

pτn(|θj|), which is given by

p̃τn(|θj|) = pτn(|θ(m)
j |) +

1

2

{
pτn(|θ(m)

j |)/|θ
(m)
j |
}{
θ2
j − (θ

(m)
j )2

}
,

where θ
(m)
j is the mth step estimate of θj from the previous iteration.

The main NM algorithm for maximizing the sample empirical likelihood

consists of an inner loop and an outer loop for the iterative procedures.

Inner Loop. The “inner loop” solves λ̂ = arg minλR∗(θ, λ) for the given θ,

where R∗(θ, λ) = −
∑

i∈S log∗{1+λTπ−1
i gi(θ)}. Since the pseudo-logarithm

function is twice differentiable, such an optimization problem can be solved

easily by using the modified Newton-Raphson procedure of Chen et al.

(2002).

Outer Loop. Once a solution λ̂ is found in the inner loop, we use the classical

NM algorithm as the “outer loop” to obtain θ̂SEL = arg maxθ R∗(θ, λ̂) and

θ̂PSEL = arg maxθ {R∗(θ, λ̂)− n
∑p

j=1 p̃τn(|θj|)}.

The tuning parameter τn for the penalized sample empirical likelihood

needs to be appropriately selected by a data-driven method. Various tech-

niques have been proposed in the literature, including the generalized cross-

validation method and the BIC method (Wang et al. (2007)). In our sim-

ulation studies, we choose the optimal value for the penalty parameter τn
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by minimizing the following BIC-type criterion function

BIC(τn) = 2ln(θ, λ) + log(n)dfτn/n , (S5.1)

where dfτn is the number of nonzero coefficients in the fitted model using

the penalized sample empirical likelihood for the given τn, and ln(θ) is the

un-penalized sample empirical likelihood function.

S6 Further Details on Simulation Settings

We considered design-based inferences where the finite population was gen-

erated from a superpopulation and was fixed for repeated simulation sam-

ples. We considered four sampling designs: (I) Single-stage PPS sampling

without replacement with negligible sampling fractions; (II) Single-stage

PPS sampling without replacement with non-negligible sampling fractions;

(III) Stratified PPS sampling; (IV) Two-stage cluster sampling with self-

weighting designs. The finite population size and sample sizes were set as

follows for the four sampling designs:

(I) Repeated simulation samples of size n = 300 were selected from the finite

population of size N = 20, 000 by the randomized systematic PPS sampling

method (Hartley and Rao (1962)). This corresponds to a sampling fraction

of 1.5%, which can be viewed as negligible.
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(II) Repeated simulation samples of size n = 300 were selected from the

finite population of size N = 6, 000 by the Rao-Sampford PPS sampling

method (Rao (1965); Sampford (1967)). This corresponds to a sampling

fraction of 5%, which is not negligible. The variance approximation method

described in the Supplementary Materials can be used for this scenario with

the Rao-Sampford sampling method.

(III) The stratified finite population of size N = 20, 000 consisted H = 3

strata with stratum sizes N1 = 4, 000, N2 = 6, 000 and N3 = 10, 000. The

stratum sample sizes were set as n1 = 50, n2 = 100 and n3 = 150. Re-

peated simulation samples were selected by the Rao-Sampford PPS sam-

pling method within each stratum.

(IV) The finite population consisted of K = 1400 clusters, with 200 clusters

having size Mi = 30, 400 clusters having size Mi = 15, and 800 clusters

having size Mi = 10. The first stage sample Sc consisted k = 60 clusters,

selected by the Rao-Sampford PPS sampling with π1i ∝ Mi. Within each

selected cluster, a second-stage sample of size m = 5 is selected by sim-

ple random sampling without replacement, independent among different

clusters.
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S7 Additional Simulation Results

We present some additional simulation results for linear and quantile re-

gression models. Details of the simulation settings are described in Section

6.

S7.1 Point estimation and hypothesis tests for linear regression

models

The finite population follows the linear regression model

Y = θ0 + Z1θ1 + Z2θ2 + σ(Z1, Z2)ε ,

where (θ0, θ1, θ2) = (1, 1, 0.5), Z1 ∼ Bernoulli(0.5), Z2 = Z1 +Z0 with Z0 ∼

N(0, 1), ε ∼ N(0, 1), and σ(Z1, Z2) represents the variance structure for the

error terms. We consider three variance structures for the superpopulation

regression model: σ1 = σ(Z1, Z2) = 1, σ2 = σ(Z1, Z2) = 3 and σ3 =

σ(Z1, Z2) = [V ar(η)(1/ρ2 − 1)]1/2 with η = θ0 + Z1θ1 + Z2θ2 and ρ = 0.7

which is the controlled correlation between the linear predictor η and the

response variable Y .

Let θ = (θ0, θ1, θ2)T, X = (1, Z1, Z2)T, and Xi = (1, Z1i, Z2i)
T for

i = 1, · · · , N . The parameters of interest are the finite population re-

gression coefficients θN = (θN0, θN1, θN2)
T defined through the estimating
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functions g(X, Y, θ) = X(Y − XTθ) and the census estimating equations

(1/N)
∑N

i=1 g(Xi, Yi, θN) = 0. We consider finite sample performances of

the maximum sample empirical likelihood estimator and the sample em-

pirical likelihood ratio test for H0: θN1 = 1 against H1: θN1 = b at the

significance level 0.05.

Simulation results based on 2000 simulated samples are presented in

Tables 1 and 2, where Table 1 reports the simulated relative bias (Bias) and

root mean squared error (RMS) and Table 2 reports the size of power of the

sample empirical likelihood ratio test for H0: θN1 = 1 against H1: θN1 = b.

The value b = 1 corresponds to the size of the test and values b 6= 1 present

the power of the test. The simulation studies are conducted for four different

sampling designs I, II, III and IV as described in the main paper. It can

be seen that both the point estimators and the test of our proposed sample

empirical likelihood method perform well under all scenarios considered in

the simulation. The power of the test is dramatically stronger when the

correlations between the predictors and the response variable are higher

(scenarios corresponding to σ1 and σ3).
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S7.2 Variable selection for linear regression models

The finite population follows the linear regression model

Y = XTθ + σ(X)ε,

where θ = (3, 1.5, 0, 0, 2, 0, · · · , 0)T, the marginal distributions of X =

(X1, . . . , Xp) are standard normal with pairwise correlations Corr(Xj, Xk) =

0.5|j−k| for 1 ≤ j, k ≤ p, and ε ∼ N(0, 1). We consider three variance

structures for the superpopulation regression model: σ1 = σ(X) = 1,

σ2 = σ(X) = 3 and σ3 = σ(X) = 1 + X2, corresponding to three dif-

ferent finite populations. We consider p = 8 and 16 such that the number

of covariates with zero coefficients is 3 and 13 respectively.

Table 3 presents the results on variable selection for linear regression

models through our proposed penalized sample empirical likelihood method

based on 200 simulated samples for three different variable structures under

four different sampling designs. Table 3 shows that our proposed penalized

sample empirical likelihood procedure for variable selection has superb per-

formance in identifying the zero coefficients and the correct models. The

results on variable selection are more accurate for linear regression models

than for quantile regression models, as shown by Tables 7-9 reported in the

next section.
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S7.3 Variable selection for quantile regression models

We present results from the simulation study on variable selection for quan-

tile regression models under the four sampling designs I-IV described in

Section 5.1 of the main paper. The finite population was generated from

the model Y = XTθ + ε(γ), where X = (X1, . . . , Xp)
T. The marginal dis-

tributions of X are standard normal and the pairwise correlations follow

Corr(Xj, Xk) = 0.5|j−k| for 1 ≤ j, k ≤ p. We examined five scenarios for

the error terms used in the model. For the first four scenarios, we had

ε(γ) = ε−Qε(γ) with (A) ε ∼ N(0, 1); (B) ε ∼ 0.95N(0, 1) + 0.05N(0, 62),

a mixture of two normal distributions; (C) ε ∼ χ2(3); and (D) ε ∼ t(3). For

the fifth scenario (E), we had ε(γ) = (1 +X1)(ε−Qε(γ)) with ε ∼ N(0, 1).

We considered p = 8 and 16, with the number of zero coefficients being

5 for p = 8 and 13 for p = 16. The true values of the coefficients were set as

θ = (3, 1.5, 0, 0, 2, 0, · · · , 0)T. Tables 7-9 present the results on variable se-

lection for quantile regression models with γ = 0.25, 0.50 and 0.75 using our

proposed penalized sample empirical likelihood method. The results were

based on B = 200 simulated samples. The column MSE was computed

as MSE(θ̂PSEL) = B−1
∑B

b=1(θ̂
(b)
PSEL − θN)T

(
N−1

∑N
i=1XiX

T
i

)
(θ̂

(b)
PSEL − θN),

where θ̂
(b)
PSEL was the penalized maximum sample empirical likelihood es-

timator θ̂PSEL from the bth simulated sample, b = 1, · · · , B. The column
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labels “C” and “IC” under “No of Zeros” represent “The average number of

correctly identified zeros” and “The average number of incorrectly identified

zeros” for the regression coefficients, respectively. The other three columns

labels “U-fit”, “C-fit” and “O-fit” under “Fitted Models” indicate the per-

centages of models in the simulation which were “Under-fit” (at least one

non-zero coefficient was identified as zero), “Correct-fit” (all zeros and non-

zeros were correctly identified), and “Over-fit” (at least one zero coefficient

was selected as non-zero). Results for γ = 0.50 and 0.75 were reported in

the Supplementary Materials.

The results for all three quantile regression models (γ = 0.25, 0.50 and

0.75) show that the proportions of correct-fit models are very high and the

proportions of under-fit models are very close to zero. For p = 16, there

were cases (about 10 − 15%) where the model was over-fit, with most of

these cases having one zero coefficient selected as non-zero. Overall, the

average numbers of estimated zero coefficients are close to the true value 5

for p = 8 and 13 for p = 16. The sampling designs do not seem to have

significant impact on the performance of the proposed variable selection

method, and the proposed method seems also to be robust towards different

error distributions for the quantile regression models.
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Table 1: Relative Bias and RMS of Point Estimators for Linear Regression

σ1 σ2 σ3
Design θN0 θN1 θN2 θN0 θN1 θN2 θN0 θN1 θN2

I Bias 0.008 -0.004 -0.003 -0.005 0.015 -0.003 -0.002 0.006 -0.003
RMS 0.104 0.136 0.065 0.285 0.423 0.197 0.093 0.128 0.057

II Bias 0.006 -0.004 -0.002 -0.003 0.005 0.005 0.000 0.002 -0.003
RMS 0.107 0.141 0.063 0.320 0.428 0.195 0.095 0.123 0.060

III Bias 0.004 -0.001 -0.003 0.011 -0.005 -0.003 0.002 -0.004 0.002
RMS 0.104 0.138 0.064 0.285 0.407 0.184 0.094 0.127 0.058

IV Bias -0.001 -0.001 0.000 0.006 0.003 -0.008 0.000 -0.002 -0.001
RMS 0.082 0.129 0.058 0.243 0.380 0.174 0.074 0.118 0.052

Table 2: The Size and Power of the SEL Ratio Test for Linear Regression

Design σ(X) b = 0.50 0.75 1.00 1.25 1.50

I σ1 0.951 0.476 0.068 0.470 0.962
σ2 0.235 0.100 0.058 0.108 0.247
σ3 0.999 0.634 0.058 0.468 0.902

II σ1 0.953 0.471 0.074 0.471 0.955
σ2 0.258 0.121 0.071 0.105 0.248
σ3 1.000 0.643 0.074 0.467 0.900

III σ1 0.952 0.478 0.068 0.448 0.953
σ2 0.263 0.098 0.054 0.103 0.231
σ3 1.000 0.659 0.062 0.468 0.896

IV σ1 0.969 0.488 0.051 0.510 0.977
σ2 0.256 0.102 0.057 0.111 0.274
σ3 1.000 0.670 0.057 0.480 0.923
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Table 3: Variable Selection for Linear Regression Models

No. of Zeros Fitted Models

Design σ(X) MSE C IC U-fit C-fit O-fit

p = 8

I σ1 0.013 4.995 0.000 0.000 0.995 0.005

σ2 0.123 4.970 0.005 0.005 0.965 0.030

σ3 0.109 4.975 0.005 0.005 0.970 0.025

II σ1 0.014 4.995 0.000 0.000 0.995 0.005

σ2 0.119 4.985 0.005 0.005 0.980 0.015

σ3 0.128 4.960 0.010 0.010 0.955 0.035

III σ1 0.013 4.965 0.000 0.000 0.980 0.020

σ2 0.148 4.985 0.020 0.020 0.965 0.015

σ3 0.096 4.985 0.000 0.000 0.985 0.015

IV σ1 0.012 4.990 0.000 0.000 0.990 0.010

σ2 0.105 4.995 0.005 0.005 0.990 0.005

σ3 0.093 4.970 0.000 0.000 0.980 0.020

p = 16

I σ1 0.017 12.975 0.000 0.000 0.975 0.025

σ2 0.183 12.945 0.030 0.030 0.930 0.040

σ3 0.113 12.985 0.010 0.010 0.975 0.015

II σ1 0.017 12.970 0.000 0.000 0.970 0.030

σ2 0.127 12.960 0.015 0.015 0.945 0.040

σ3 0.119 12.920 0.010 0.010 0.920 0.070

III σ1 0.018 12.935 0.000 0.000 0.935 0.065

σ2 0.152 12.945 0.015 0.015 0.940 0.045

σ3 0.143 12.930 0.020 0.020 0.920 0.060

IV σ1 0.017 12.985 0.000 0.000 0.985 0.015

σ2 0.120 12.960 0.005 0.005 0.955 0.040

σ3 0.088 12.945 0.000 0.000 0.945 0.055
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Table 4: Performance of Point Estimators for Homogeneous QR Models

τ = 0.25 τ = 0.50 τ = 0.75

Design θN0(τ) θN1(τ) θN2(τ) θN0(τ) θN1(τ) θN2(τ) θN0(τ) θN1(τ) θN2(τ)

ε ∼ N(0, 1)

I Bias 0.001 -0.003 -0.003 -0.006 0.000 0.001 -0.005 -0.002 0.003

RMS 0.101 0.083 0.055 0.092 0.075 0.048 0.098 0.080 0.053

II Bias -0.007 0.004 -0.003 0.000 0.002 -0.005 -0.011 0.004 0.001

RMS 0.099 0.089 0.049 0.094 0.071 0.046 0.089 0.076 0.044

III Bias 0.006 -0.001 -0.001 -0.003 0.002 0.003 -0.003 0.000 0.002

RMS 0.100 0.085 0.053 0.093 0.076 0.048 0.098 0.084 0.053

IV Bias -0.004 0.001 0.003 -0.007 0.002 0.003 -0.003 -0.003 0.000

RMS 0.091 0.076 0.055 0.087 0.072 0.050 0.096 0.078 0.056

ε ∼ χ2(3)

I Bias 0.009 -0.004 0.008 0.004 0.002 0.006 -0.006 0.006 0.002

RMS 0.145 0.125 0.074 0.195 0.168 0.100 0.284 0.242 0.147

II Bias 0.009 -0.002 0.008 0.012 -0.001 0.002 -0.004 0.022 0.010

RMS 0.132 0.112 0.064 0.186 0.166 0.103 0.294 0.249 0.156

III Bias 0.004 -0.005 0.013 -0.002 0.006 0.009 -0.018 0.011 0.003

RMS 0.148 0.124 0.075 0.197 0.168 0.101 0.288 0.247 0.149

IV Bias -0.002 0.003 0.014 -0.006 0.004 0.013 -0.016 0.000 0.008

RMS 0.133 0.106 0.080 0.186 0.148 0.110 0.289 0.236 0.167

ε ∼ t(3)

I Bias -0.002 -0.003 -0.002 -0.002 -0.001 0.001 0.003 -0.011 -0.001

RMS 0.123 0.094 0.067 0.097 0.082 0.055 0.122 0.103 0.067

II Bias -0.002 0.011 0.002 -0.001 -0.003 -0.004 0.003 -0.005 -0.002

RMS 0.117 0.103 0.079 0.096 0.077 0.053 0.123 0.095 0.062

III Bias -0.002 -0.002 -0.003 0.000 0.001 0.001 0.006 -0.006 -0.002

RMS 0.123 0.096 0.068 0.096 0.084 0.056 0.120 0.106 0.068

IV Bias 0.001 -0.002 -0.003 -0.001 0.001 0.002 0.000 -0.009 -0.001

RMS 0.120 0.097 0.068 0.095 0.082 0.057 0.127 0.105 0.071
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Table 5: Performance of Point estimators Under Heteroscedasticity

τ = 0.25 τ = 0.50 τ = 0.75

Design θN0(τ) θN1(τ) θN2(τ) θN0(τ) θN1(τ) θN2(τ) θN0(τ) θN1(τ) θN2(τ)

ε ∼ N(0, 1)

I Bias -0.018 0.002 0.026 -0.015 0.010 0.015 -0.004 -0.001 0.023

RMS 0.147 0.134 0.243 0.133 0.116 0.211 0.143 0.121 0.239

II Bias -0.016 0.012 0.006 0.008 0.005 -0.018 -0.005 0.000 0.010

RMS 0.146 0.134 0.231 0.136 0.107 0.203 0.130 0.115 0.204

III Bias -0.018 0.001 0.026 -0.012 0.009 0.013 -0.003 -0.001 0.005

RMS 0.150 0.129 0.244 0.138 0.114 0.228 0.146 0.122 0.239

IV Bias -0.021 0.002 0.032 -0.015 0.009 0.016 -0.002 -0.006 0.002

RMS 0.138 0.119 0.242 0.132 0.110 0.220 0.147 0.120 0.252

ε ∼ χ2(3)

I Bias 0.000 -0.008 0.056 -0.015 0.001 0.054 -0.024 0.010 0.022

RMS 0.221 0.196 0.350 0.293 0.260 0.483 0.430 0.346 0.690

II Bias 0.003 -0.004 0.044 -0.001 -0.006 0.038 0.005 0.029 0.012

RMS 0.201 0.181 0.296 0.299 0.252 0.503 0.447 0.350 0.759

III Bias 0.006 -0.011 0.047 -0.009 0.006 0.050 0.000 0.007 -0.006

RMS 0.228 0.201 0.343 0.294 0.263 0.495 0.425 0.360 0.699

IV Bias -0.007 -0.002 0.052 -0.016 0.007 0.058 -0.015 -0.007 0.018

RMS 0.202 0.164 0.347 0.283 0.229 0.477 0.443 0.367 0.736

ε ∼ t(3)

I Bias -0.021 -0.001 0.023 -0.002 0.000 0.007 0.010 -0.008 -0.003

RMS 0.186 0.142 0.297 0.145 0.124 0.250 0.187 0.157 0.305

II Bias -0.015 0.007 0.021 0.008 -0.008 -0.021 0.006 -0.003 -0.002

RMS 0.204 0.154 0.404 0.152 0.116 0.250 0.177 0.143 0.262

III Bias -0.023 -0.003 0.023 -0.004 0.003 0.016 0.012 -0.005 0.003

RMS 0.186 0.149 0.304 0.148 0.128 0.242 0.184 0.165 0.308

IV Bias -0.015 -0.001 0.020 -0.005 0.001 0.013 0.000 -0.012 0.010

RMS 0.181 0.149 0.299 0.144 0.126 0.243 0.188 0.163 0.304
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Table 6: Size and Power of the SEL Ratio Test for Homogeneous QR Models

τ = 0.25 τ = 0.5 τ = 0.75

Design b N(0, 1) χ2(3) t(3) N(0, 1) χ2(3) t(3) N(0, 1) χ2(3) t(3)

I 0.50 1.000 0.990 0.997 1.000 0.825 1.000 1.000 0.556 0.997

0.75 0.833 0.575 0.754 0.884 0.346 0.870 0.866 0.194 0.740

1.00 0.067 0.079 0.054 0.054 0.069 0.058 0.049 0.060 0.051

1.25 0.836 0.555 0.711 0.901 0.342 0.855 0.824 0.180 0.615

1.50 1.000 0.975 0.998 1.000 0.848 1.000 1.000 0.552 0.996

II 0.50 1.000 0.996 0.988 1.000 0.908 1.000 0.996 0.521 0.999

0.75 0.758 0.606 0.611 0.943 0.347 0.902 0.896 0.182 0.776

1.00 0.072 0.058 0.058 0.063 0.070 0.051 0.063 0.070 0.062

1.25 0.854 0.597 0.736 0.933 0.359 0.871 0.893 0.205 0.710

1.50 1.000 0.994 0.996 1.000 0.873 1.000 1.000 0.594 0.998

III 0.50 0.999 0.988 0.998 1.000 0.830 1.000 1.000 0.580 0.999

0.75 0.830 0.573 0.726 0.865 0.318 0.855 0.839 0.190 0.701

1.00 0.056 0.082 0.050 0.056 0.074 0.053 0.055 0.065 0.054

1.25 0.833 0.549 0.705 0.905 0.344 0.846 0.835 0.180 0.606

1.50 1.000 0.975 0.995 1.000 0.860 1.000 1.000 0.542 0.997

IV 0.50 1.000 0.998 0.997 1.000 0.866 1.000 1.000 0.544 0.996

0.75 0.895 0.656 0.770 0.919 0.364 0.860 0.883 0.208 0.709

1.00 0.059 0.060 0.054 0.056 0.057 0.049 0.057 0.071 0.060

1.25 0.909 0.653 0.705 0.943 0.407 0.850 0.843 0.201 0.614

1.50 1.000 0.997 0.995 1.000 0.910 1.000 1.000 0.567 0.994
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Table 7: Variable Selection for the QR Model with τ = 0.25

No of Zeros Fitted Models
Design Scenarios MSE C IC U-fit C-fit O-fit

p = 8
I A 0.024 4.920 0.000 0.000 0.975 0.025

B 0.027 4.860 0.000 0.000 0.960 0.040
C 0.043 4.880 0.000 0.000 0.965 0.035
D 0.032 5.000 0.000 0.000 1.000 0.000
E 0.105 4.745 0.000 0.000 0.935 0.065

II A 0.032 4.745 0.000 0.000 0.920 0.080
B 0.032 4.870 0.000 0.000 0.960 0.040
C 0.035 4.760 0.000 0.000 0.940 0.060
D 0.033 4.760 0.000 0.000 0.940 0.060
E 0.102 4.845 0.000 0.000 0.950 0.050

III A 0.021 4.855 0.000 0.000 0.950 0.050
B 0.029 4.620 0.000 0.000 0.895 0.105
C 0.037 4.850 0.000 0.000 0.955 0.045
D 0.038 4.955 0.000 0.000 0.990 0.010
E 0.105 4.815 0.000 0.000 0.955 0.045

IV A 0.019 4.855 0.000 0.000 0.955 0.045
B 0.023 4.785 0.000 0.000 0.935 0.065
C 0.038 4.940 0.000 0.000 0.980 0.020
D 0.029 4.965 0.000 0.000 0.985 0.015
E 0.100 4.795 0.000 0.000 0.930 0.070

p = 16
I A 0.047 12.030 0.000 0.000 0.855 0.145

B 0.126 12.070 0.020 0.015 0.815 0.170
C 0.176 12.505 0.055 0.045 0.875 0.080
D 0.118 12.500 0.030 0.030 0.880 0.090
E 0.156 12.055 0.010 0.010 0.830 0.160

II A 0.061 11.945 0.005 0.005 0.800 0.195
B 0.064 12.110 0.010 0.010 0.835 0.155
C 0.428 12.300 0.120 0.090 0.795 0.115
D 0.130 12.310 0.035 0.035 0.850 0.115
E 0.210 11.240 0.020 0.015 0.735 0.250

III A 0.043 12.015 0.000 0.000 0.850 0.150
B 0.212 12.060 0.035 0.020 0.825 0.155
C 0.201 12.500 0.070 0.065 0.835 0.100
D 0.066 12.440 0.010 0.010 0.890 0.100
E 0.233 11.990 0.040 0.030 0.785 0.185

IV A 0.039 12.080 0.000 0.000 0.870 0.130
B 0.043 12.210 0.000 0.000 0.875 0.125
C 0.147 12.465 0.055 0.055 0.860 0.085
D 0.099 12.310 0.020 0.015 0.865 0.120
E 0.181 11.890 0.010 0.010 0.800 0.190
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Table 8: Variable Selection for the QR Model with τ = 0.50

No of Zeros Fitted Models
Design Scenarios MSE C IC U-fit C-fit O-fit

p = 8
I A 0.020 4.800 0.000 0.000 0.945 0.055

B 0.025 4.820 0.000 0.000 0.935 0.065
C 0.084 4.970 0.005 0.005 0.985 0.010
D 0.026 4.920 0.000 0.000 0.975 0.025
E 0.008 4.745 0.000 0.000 0.920 0.080

II A 0.023 4.755 0.000 0.000 0.935 0.065
B 0.022 4.700 0.000 0.000 0.920 0.080
C 0.111 4.975 0.020 0.020 0.975 0.005
D 0.024 4.830 0.000 0.000 0.950 0.050
E 0.009 4.310 0.000 0.000 0.760 0.240

III A 0.019 4.810 0.000 0.000 0.940 0.060
B 0.024 4.795 0.000 0.000 0.940 0.060
C 0.083 4.920 0.005 0.005 0.975 0.020
D 0.024 4.945 0.000 0.000 0.985 0.015
E 0.009 4.895 0.000 0.000 0.960 0.040

IV A 0.016 4.925 0.000 0.000 0.980 0.020
B 0.019 4.850 0.000 0.000 0.955 0.045
C 0.080 4.980 0.010 0.010 0.985 0.005
D 0.019 4.940 0.000 0.000 0.980 0.020
E 0.006 4.915 0.000 0.000 0.975 0.025

p = 16
I A 0.066 12.460 0.020 0.020 0.885 0.095

B 0.053 12.280 0.010 0.010 0.835 0.155
C 0.435 13.000 0.100 0.075 0.925 0.000
D 0.161 12.075 0.045 0.035 0.835 0.130
E 0.047 11.300 0.010 0.010 0.695 0.295

II A 0.040 12.085 0.000 0.000 0.835 0.165
B 0.199 12.150 0.025 0.020 0.840 0.140
C 0.449 12.905 0.125 0.095 0.885 0.020
D 0.074 12.325 0.020 0.020 0.835 0.145
E 0.058 11.020 0.020 0.020 0.670 0.310

III A 0.037 12.150 0.000 0.000 0.865 0.135
B 0.046 12.060 0.005 0.005 0.845 0.150
C 0.287 12.925 0.075 0.055 0.925 0.020
D 0.128 12.585 0.040 0.035 0.880 0.085
E 0.069 11.780 0.015 0.010 0.775 0.215

IV A 0.046 12.115 0.005 0.005 0.830 0.165
B 0.061 11.685 0.005 0.005 0.780 0.215
C 0.156 12.820 0.035 0.035 0.930 0.035
D 0.117 11.985 0.035 0.030 0.800 0.170
E 0.060 11.350 0.015 0.015 0.685 0.300



Sample EL and Design-based Variable Selection 51

Table 9: Variable Selection for the QR Model with τ = 0.75

No of Zeros Fitted Models
Design Scenarios MSE C IC U-fit C-fit O-fit

p = 8
I A 0.023 4.890 0.000 0.000 0.970 0.030

B 0.026 4.780 0.000 0.000 0.935 0.065
C 0.238 4.975 0.045 0.045 0.950 0.005
D 0.033 4.810 0.000 0.000 0.945 0.055
E 0.071 4.860 0.000 0.000 0.960 0.040

II A 0.022 4.720 0.000 0.000 0.915 0.085
B 0.037 4.905 0.005 0.005 0.955 0.040
C 0.190 5.000 0.030 0.030 0.970 0.000
D 0.024 4.830 0.000 0.000 0.950 0.050
E 0.066 4.700 0.000 0.000 0.905 0.095

III A 0.022 4.970 0.000 0.000 0.990 0.010
B 0.025 4.850 0.000 0.000 0.950 0.050
C 0.176 5.000 0.010 0.010 0.990 0.000
D 0.032 4.940 0.000 0.000 0.985 0.015
E 0.067 4.875 0.000 0.000 0.955 0.045

IV A 0.019 4.870 0.000 0.000 0.960 0.040
B 0.024 4.870 0.000 0.000 0.960 0.040
C 0.217 4.990 0.040 0.040 0.955 0.005
D 0.030 4.890 0.000 0.000 0.975 0.025
E 0.075 4.805 0.000 0.000 0.925 0.075

p = 16
I A 0.055 11.945 0.005 0.005 0.850 0.145

B 0.173 11.705 0.045 0.035 0.775 0.190
C 0.392 12.985 0.100 0.085 0.910 0.005
D 0.102 12.075 0.015 0.015 0.845 0.140
E 0.093 12.125 0.010 0.010 0.795 0.195

II A 0.063 11.445 0.000 0.000 0.760 0.240
B 0.183 12.090 0.030 0.020 0.810 0.170
C 0.718 12.895 0.190 0.160 0.810 0.030
D 0.193 12.225 0.040 0.035 0.820 0.145
E 0.095 11.700 0.010 0.010 0.780 0.210

III A 0.047 12.260 0.000 0.000 0.880 0.120
B 0.280 11.955 0.045 0.030 0.790 0.180
C 0.430 12.940 0.125 0.120 0.870 0.010
D 0.168 11.985 0.055 0.055 0.795 0.150
E 0.097 12.190 0.010 0.010 0.830 0.160

IV A 0.030 12.475 0.000 0.000 0.925 0.075
B 0.115 11.990 0.020 0.010 0.835 0.155
C 0.436 12.990 0.135 0.125 0.870 0.005
D 0.103 11.900 0.015 0.015 0.815 0.170
E 0.088 12.040 0.005 0.005 0.805 0.190
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