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Abstract: The aim of this paper is to establish several theoretical properties of

principal component analysis for multiple-component spike covariance models. Our

results reveal an asymptotic conical structure in critical sample eigendirections un-

der the spike models with distinguishable (or indistinguishable) eigenvalues, when

the sample size and/or the number of variables (or dimension) tend to infinity. The

consistency of the sample eigenvectors relative to their population counterparts is

determined by the ratio between the dimension and the product of the sample size

with the spike size. When this ratio converges to a nonzero constant, the sample

eigenvector converges to a cone, with a certain angle to its corresponding population

eigenvector. In the High Dimension, Low Sample Size case, the angle between the

sample eigenvector and its population counterpart converges to a limiting distri-

bution. Several generalizations of the multi-spike covariance models are explored,

and additional theoretical results are presented.
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PCA.

1. Introduction

As the field of statistics continues to evolve, there is ongoing discussion about

the role that should be played by mathematics. There are those who wish to focus

on data as much as possible, and thus base their work on experiential insights, and

those who never actuaIly work with data, but instead develop mathematical ideas

about how data should be analyzed. Among the many mathematical methods

that have been used to gain statistical insights, asymptotic techniques stand out

as having provided a large number of insights over the years.

What is the value of asymptotics? Some might say one should not consider

asymptotics on the grounds that one never has an infinite sample size, while

others view asymptotics as “understanding what happens in situations where

the sample size grows”. Some take the latter notion to an extreme by insisting

that all asymptotics should “follow some type of sampling process”. We bring

in a different view of asymptotics, in which the focus is moved beyond mere

sampling to any type of limiting operation that gives statistical insights. It will
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be seen that the role of asymptotic insights can go beyond academic indulgence

to understanding even the most basic statistical concepts in challenging modern

data analytic settings.

A currently fashionable statistical topic is Big Data. This notion goes well

beyond a large sample size and includes high dimension, but, while the size

of modern data sets indeed presents serious statistical challenges, complexity

of modern data sets is an even more serious and challenging aspect. Useful

terminology for approaching a complex data set is object oriented data analysis,

introduced in Wang and Marron (2007) and more recently discussed in Marron

and Alonso (2014).

There has been a realization by many that asymptotics should include cal-

culation of limits as the dimension grows. For example, in the biological field

of gene expression, the technology of microarrays (see Murillo et al. (2008)

for an overview) enabled the measurement of expressions of tens of thousands

of genes at once, and one could say this leads to vectors effectively understood

by a limiting process of growing dimension. Others might contend that such a

limit is inappropriate. This line of discussion could be continued in the direction

of RNAseq techonology (see Denoeud et al. (2008) for an introduction), where

instead of a single number for each gene, expression estimates at the level of

resolution of genetic base pairs are available, thus resulting in a factor of around

ten thousand more dimensions. Here we argue that the goal of asymptotics is to

find insightful simple structures that underly complex statistical contexts.

There are a number of ways that growing dimension asymptotics have been

studied. Pioneering work by Portnoy (1984) and Portnoy et al. (1988) studied

cases where the dimension grew relatively slowly, resulting in an asymptotic do-

main that was not far from classical fixed-dimensional analysis. Another asymp-

totic domain, random matrix theory, arises when the dimension and sample size

grow at the same rate. Work in this area has been done mostly outside the sta-

tistical community, with landmark results including Marcenko and Pastur (1967)

on the distribution of eigenvalues of the sample covariance matrix, and Tracy and

Widom (1996) on the distribution of the largest eigenvalue. A good overview of

the literature in this area can be found in Bai and Silverstein (2009). Statis-

tical implications have been developed in a series of papers by Johnstone and

co-authors, see e.g., Johnstone and Lu (2009), and a number of others since.

An asymptotic domain whose importance has only recently begun to be

recognized has the dimension growing more rapidly than the sample size. Hall,

Marron, and Neeman (2005) coined the terminology high dimension, low sample

size (HDLSS) for the case where the sample size is fixed while the dimension

grows.
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2. HDLSS Backround

As noted in Hall, Marron, and Neeman (2005), the world of HDLSS asymp-

totics is full of concepts and ideas that can run counter to intuition, many of

which are discussed in the following. For example, in the limit as the dimension

d → ∞ with a fixed sample size n, a standard Gaussian sample will lie near the

surface of a growing sphere of radius d1/2 and the angle between each pair of

points with vertex at the origin will approach 90◦. Thus the increasing random-

ness inherent in growing dimension tends towards random rotation and, modulo

that random rotation and scaling by a factor of d−1/2, the data tend to lie near

vertices of the unit simplex. This phenomenon, geometric representation, leads

to a number of interesting statistical insights.

Beran (1996) and Beran et al. (2010) have it that some of these ideas lie at

the heart of the famous paper of Stein (1956) on inadmissability of the sample

mean. Early use of HDLSS asymptotics in the Stein estimation context can be

found in Casella and Hwang (1982).

A closely related asymptotic domain is the ultra high dimension of Fan and

Lv (2008), who consider the case of d = exp(cna), for constants c and a, in the

classical limit as n → ∞. The ultra high case can also be equivalently formulated

as n = (log(d)/c)1/a in the limit as d → ∞. The later formulation reveals that

this case is quite near to the HDLSS context.

The HDLSS geometric representation has been established under a range

of conditions. Hall, Marron, and Neeman (2005) went beyond the independent

Gaussian case by assuming the data vectors satisfy a mixing condition. Ahn et

al. (2007) proposed a more palatable eigenvalue condition for geometric represen-

tation. In unpublished correspondence John Kent pointed out, using a Gaussian

scale mixture example, that more than univariate moment conditions are needed.

Conditions that are especially appealing, because they are based only on the co-

variance matrix (with no assumption of Gaussianity), have been developed in

a series of papers Yata and Aoshima (2009, 2010b); Aoshima and Yata (2011);

Yata and Aoshima (2012a); Aoshima and Yata (2015). A non-Gaussian condi-

tion that makes intuitive sense based on the types of data found in genomics can

be found in Jung and Marron (2009).

3. PCA and HDLSS Asymptotics

PCA is a well-proven workhorse method for many tasks involving high-

dimensional data, see Jolliffe (2005) for excellent introduction and overview. A

strong indicator of its utility comes from the fact that it has been rediscovered

and renamed a number of times. For example, it is called empirical orthogonal
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functions in the earth / climate sciences, proper orthogonal decomposition in ap-

plied mathematics, the Karhunen Loeve expansion in electrical engineering and

probability, and factor analysis in a number of non-statistical areas.

One can motivate PCA from a Gaussian likelihood viewpoint, but it is more

generally viewed as a fully nonparameteric method, with a number of uses. While

PCA is a common dimension reduction method, it is arguably even more useful

for data visualization in high-dimensional contexts, for example in Functional

Data Analysis, see Ramsay and Silverman (2002), Ramsay (2005), and Ferraty

and Vieu (2004).

An example of PCA data visualization is shown in Figure 1. The curves

in the left panel are read depth curves from RNAseq measurements Wilhelm

and Landry (2009) of n = 180 lung cancer patients. Each curve is a detailed

measurement of biological expression of the gene CDKN2A for one tissue sample,

with the horizontal axis indicating d =1,709 base pair locations of the reference

genome, and the height of the curve a log10 count that indicates level of gene

expression. Insight into how the curves relate to each other comes from the PCA

scatterplot in the right panel of Figure 1. The axes of the scatterplot are the first

two principal component scores. There is some apparent interesting structure, in

the form of three distinct clusters. To explore the relevance of these clusters, they

have been brushed, i.e., colored with grey levels. These same colors have been

used on the curves in the left panel. The lightest grey curves tend to be much

lower than the others, representing cases where the CDKN2A gene is essentially

not expressed (typical in some cases). The genome location of the gene includes

several disconnected loci called exons, which here have been connected giving

the block-like structure apparent in the other curves. The third exon shows very

low levels of expression for all cases. The fifth exon is interesting because it is

fully expressed for only the black cases, while all others show a very low level of

expression. This phenomenon is called alternate splicing, and is very important

in cancer research because it can become the target of drug treatments. This

example motivated a search for alternate splice events, based on screening for

clusters in read depth curves, over all genes. An important challenge to the

implemention of this was the assessment of the statistical significance of clusters

in very high dimensions, done using the SigClust method of Liu et al. (2008).

This screening method was named SigFuge by Kimes and Cabanski (2013), who

reported on the results of a full genome screen that found previously unknown

splicing events, one of which was then confirmed by a biological experiment. The

point is that PCA found important structure in this HDLSS data set through

visualizing the PC scores.

The asymptotic underpinnings of PCA in HDLSS contexts were first consid-

ered by Ahn et al. (2007), and more deeply by Jung and Marron (2009). Insight
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Figure 1. PCA of RNAseq log read depth maps, for the union of exons in the
gene CDKN2A. Left panel shows data curves. Right panel is the PC1 vs. Pc2
scores scatterplot, showing three distinct clusters (brushed with gray levels).
Use of these same colors in the left panel shows essentially unexpressed
cases (lightest grey), and a clear alternate splicing event (other grey shades).
This is an HDLSS example where PCA clearly reveals important biological
structure.

into the behavior of PCA comes from study of the spike covariance model, made

popular in statistics by Paul (2007) and Johnstone and Lu (2009). In the simplest

form of the spike covariance model, there is a single large eigenvalue with the

rest much smaller and constant, where the largest eigenvalue has size of growing

order dα. The key result is that, in the limit as d → ∞ with n fixed, letting u1
and û1 denote the first population and sample eigenvectors respectively,

angle < û1, u1 >→
{
90◦ for α < 1,

0 for α > 1.
(3.1)

This defines a notion of consistency when the spike is large, α > 1, and a notion

of strong inconsistency when the spike is small, α < 1. One or the other holds in

almost all such settings, with the exception of α = 1. The boundary at α = 1 can

be understood from the geometric representation: in the HDLSS limit, standard

Gaussian data tends to lie on the surface of the sphere at the origin, with radius

d1/2. In the spike model, when α > 1, the distribution reaches outside this sphere

(eigenvalues are on the scale of variance, so the largest standard deviation is much

greater than d1/2), which results in consistency of the first eigendirection. When

α < 1, the distribution is essentially contained within the sphere, so the first

eigendirection is random, and random directions are asymptotically orthogonal

to any given direction.

Related results are available in Yata and Aoshima (2009, 2010a, 2012a, 2013).

New insights about sparse PCA were dicovered by Shen, Shen, and Marron
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(2012a); See Shen, Shen, and Marron (2012b) for broader results in this spirit,

including all combinations of n and d tending to infinity. Limiting behavior when

α = 1 was first explored by Jung, Sen, and Marron (2012) in the HDLSS case.

Yata and Aoshima (2012a) proposed a noise reduction estimator that relaxes the

boundary of the eigenvalue estimator to α = 1/2 in the HDLSS case.

While under a sufficiently strong signal in the covariance structure, PCA can

find the right direction vectors, estimation of the eigenvalues is more challeng-

ing. Indeed, letting λ1 and λ̂1 denote the population (and sample resp.) first

eignevalues, there are a number of results in the spirit of

λ̂1

λ1

L−→ χ2
n

n
, (3.2)

under various HDLSS conditions. Thus sample eigenvalues are generally incon-

sistent when the sample size is fixed but, as noted by Yata and Aoshima (2009,

2010b), sample eigenvalues are consistent if it is assumed that, in addition to

d → ∞, n → ∞ as well. Where n grows more slowly than d, one speaks of High

Dimension Moderate Sample Size, Borysov, Hannig, and Marron (2014). Yata

and Aoshima (2010a, 2012a, 2013) have given modified versions of PCA that

provide consistent eigenvalue estimates.

4. Understanding Variation in Scores

In HDLSS situations PCA scores, which form the basis of informative scat-

terplots, such as Figure 1, are generally inconsistent in the HDLSS limit. In

particular, the ratio of the sample and population PC scores converge to a non-

degenerate random variable, as formulated here.

In Section 4.2, we show that, for a given component, the ratios for each data

point indeed converge to a random variable, but it is the same realization of

the random variable for each data point. Thus, while all the scores are off by

a random factor, it is the same factor for each data point; in scatterplots the

axis labels are off by a random factor, but the relationship between points is still

correct.

This issue was presaged in Yata and Aoshima (2009) and is quite similar to

the eignevalue inconsistency at (3.2). The improved variation of PCA proposed

in Yata and Aoshima (2012a, 2013) gives asymptotically correct scalings. Under

the random matrix framework, Lee, Zou, and Wright (2010) showed that the

ratios of the sample and population PC scores converge to a constant. Hellton

and Thoresen (2014) have used the ideas of pervasive signal and visual content

to explore this inconsistent phenomenon.
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4.1. Assumptions and notation

If {(λk, uk) : k = 1, · · · , d} are the eigenvalue-eigenvector pairs of the covari-

ance matrix Σ such that λ1 ≥ λ2 ≥ . . . ≥ λd > 0, we can write

Σ = UΛUT , (4.1)

where Λ = diag(λ1, . . . , λd) and U = [u1, . . . , ud].

Assumption 1. X1, . . . , Xn are i.i.d. d-dimensional random sample vectors

with the representation

Xi =
d∑

j=1

λ
1/2
j zi,juj , (4.2)

where the zi,j’s are i.i.d. random variables with zero mean, unit variance, and

finite fourth moment.

An important special case has the Xis’ N(0,Σ). Consider that the Xi are

i.i.d. N(ξ,Σ) with ξ ̸= 0. As in Paul and Johnstone (2007), it is well known that

n∑
i=1

(Xi −X)(Xi −X)T has the same distribution as
n−1∑
i=1

YiY
T
i ,

where X is the sample mean and Yi are i.i.d. N(0,Σ). Then the asymptotic

properties of PCA can be studied through Yi. Since the sample covariance matrix

is location invariant, we can assume without loss of generality that Xi has zero

mean at least for the normal case. In general, one has to consider the theoretical

properties of X − µ; these have been widely investigated in the literature Rollin

(2013); Chernozhukov, Chetverikov, and Kato (2014) even when d is much larger

than n.

Denote the jth normalized population PC score vector by

Sj = (S1,j , . . . , Sn,j)
T = λ

−1/2
j (uTj X1, . . . , u

T
j Xn)

T , j = 1, . . . , d. (4.3)

Denote the data matrix by X = [X1, . . . , Xn] and the sample covariance matrix

by Σ̂ = (1/n)XXT . The sample covariance matrix can be decomposed as

Σ̂ = Û Λ̂ÛT , (4.4)

where, similarly, Λ̂ = diag(λ̂1, . . . , λ̂d) and Û = [û1, . . . , ûd]. Since

n−1/2X =

d∑
j=1

λ̂
1/2
j ûj v̂

T
j , where v̂j = (v̂1,j , . . . , v̂n,j)

T , j = 1, · · · , d,
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the jth normalized sample PC score vector is

Ŝj = (Ŝ1,j , . . . , Ŝn,j)
T = n1/2(v̂1,j , . . . , v̂n,j)

T , j = 1, . . . , d. (4.5)

Let {ak : k = 1, . . . ,∞} and {bk : k = 1, . . . ,∞} be two sequence of con-

stants, where k can stand for either n or d. We write ak ≫ bk if limk→∞ bk/ak = 0,

and ak ∼ bk if c2 ≤ limk→∞ak/bk ≤ limk→∞ak/bk ≤ c1 for constants c1 ≥ c2 > 0.

If {ξk : k = 1, . . . ,∞} is a sequence of random variables and {ek : k = 1, . . . ,∞}
is a sequence of constants, we write ξk = Oa.s (ek) if limk→∞ |ξk/ek| ≤ ζ almost

surely with P (0 < ζ < ∞) = 1.

4.2. HDLSS inconsistency

In this subsection, we show the asymptotic properties of PC scores in HDLSS

when the sample size n is fixed and the dimension d → ∞. We consider multiple

spike models Jung and Marron (2009) under which, as d → ∞,

λ1 ≫ · · · ≫ λm ≫ λm+1 ∼ · · · ∼ λd ∼ 1, (4.6)

where m ∈ [1, n∧d] is finite. Under these spike models, Jung and Marron (2009)

showed that when n is fixed, if d/λm → 0, the angle between each of the first m

sample eigenvectors ûj and its corresponding population eigenvector uj goes to

0 with probability 1, the consistency of the sample eigenvector.

However, under the same assumptions, the sample PC scores are not consis-

tent. We show that, for a particular principal component, the proportion between

the sample PC scores and the corresponding population scores converges to a

random variable, the realization of which remains the same for all data points.

Since we study Ŝi,j/Si,j , we need to assume

P (zi,j ̸= 0) = 1, i = 1, . . . , n, j = 1, . . . ,m, (4.7)

to ensure that P (Si,j ̸= 0) = 1 (Si,j = zi,j from (4.2) and (4.3)). Let

Z̃j = (z1,j , . . . , zn,j)
T and Rj =

Z̃T
j Z̃j

n
, j = 1, . . . , d, (4.8)

where zi,j is defined in (4.2).

Theorem 1. Under Assumption 1, (4.6), and (4.7), for fixed n as d → ∞, if

d/λm → 0, then ∣∣∣∣∣ Ŝi,j

Si,j

∣∣∣∣∣ a.s−−→ R
−1/2
j , i = 1, . . . n, j = 1, . . . ,m, (4.9)

where
a.s−−→ stands for almost sure convergence. In addition, if Assumption 1 holds

with normal zi,j’s, then nRj is the Chi-square with n degrees of freedom.
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Remark 1. The results in Theorems 1 differ from those in Lee, Zou, and Wright

(2010). Under the random matrix framework with n ∼ d → ∞ and λj < ∞,

Lee, Zou, and Wright (2010) showed that the ratios between the sample and

population eigenvalues converge to a constant. Lee, Zou, and Wright (2010) did

not consider properties of PC scores under the framework of our Theorem 2.

Remark 2. As the ratio Rj only depends on j, scores scatter plots, such as

right panel of Figure 1, have incorrectly labeled axes but asymptotically correct

relative positions of points.

Remark 3. For non-normalized PC scores with So
i,j = uTj Xi = λ

1/2
j Si,j and

Ŝo
i,j = λ̂

1/2
j Ŝi,j ,

∣∣∣Ŝo
i,j /S

o
i,j

∣∣∣ a.s−−→ 1, i = 1, . . . , n and j = 1, . . . ,m, under the

assumptions of Theorem 1.

4.3. Growing sample size analysis

In this subsection, we consider growing sample size contexts, and study the

asymptotic properties of the PC scores. Here both the sample eigenvectors and

the sample principal component scores can be consistent.

Consider the spike models, as n, d → ∞,

λ1 > · · · > λm ≫ λm+1 ∼ · · · ∼ λd ∼ 1. (4.10)

Theorem 2. Under Assumption 1, (4.7), and (4.10), for n, d → ∞, if d/(n1/2λm)

→ 0, then ∣∣∣∣∣ Ŝi,j

Si,j

∣∣∣∣∣ a.s−−→ 1, i = 1, . . . n, j = 1, . . . ,m. (4.11)

Remark 4. In the current context, the consistency of the sample PC scores fits,

as expected, with the fact that the sample eigenvectors are consistent under the

assumptions of Theorem 2. In particular, Shen, Shen, and Marron (2012b) shows

that, under the same assumptions, the angle between the sample eigenvector ûj
and the corresponding population eigenvector uj , j = 1, . . . ,m, converges almost

surely to 0.

5. Deeper Conical Behavior

This section reveals an asymptotic conical structure in critical sample eigendi-

rections under the spike models when the sample size and/or the number of vari-

ables (or dimension) tend to infinity. The consistency of the sample eigenvectors

relative to their population counterparts is determined by the ratio between the
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Figure 2. Geometric representation of PC directions in Example 1. The
sphere represents the space of possible sample eigenvectors. Panel (A) shows
that the first sample eigenvector tends to lie in the dark gray cone, with the
θ1 angle. Similarly, Panels (B) and (C) show that the second and the third
sample eigenvectors respectively tend to lie in the dark gray cones, whose
angles are θ2 and θ3. Note that θ1 is less than θ2, which is again less than
θ3.

dimension and the product of the sample size with the spike size. When this ra-

tio converges to a nonzero constant, the sample eigenvector converges to a cone,

with a certain angle to its corresponding population eigenvector. In the HDLSS

case, the angle between the sample eigenvector and its population counterpart

converges to a limiting distribution. Several generalizations of the multi-spike

covariance models are also explored, and additional theoretical results are pre-

sented.

We first introduce two examples to help understand the asymptotic results

of conical structure for sample eigendirections.

Example 1 (Multiple-component spike models with distinguishable eigenval-

ues). Let X1, . . . , Xn be random sample vectors according to (4.2), where the

population eigenvalues satisfy, as n, d → ∞,
λ1 > λ2 > λ3 ≫ λ4 = · · · = λd = 1,

d

nλj
→ cj , j = 1, 2, 3, with 0 ≤ c1 < c2 < c3 ≤ ∞.

In Figure 2, the sphere represents the space of all possible sample eigen-

directions, with the first three population eigenvectors as the coordinate axes.

From Theorem 3, as n, d → ∞, the sample eigenvector û1 lies in the dark

gray cone, shown in Panel (A) of Figure 2, with the angle of the cone θ1 =

arccos(1/
√
1 + c1). Similarly, as n, d → ∞, the sample eigenvectors û2 and û3,
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Figure 3. Example 1: Simulated angles between sample and population
eigenvectors. Panel (A) shows realizations of angles between sample and
population eigenvectors as black gray dots (black is first, dark gray is second,
light gray is third). Distributions are studied using kernel density estimates,
and compared with the theoretical values θj for j = 1, 2, 3, shown as dashed
lines. Panel (B) studies randomness of eigen-directions within the cones
shown in Figure 2, by showing the distribution of pairwise angles between
realizations of the sample eigenvectors. All 3 colors are overlaid here, and
all angles are close to 90 degrees, which is consistent with the randomness
of the respective sample eigenvectors within the cones.

respectively, lie in the dark gray cones, shown in Panels (B) and (C) of Fig-

ure 2, with angles θ2 = arccos(1/
√
1 + c2) and θ3 = arccos(1/

√
1 + c3). For

c1 < c2 < c3, we have θ1 < θ2 < θ3, as shown in Figure 2.

Our Proposition S4.1 in the supplementary material includes the two bound-

ary cases studied by Shen, Shen, and Marron (2012b) as special cases. When

c1 = c2 = c3 = 0, it follows that θ1 = θ2 = θ3 = 0, in the domain of consis-

tency (Shen, Shen, and Marron (2012b)). When c1 = c2 = c3 = ∞, we have

θ1 = θ2 = θ3 = 90 degrees and strong inconsistency Shen, Shen, and Marron

(2012b).

We investigated convergence, using simulations, over a range of settings, with

n = 50, 100, 200, 500, 1,000, 2,000, where d/n = 50, and c1 = 0.2, c2 = 0.4,

c3 = 1. The full sequence, illustrating this convergence, is shown in Figure 3 A

of the supplementary material. Figure 3 shows the intermediate case of n = 200.

For one data set with this distribution, we computed angles between the sample

and population eigenvectors. Repeating this procedure over 100 replications, we

got 100 angles for each of the first three eigenvectors, shown as black, dark gray,

and light gray points in Panel (A). The black, dark gray, light gray curves are

the corresponding kernel density estimates. Panel (A) shows that the simulated

angles close to the corresponding theoretical angles θj , j = 1, 2, 3, shown as

dashed vertical lines.
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Figure 4. Example 2: Geometric representation of PC directions. Panel (A)
shows the cone to which the first group of sample eigenvectors converge in the
dark gray. This cone has angle θ1 with the light gray subspace, generated by
the first group of population eigenvectors. Similarly, Panel (B) (Panel (C))
shows the cone to which the second (third) group of sample eigenvectors
converges shown as a dark gray cone, which has angle θ2 (θ3) with the
subspace, generated by the second (third) group of population eigenvectors.

Panel (B) in Figure 3 studies randomness of eigen-directions within the cones

shown in Figure 2. We calculated pairwise angles between realizations of the sam-

ple eigenvectors for the three cones, showing angles and kernel density estimates

using colors as in Panel (A) of Figure 3. All angles ware close to 90 degrees,

consistent with randomness in high dimensions, see Hall, Marron, and Neeman

(2005); Yata and Aoshima (2012a); Jung and Marron (2009); Jung, Sen, and

Marron (2012); Cai, Fan, and Jiang (2013).

Example 2. (Multiple-component spike models with indistinguishable eigenval-

ues) Here we take the six leading population eigenvalues to satisfy, as n, d → ∞
λ1 = λ2 > λ3 = λ4 > λ5 = λ6 ≫ λ7 = · · · = λd = 1,

d

nλ2j−1
→ cj , j = 1, 2, 3, with 0 ≤ c1 < c2 < c3 ≤ ∞.

From Theorem 4, Panel (A) in Figure 4 shows, as a dark gray cone, the region

where the first group of sample eigenvectors û1 and û2 lie in the limit as n, d → ∞.

This has the angle θ1 = arccos(1/
√
1 + c1) with the light gray subspace generated

by the first group of population eigenvectors, u1 and u2. Similarly, Panel (B)

(Panel (C)) presents, as a dark gray cone, the region where the second (third)

group of sample eigenvectors û3 and û4 (û5 and û6) lie in the limit as n, d → ∞.

This has the angle θ2 = arccos(1/
√
1 + c2) (θ3 = arccos(1/

√
1 + c3)) with the

subspace generated by the second (third) group of population eigenvectors, u3
and u4 (u5 and u6). For c1 < c2 < c3, we have θ1 < θ2 < θ3, as shown in Figure 4.
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Our Proposition S2.1 in the supplementary material includes boundary cases

studied by Shen, Shen, and Marron (2012b) as special cases. For c1 = c2 = c3 =

0, it follows that θ1 = θ2 = θ3 = 0, in the domain of subspace consistency; see

Theorem 4.3 of Shen, Shen, and Marron (2012b). When c1 = c2 = c3 = ∞, we

have θ1 = θ2 = θ3 = 90 degrees and strong inconsistency; see Theorem 4.3 of

Shen, Shen, and Marron (2012b).

5.1. Growing sample size asymptotics

We now study asymptotic properties of PCA as n → ∞. We consider multi-

ple component spike models with distinguishable population eigenvalues in Sec-

tion 5.1.1, and with indistinguishable eigenvalues in Section 5.1.2. We vary d

from d ≪ n, through the random matrix version with d ∼ n, to the high di-

mension medium sample size (HDMSS) asymptotics of Cabanski et al. (2010),

Yata and Aoshima (2012b), and Aoshima and Yata (2015), with d ≫ n → ∞.

Aoshima and Yata (2015) improves the results of Yata and Aoshima (2012b)

under mild conditions.

5.1.1. Multiple component spike models with distinguishable

eigenvalues

We consider multiple component spike models where the population eigen-

values satisfy the following.

A1. As n, d → ∞, λ1 > · · · > λm ≫ λm+1 → · · · → λd = 1.

A2. As n, d → ∞, d
nλj

→ cj , where 0 < c1 < · · · < cm < ∞.

Here, that λ1 > · · · > λm makes it possible to separately consider the first

m principle component signals and their corresponding asymptotic properties.

That λm ≫ λm+1 → · · · → λd = 1 enables clear separation of the signal in the

first m components from the noise in the higher order components.

InA2, the positive and negative information are of the same order: increasing

n and the spike positively impacts the consistency of PCA, whereas increasing d

has a negative impact.

In our context, we take H = {m + 1, . . . , d} as the noise index set and the

space spanned by the noise eigenvectors as

S = span{uj , j ∈ H}. (5.1)

For each sample eigenvector ûj , j ∈ H, we study the angle between ûj and the

space S, as defined in Jung and Marron (2009) and Shen, Shen, and Marron

(2012b), and illustrated in Figure B of the supplementary material.
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Theorem 3. Under Assumptions 1, A1, and A2, as n, d → ∞, the sample
eigenvalues satisfy 

λ̂j

λj

a.s−→ 1 + cj , 1 ≤ j ≤ m,

nλ̂j

dλj

a.s−→ 1, m+ 1 ≤ j ≤ [n ∧ d],

(5.2)

and the sample eigenvectors satisfy
|< ûj , uj >| a.s−−→ (1 + cj)

−1/2, 1 ≤ j ≤ m,

|< ûj , uj >|= Oa.s

{
(nd )

1/2
}
, m+ 1 ≤ j ≤ [n ∧ d],

angle < ûj , S >
a.s−−→ 0, m+ 1 ≤ j ≤ [n ∧ d].

(5.3)

Remark 5. The d/nλj → cj contains three scenarios: n, d, and λj → ∞; d, λj →
∞ and n < ∞ (HDLSS); n, d → ∞ and λj < ∞. We study the first two.
Theorem 3 studies the first scenario and Paul (2007) studied the third. The
results in Paul (2007) are based on the normal assumption, unnecessary here,
and do not pertain to indistinguishable eigenvalues.

Remark 6. The results of (5.2) and (5.3) suggest that, as the eigenvalue index
increases, the proportional bias between the sample and population eigenvalue
increases, so the angle between the sample and corresponding population eigen-
vectors increases. This is because larger eigenvalues (i.e. with small indices)
contain more positive information, which makes the corresponding sample eigen-
values/eigenvectors less biased. These results are graphically illustrated in Figure
1 and empirically verified in Figure 2, for the specific model in Example 1. More
empirical support is provided in the supplementary material.

Remark 7. Theorem 3 can be extended to include the random matrix and
HDMSS cases; This is shown in Section S4.1 of the supplementary material.

5.1.2. Multiple component spike models with indistinguishable eigen-
values

We consider spike models with them leading eigenvalues grouped into r(≥ 1)
tiers, each of which contains all given eigenvalues that are either the same or have
the same limit. Specifically, the first m eigenvalues are grouped into r tiers, in
which there are qk eigenvalues in the kth tier such that

∑r
l=1 ql = m. Let q0 = 0,

qr+1 = d−
∑r

l=1 ql, and the index set of the eigenvalues in the kth tier be

Hk =

{
k−1∑
l=0

ql + 1,

k−1∑
l=0

ql + 2, . . . ,

k−1∑
l=0

ql + qk

}
, k = 1, . . . , r + 1. (5.4)

We make these formal assumptions.
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B1. The eigenvalues in the kth tier have the limit δk(> 0):

lim
n,d→∞

λj

δk
= 1, j ∈ Hk, k = 1, . . . , r.

B2. The eigenvalues in different tiers have different limits:

as n, d → ∞, δ1 > · · · > δr ≫ λm+1 → · · · → λd = 1.

B3. The ratio between the dimension and the product of the sample size with

eigenvalues in the same tier converges to a constant:

as n, d → ∞,
d

nδk
→ ck, with 0 < c1 < · · · < cr < ∞.

Since the sample eigenvalues within the same tier can not be asymptotically

identified, the corresponding sample eigenvectors are indistinguishable. For j ∈
Hk, in order to study the asymptotic properties of the sample eigenvector ûj ,

we consider the angle between ûj and the subspace spanned by the population

eigenvectors uj in the same tier,

Sk = span{uj , j ∈ Hk}. (5.5)

Theorem 4. Under Assumptions 1, B1, B2, and B3, as n, d → ∞, the sample

eigenvalues satisfy 
λ̂j

λj

a.s−→ 1 + ck, j ∈ Hk, k = 1, . . . , r,

nλ̂j

dλj

a.s−→ 1, m+ 1 ≤ j ≤ [n ∧ d],

(5.6)

and the sample eigenvectors satisfy
angle < ûj , Sk >

a.s−−→ arccos
{
(1 + ck)

−1/2
}
, j ∈ Hk, k = 1, . . . , r,

|< ûj , uj >|= Oa.s

{
(nd )

1/2
}
, m+ 1 ≤ j ≤ [n ∧ d],

angle < ûj , Sr+1 >
a.s−−→ 1, m+ 1 ≤ j ≤ [n ∧ d].

(5.7)

Theorem 4 extends Theorem 3. For higher-order eigenvalues, the sample

eigenvalues are more biased, while the angles between the sample eigenvectors

and the subspaces spanned by their population counterparts in the same tiers

are larger. See Figure 3 for an illustration of the specific model considered in

Example 2. Theorem 4 can be extended to cover the random matrix and HDMSS

cases, see Section S4.2 of the supplementary material.
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5.2. HDLSS asymptotics

We study the asymptotic properties of PCA in the HDLSS context. Here,
the ratios between the sample eigenvalues and their population counterparts con-
verge to non-degenerate random variables, as do the angles between the sample
eigenvectors and the space spanned by the corresponding population eigenvec-
tors.

Since the sample size is fixed, we can’t distinguish the two types of spike
models considered in Sections 5.1.1 and 5.1.2. Hence, we merge the model as-
sumptions there as follows.

C1. For fixed n, as d → ∞, λ1 ≥ · · · ≥ λm ≫ λm+1 → · · · → λd = 1.

C2. For fixed n, as d → ∞,

d

nλj
→ cj , with 0 < c1 ≤ · · · ≤ cm < ∞.

Now the sample eigenvalues and eigenvectors converge to non-degenerate
random variables rather than constants. Consider the m × d matrix M =
[C, 0m×(d−m)]m×d, where C = diag{c−1/2

1 , . . . , c
−1/2
m } is an m×m diagonal matrix

and 0m×(d−m) is the m× (d−m) zero matrix. Take

Z = (zi,j)n×d and W = MZTZMT , (5.8)

where zi,j is defined in (4.2).
Given a fixed sample size, the sample eigenvalues can’t be asymptotically

distinguished, nor can the corresponding sample eigenvectors. To study the
asymptotic behavior of the sample eigenvectors, we need to consider the space Sk
spanned by the corresponding population eigenvectors, as defined in (5.5), with
the index sets H1 = {1, . . . ,m} and H2 = {m+ 1, . . . , d}.

Theorem 5. Under Assumptions 1, C1 and C2, for fixed n, as d → ∞, the
sample eigenvalues satisfy

λ̂j

λj

a.s−→ cj
n λj(W) + cj , 1 ≤ j ≤ m,

nλ̂j

dλj

a.s−→ 1, m+ 1 ≤ j ≤ n,

(5.9)

where W is defined in (5.8), and the sample eigenvectors satisfy
angle < ûj , S1 >

a.s−−→ arccos

{(
1 + n

λj(W)

)−1/2
}
, 1 ≤ j ≤ m,

|< ûj , uj >|= Oa.s(d
−1/2), m+ 1 ≤ j ≤ n,

angle < ûj , S2 >
a.s−−→ 1, m+ 1 ≤ j ≤ n.

(5.10)
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Remark 8. Under the normal distribution, then Theorem 5 reduces to studies
in Jung, Sen, and Marron (2012). Theorem 5 shows that the results in Jung,
Sen, and Marron (2012) can be strengthened to almost sure convergence.

Remark 9. For 1 ≤ j ≤ m, as the relative size of the eigenvalue decreases,
the angle between ûj and S1 increases. However, this phenomenon is not as
strong as in the growing sample size settings studied in Section 5.1, where the
sample eigenvectors can be separately studied, and the corresponding angles have
a non-random increasing order.

Remark 10. Assumption C2 can be relaxed to include boundary cases, in which
there exists an integer m0 ∈ [1,m] such that cm0 = 0, positive information dom-
inates in the leading m0 spikes, or cm0+1 = ∞, negative information dominates
in the remaining high-order spikes. These results are presented in Section S5 of
the supplementary material.

6. Proofs

We only present a detailed proof for Theorems 4. Theorem 3 is a special
case of Theorem 4. The proof of properties of sample eigenvectors is in Section
6.1, while the properties of sample eigenvalues’ properties are shown in Section
S6.1 of the supplementary material.

The proofs of Theorems 1, 2, and 5 are in Sections S6 and S7 of the sup-
plementary material, which also contains proofs of extensions of Theorems 3, 4,
and 5.

6.1. The proof of sample eigenvectors’ properties

This subsection gives the proof for the properties of the sample eigenvectors
in Theorem 4.

The population eigenvalues are grouped into r + 1 tiers and Hk at (5.4) is
the index set of the eigenvalues in the kth tier. Let

ûj=(û1,j , . . . , ûd,j)
T , j = 1, . . . , d and Ûk,l=(ûi,j)i∈Hk,j∈Hl

, 1≤k, l≤r + 1.

Then, the sample eigenvector matrix Û can be expressed as

Û = [û1, û2, . . . , ûd] =


Û1,1 Û1,2 · · · Û1,r+1

Û2,1 Û2,2 · · · Û2,r+1
...

...
...

Ûr+1,1 Ûr+1,2 · · · Ûr+1,r+1

 . (6.1)

Since uj = ej , j = 1, . . . , d, the inner product between the sample and
population eigenvectors satisfies

|< ûj , uj >|2=|< ûj , ej >|2= û2j,j ,
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and the angle between the sample eigenvector and the corresponding population

subspace Sk in (5.5) satisfies

{cos [angle (ûj , Sk)]}2 =
∑
l∈Hk

û2l,j , k = 1, . . . , r + 1. (6.2)

We first state Bai-Yin’s law Bai and Yin (1993).

Lemma 1. Suppose B = (1/s)ZT
s×mZs×m, where Zs×m is an s × m random

matrix whose elements are i.i.d. and have zero mean, unit variance, and finite

fourth moment. As s → ∞ and m/s → c ∈ [0,∞), the largest and smallest

non-zero eigenvalues of B converge almost surely to (1 +
√
c)2 and (1 −

√
c)2,

respectively.

6.1.1. Asymptotic properties of the sample eigenvectors ûj with j > m

We derive the asymptotic properties as follows. First, we show that as n, d →
∞, the angle between ûj and uj converges to 90 degrees:

|< ûj , uj >|2= û2j,j = Oa.s

(n
d

)
, j = m+ 1, . . . , [n ∧ d]. (6.3)

We then show that, as n, d → ∞, the angle between ûj and the corresponding

subspace Sr+1 converges to 0, where Sr+1 is defined as in (5.5):

angle < ûj , Sr+1 >
a.s−−→ 0, j = m+ 1, . . . , [n ∧ d]. (6.4)

To account for the first step, let W = Λ−1/2UT Û Λ̂1/2, where U and V are

defined in (4.1) and Û and Λ̂ are defined in (4.4). It follows from (4.1), (4.2),

and (4.4) that WW T = (1/n)ZTZ, where Z is defined in (5.8). Considering the

kth diagonal entry of the equivalent matrices WW T and (1/n)ZTZ, and noting

that wk,j = λ
−1/2
k λ̂

1/2
j ûk,j (U = Id), it follows that

λ−1
k

d∑
j=1

λ̂j û
2
k,j =

d∑
j=1

w2
k,j =

1

n

n∑
i=1

z2i,k. k = 1, . . . , d. (6.5)

According to (6.5), we have

û2j,j ≤
λm+1

λ̂[n∧d]

(
1

n

n∑
i=1

z2i,j

)
, j = m+ 1, . . . , [n ∧ d]. (6.6)

Select the m+ 1th to nth columns of Z in (5.8) to form the n× [n ∧ d] random

matrix Z̄. Note that
∑n

i=1 z
2
i,j , j = m+ 1, . . . , [n ∧ d], are the diagonal elements

of Z̄T Z̄ and less than or equal to the largest eigenvalue of Z̄T Z̄. Then it follows

from (6.6) that
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max
m+1≤j≤[n∧d]

û2j,j ≤
λm+1

λ̂[n∧d]
λmax(

1

n
Z̄T Z̄) (6.7)

which, together with the asymptotic properties of the sample eigenvalues (5.6)
and Lemma 1, yields (6.3).

For the second step, according to (6.2) we need to show that
d∑

k=m+1

û2k,j
a.s−−→ 1, j = m+ 1, . . . , [n ∧ d]. (6.8)

The non-zero kth diagonal entry of W TW is between its smallest and largest
eigenvalues. Since W TW shares the same non-zero eigenvalues as (1/n)ZZT , it
follows that, for j = 1, . . . , [n ∧ d],

λmin(
1

n
ZZT ) ≤ λ̂j

d∑
k=1

λ−1
k û2k,j =

d∑
k=1

w2
k,j ≤ λmax(

1

n
ZZT ), (6.9)

which yields that, for j = m+ 1, . . . , [n ∧ d],

λj

λ̂j

λmin(
1

n
ZZT ) ≤

d∑
k=1

λjλ
−1
k û2k,j ≤

λj

λ̂j

λmax(
1

n
ZZT ). (6.10)

According to Lemma 1 and the asymptotic properties of the sample eigenval-
ues (5.6), we have that, for j = m+ 1, . . . , [n ∧ d],

λj

λ̂j

λmin

(
1

n
ZZT

)
and

λj

λ̂j

λmax

(
1

n
ZZT

)
a.s−−→ 1. (6.11)

In addition, it follows from Assumption B2 that, for j = m+ 1, . . . , [n ∧ d],{
λjλ

−1
k → 0, k = 1, . . . ,m,

λjλ
−1
k → 1, k = m+ 1, . . . d.

(6.12)

Combining (6.10), (6.11), and (6.12), we have (6.8), which further leads to (6.4).

6.1.2. Asymptotic properties of the sample eigenvectors ûj with
j ∈ [1,m]

We need to prove that, for j = 1, . . . ,m, the angle between the sample
eigenvector ûj and the corresponding population subspace Sl, j ∈ Hl, converges
to arccos(1/

√
1 + cl), l = 1, . . . , r. According to (6.2), we only need to show that∑

k∈Hl

û2k,j
a.s−−→ 1

1 + cl
, j ∈ Hl, l = 1, . . . , r. (6.13)

We provide the detailed proof of (6.13) for l = 1, and briefly illustrate how
repeating the same procedure can lead to (6.13) for l > 2.

In order to show (6.13) for l = 1, we need a lemma about the asymptotic
properties of the eigenvector matrix Û in (6.1):
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Lemma 2. Under Assumptions in Theorem 4 and as n, d → ∞, the rows of the

eigenvector matrix Û satisfy
r∑

l=1

(1 + cl)chc
−1
l

∑
j∈Hl

û2k,j
a.s−−→ 1, k ∈ Hh, h = 1, . . . , r, (6.14)

and the columns of the eigenvector matrix Û satisfy
r∑

h=1

∑
k∈Hh

û2k,j
a.s−−→ 1

1 + cl
, j ∈ Hl, l = 1, . . . , r. (6.15)

In addition, we have
r∑

l=1

(1 + cl)
∑
j∈Hl

û2k,j
a.s−−→ 1, k ∈ H1. (6.16)

Lemma 2 is proved in Section S6.4.3 of the supplementary material. We now

show how to use Lemma 2 to prove (6.13) for l = 1. If h = 1 in (6.14), we have

that r∑
l=1

(1 + cl)c1c
−1
l

∑
j∈Hl

û2k,j
a.s−−→ 1, k ∈ H1. (6.17)

Note that c1c
−1
l < 1 for l > 1, and comparing (6.16) with (6.17), we get that

r∑
l=2

∑
j∈Hl

û2k,j
a.s−−→ 0,

∑
j∈H1

û2k,j
a.s−−→ 1

1 + c1
, k ∈ H1, (6.18)

which then yields that ∑
k∈H1

∑
j∈H1

û2k,j
a.s−−→ q1

1 + c1
, (6.19)

where q1 is the number of eigenvalues inH1 (5.4). Summing over j ∈ H1 in (6.15),

we have that r∑
h=1

∑
k∈Hh

∑
j∈H1

û2k,j
a.s−−→ q1

1 + c1
. (6.20)

It follows from (6.19) and (6.20) that
r∑

h=2

∑
k∈Hh

∑
j∈H1

û2k,j
a.s−−→ 0, (6.21)

which, together with (6.15) for l = 1, yields∑
k∈H1

û2k,j
a.s−−→ 1

1 + c1
, j ∈ H1.

This is (6.13) for l = 1.
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We now prove (6.13) for l = 2, . . . , r. Note that it follows from (6.21)

that (6.14) becomes
r∑

l=2

(1 + cl)chc
−1
l

∑
j∈Hl

û2k,j
a.s−−→ 1, k ∈ Hh, h = 2, . . . , r. (6.22)

It follows from (6.18) that (6.15) becomes
r∑

h=2

∑
k∈Hh

û2k,j
a.s−−→ 1

1 + cl
, j ∈ Hl, l = 2, . . . , r. (6.23)

Similar to (6.16), we have
r∑

l=2

(1 + cl)
∑
j∈Hl

û2k,j
a.s−−→ 1, k ∈ H2. (6.24)

Combining (6.22), (6.23), and (6.24), we can prove (6.13) for l = 2. We can

repeat the same procedure for l = 3, . . . , r.

Supplementary Materials

Additional results, simulations, and proofs can be found in the online sup-

plementary materials.
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