
Statistica Sinica 25 (2015), 1679-1689

doi:http://dx.doi.org/10.5705/ss.2014.197

A SKEWED VERSION OF THE ROBBINS-MONRO-JOSEPH

PROCEDURE FOR BINARY RESPONSE

Dianpeng Wang1, Yubin Tian1 and C. F. Jeff Wu2

1Beijing Institute of Technology and 2Georgia Institute of Technology

Abstract: The Robbins-Monro stochastic approximation procedure has been used

for sensitivity testing. Joseph (2004) recognized that it is not well suited for binary

data and proposed a modification that gives better performance for p between

0.1 and 0.9. However, for extreme p values, say p ≤ 0.01 or p ≥ 0.99, the Joseph

version does not perform well. To overcome this difficulty, we propose a modification

based on an asymmetric quadratic loss function. The new procedure can speed up

convergence by employing different penalties for undershooting and overshooting

to reduce the expected loss. Simulation comparisons show the clear advantages of

the new procedure for extreme p values.

Key words and phrases: Asymmetric loss function, bioassay, extreme quantile, sen-

sitivity testing, stochastic approximation.

1. Introduction

Sensitivity testing has been used in bioassays and industries. Their ap-

plications include finding the dose level at which 50% of the specimens sur-

vive (Wetherill (1963); Wu (1985)), finding the level of shock necessary to make

99.99% of the explosives to fire (Neyer (1994)), and finding a stack force level at

which the problem of multi-feeds in a paper feeder occurs with 0.1% probability

(Joseph and Wu (2002)). Primary interest lies in finding the stimulus level at

which a given response (or success) occurs with probability p. The stimulus level

can be the dose of drug or the applied voltage, and the response can be survival

or explosion, etc. Let x denote the stimulus level, y the binary response, success

or failure, and F (x) the probability of success at level x. The problem can be

formulated as that of finding the pth quantile ζp such that F (ζp) = p. For this

problem, many procedures have been proposed in the literature, e.g., Robbins

and Monro (1951), Wu (1985), Neyer (1994), Joseph, Wu, and Tian (2007), Dror

and Steinberg (2008) and Wu and Tian (2014). Joseph (2004) proposed a modi-

fication to the Robbins-Monro procedure in the case of binary data, and showed

that it gives better performance for p between 0.1 and 0.9. However, for extreme

quantiles like p ≤ 0.01 or p ≥ 0.99, its performance can suddenly deteriorate, as
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demonstrated in the simulation study of Wu and Tian (2014). The main prog-

nosis in Wu and Tian is that the iterative sequence of the Joseph procedure can

descend extremely slowly toward a target like ζ0.99 if the starting value of the

iteration is guessed far above the target. To mitigate this problem, we propose to

use an asymmetric loss function around the target to penalize above target more

severely than below target. The minimization of the expected loss will force the

iterative sequence to make bigger descending steps.

This paper is organized as follows. In Section 2, the Robbins-Monro pro-

cedure and the Joseph modification are reviewed. In Section 3, the proposed

procedure is developed. In Section 4, simulation comparisons between the new

procedure and the Joseph modification are given. Concluding remarks are given

in Section 5.

2. Robbins-Monro Procedure and Joseph’s Modification

Robbins and Monro (1951) proposed the stochastic approximation procedure

xn+1 = xn − an(yn − p), (2.1)

where yn is the response at the stress level xn, {an} is a sequence of positive

constants, and p is pre-specified by the experimenter. Robbins and Monro (1951)

suggested choosing an = c/n, where c is a constant. Chung (1954), Hodges and

Lehmann (1956), and Sacks (1958) recommended the choice c = {F ′(ζp)}−1,

where F ′ denotes the derivative of F . Since F ′(ζp) is unknown, an adaptive

choice is c = 1/β̂n, where β̂n is the regression slope of yi over xi. Anbar (1973)

and Lai and Robbins (1981) proved that β̂n with proper truncation converges

to F ′(ζp) and the procedure with the truncated β̂n has the same asymptotic

distribution as the procedure with c = {F ′(ζp)}−1. Wetherill (1963), Cochran

and Davis (1965), and Young and Easterling (1994) studied the performance of

the Robbins-Monro procedure and several modifications through simulations and

concluded that the Robbins-Monro procedure and related modifications should

be used only for p in the immediate neighborhood of 0.5.

Recognizing that, for binary response y, the Robbins-Monro procedure does

not make provision for the binary nature of data, Joseph (2004) proposed the

modification

xn+1 = xn − an(yn − bn), (2.2)

where {an} and {bn} are sequences of constants. Start the iteration at some

level x1, believed to be close to θ = ζp, and assume the prior distribution of θ has

E(Θ) = x1 and var(Θ)= τ21 . Joseph proposed to choose an and bn by minimizing

E(z2n+1) subject to the condition E(zn+1) = 0, where zn = xn −Θ. The solution
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to this minimization problem is obtained by choosing

bn = Φ{ Φ−1(p)

(1 + β2τ2n)
1/2

}, an =
1

bn(1− bn)

βτ2n
(1 + β2τ2n)

1/2
ϕ{ Φ−1(p)

(1 + β2τ2n)
1/2

},

τ2n+1 = τ2n − bn(1− bn)a
2
n, β =

F ′(F−1(p))

ϕ(Φ−1(p))

1

σ
, (2.3)

where Φ(·) is the normal distribution function and ϕ(·) is the normal density

function. For brevity, we refer to (2.2)-(2.3) as the Robbins-Monro-Joseph pro-

cedure.

A simulation study in Joseph (2004) showed the superior performance of

the modification over the original Robbins-Monro procedure. However, these

simulations were performed only at different values of p between 0.1 and 0.9. Wu

and Tian (2014) performed simulations at p = 0.9, p = 0.99 and p = 0.999 and

showed that the performance of the Robbins-Monro-Joseph procedure depends

critically on the starting value x1, especially for p = 0.99 and p = 0.999. It can

perform badly when x1 is far from the target value ζp. A typical example of this

poor performance is given in (Wu and Tian, 2014, p.11). For estimating ζ0.99
(= 12.3263), suppose x1 is chosen to be 19.3054. In the next 60 iterations the

corresponding yi are all equal to 1 and thus the corresponding xi sequence makes

small, decreasing steps. Even the terminating x value x61(= 17.2733) is still

much larger than 12.3263. In this situation, the sequence descends very slowly

toward ζp, which explains why the Robbins-Monro-Joseph procedure has much

higher mean square errors than competing procedure in the simulations studied

by Wu and Tian (2014). In order to accelerate its convergence toward ζp, we

need to modify the procedure so that bigger steps can be made and more yi = 0

observed. One way to achieve this is to use an asymmetric loss function around

the target ζp to penalize a positive deviation of xi − ζp more severely than a

negative deviation. This drives the xi sequence to make bigger descending steps,

especially for extreme values of p. The detailed development is given in the

next section. The asymmetric loss function has been used effectively before in

deriving an optimization procedure in robust parameter design (Moorhead and

Wu (1998)).

3. The New Procedure

Consider the procedure in (2.2) with the starting level x1. Assume the

distribution function F (x) is from the location-scale family F (x) = G((x−µ)/σ),

where G is a known distribution function. Let θ = ζp and assume that the prior

distribution for θ has E(Θ) = ξ and var(Θ)= τ21 . Let zn = xn − Θ. Then (2.2)

is

zn+1 = zn − an(yn − bn). (3.1)
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Denote P (yn = 1 | zn) by M(zn), so M(zn) = G(zn/σ + G−1(p)). Consider the

asymmetric quadratic loss function

L(z) = wz2, (3.2)

with w = λ1 for z ≤ 0 and λ2 for z > 0, where λ1 > 0 and λ2 > 0. We propose

to choose x1 to minimize E{L(z1)} and an and bn to minimize E{L(zn+1)}. Let
υn = E(zn) and τ2n =var(zn). From (3.1), we have

υn+1=E(zn+1) = υn − anE{M(zn)}+ anbn, (3.3)

τ2n+1=a2n[E{M(zn)}−E2{M(zn)}]−2an[E{znM(zn)}−υnE{M(zn)}]+τ2n. (3.4)

Clearly, it is difficult to obtain an exact distribution of zn or an exact formula

for E{L(zn)}. We employ an approach similar to that in Joseph (2004, p.463) to

approximate the distribution of zn by N(υn, τ
2
n) and M(zn) by Φ{Φ−1(p)+γzn},

where

γ =
M ′(0)

ϕ{Φ−1(p)}
. (3.5)

The choice of γ in (3.5) is to guarantee that the approximation and M have the

same slope at 0. With these approximations, we have

E{L(zn+1)} = (λ1 − λ2)
{
(τ2n+1 + υ2n+1)Φ(−

υn+1

τn+1
)− υn+1τn+1ϕ(−

υn+1

τn+1
)
}

+λ2(τ
2
n+1 + υ2n+1). (3.6)

Choose υ1 to minimize E{L(z1)} for a given τ1 and let x1 = ξ+υ1. Let λ = λ1/λ2

and call it the skewness coefficient. By minimizing (3.6) with respect to an and

υn+1, we obtain the optimal an and υn+1 as the roots of the equations:

∂E{L(zn+1)}
∂an

=λ2τ
′
n+1[2λΦ(−

υn+1

τn+1
)τn+1 + 2τn+1{1− Φ(−υn+1

τn+1
)}] = 0, (3.7)

∂E{L(zn+1)}
∂υn+1

=2λ2(λ−1)
{
υn+1Φ(−

υn+1

τn+1
)−τn+1ϕ(−

υn+1

τn+1
)
}
+2λ2υn+1=0,(3.8)

where υn+1 and τn+1 are defined in (3.3) and (3.4). That the solution to (3.7)

−(3.8) is indeed a minimum is proven in Proposition 1. It is easy to show from

(3.7) that

an =
E{znM(zn)} − υnE{M(zn)}
E{M(zn)} − E2{M(zn)}

. (3.9)

Using numerical computation, we can obtain the root υn+1 of (3.8). From (3.3),

we can obtain the optimal bn as

bn = E{M(zn)} −
(υn − υn+1)

an
. (3.10)
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The proposed skewed version of the Robbins-Monro-Joseph procedure is de-

fined by (3.1), (3.9) and (3.10). At the nth iteration, its step length is the absolute

value of an(yn − bn). Since an is given and bn is close p (as proved in Theorem

1), the step length is determined by |yn − p|. For p close to 1, it is much smaller

when yn = 1 than when yn = 0. Thus, in the specific example given after (2.3),

all the 60 iterations make small descending steps toward the target when only

yn = 1 is observed. By choosing the skewness coefficient λ to be smaller than 1,

the skewed procedure forces the iterations to make bigger downward steps than

upward steps, which also increases the chance of observing yn = 0. Similarly, for

p close to 0, we should choose λ larger than 1 to enforce upward bias. Thus, on

the right panel of Figure 1 in Section 4 we choose large values of λ−1, while on

the left panel we choose large values of λ. A further study in Section 4 shows

how this modification can help mitigate the problem encountered in this specific

example.

Proposition 1. The values of an and bn that minimize E{L(zn+1)} in (3.6) are

unique.

Proof. Since λ > 0, τn+1 > 0, and 0 < Φ(−υn+1/τn+1) < 1, the sign of

∂E{L(zn+1)}/∂an in (3.7) is the same as that of τ ′n+1. By taking the derivative

of τ2n+1 in (3.4), we have

2τn+1τ
′
n+1 = 2an[E{M(zn)} − E2{M(zn)}]− 2[E{znM(zn)} − υnE{M(zn)}].

(3.11)

Because E{M(Zn)} < 1, the expression on the right of (3.11) is strictly linear in

an and thus (3.7) has a unique root. Because limυn+1→−∞ ∂E{L(zn+1)}/∂υn+1 =

−∞, limυn+1→∞ ∂E{L(zn+1)}/∂υn+1 = ∞, and ∂2E{L(zn+1)}/∂υ2n+1 = 2(λ −
1)λ2Φ(−υn+1/τn+1) + 2λ2 ≥ 0, (3.8) has a unique root. A direct computation

has the determinant of the Hessian matrix as 4[E{M(zn)} − E2{M(zn)}][(λ −
1)λ2Φ(−υn+1/τn+1) + λ2]

2, which is larger than 0. Therefore, the values an and

bn that minimize E{L(zn+1)} in (3.6) are unique.

Because the E{M(zn)} and E{znM(zn)} terms in (3.9) and (3.10) do not

have exact formulas, we resort to the normal approximations

E{M(zn)} ≈ Φ
(Φ−1(p) + γυn√

1 + γ2τ2n

)
,

E{znM(zn)} ≈
γτ2n√

1 + γ2τ2n
ϕ
(Φ−1(p) + γυn√

1 + γ2τ2n

)
+ υnΦ

(Φ−1(p) + γυn√
1 + γ2τ2n

)
, (3.12)

where γ is given in (3.5). If λ > 1, λ1 > λ2, then the penalty for under-shooting

is more severe than for over-shooting. Therefore, in order to reduce the expected

loss E{L(zn)}, the corresponding υn value should be positive. Similarly, for

λ < 1, υn < 0 and for λ = 1, υn = 0.
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Table 1. Average and RMSE of x61 for estimating ζ0.99(= 12.3263), n = 60,
true model=normal distribution, µg = 10, σg = 4.0, and x1 = 19.3054.

λ−1 Average RMSE %{yi = 0}
1 17.2733 4.9470 0

100 15.3308 3.0047 0.3%
1,000 14.6634 2.3658 37.4%

Proposition 2. If λ = 1, then υn ≡ 0; if λ > 1, then υn > 0; if λ < 1, then

υn < 0.

Proof. If λ = 1, the solution of (3.8) is υn+1 = 0. If λ > 1, because ∂E{L(zn+1)}
/∂υn+1 < 0 at υn+1 = 0 and because ∂2E{L(zn+1)}/∂υ2n+1 ≥ 0, the root υn+1

of (3.8) is positive. A similar argument can be made for λ < 1.

Theorem 1. For the procedure given in (3.1), (3.9), and (3.10) with the normal

approximation (3.12), zn →p 0.

The proof is in the Appendix.

4. Simulation Comparisons

We first show how the modified procedure can mitigate the problem in the

example of Section 3. The example came from Table 6A in Wu and Tian (2014)

with the choice of µg = 10 and σg = 4, where µg is the same as the mean of

the normal distribution and σg is the same as γ−1 with γ defined in (3.5). Using

the parameters of Wu and Tian, we generated 1,000 simulations for the modified

procedure with λ−1 = 100 and 1,000. In Table 1, the average value and root

mean square error (RMSE) of x61 and the percentage of yi = 0 among the 1,000

simulations are given for each of the three competing versions. The values in the

Table 4.1 for λ = 1 were taken from Table 6A of Wu and Tian. Here, as λ−1

increases the RMSE decreases, the final estimate x61 gets closer to the target,

and the percentage of yi = 0 increases, clearly demonstrating the effectiveness of

using the skewness coefficient λ. We carried out a more comprehensive simulation

study to compare the performance of the procedure given in (3.1), (3.9), (3.10)

with that of the Robbins-Monro-Joseph procedure. Three distributions were

considered: the normal, F (x) = Φ(x); the logistic, F (x) = (1 + e−1.8138x)−1; the

extreme value, F (x) = exp{−exp(−x)}.
We chose σ = (1.8138)−1 for the logistic distribution so that the normal

and the logistic distributions have the same standard deviation; this can be im-

portant for comparing the performances under the two distributions (Wu and

Tian, 2014). As in Joseph (2004), we let τ1 = 1, ξ = F−1(p) and chose 20

samples to estimate θ, and assumed that M ′(0) > 0 known. We used the fi-

nal value of the iterations, x21, as the estimate of θ for both procedures. For
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Figure 1. Plot of mean square errors of x21 for various procedures.

the Robbins-Monro-Joseph procedure, the starting level was randomly gener-

ated from N(ξ, τ21 ) (Joseph (2004)). For the new procedure the starting level

was randomly generated from N(ξ+ υ1, τ
2
1 ), where υ1 was chosen by minimizing

E{L(z1)}. For p between 0.001 and 0.25, we chose λ = 3.5, 10, 50, 100, 1,000,

50,000 in the simulation study; for p between 0.75 and 0.999, we chose λ−1 =

3.5, 10, 50, 100, 1,000, 50,000. For each p, 1,000 simulations were performed.

And the mean square errors (MSEs) of the estimate were calculated. The results

are shown in Figure 1, where the Robbins-Monro-Joseph procedure is denoted

by RMJ and the proposed procedure with λ = 10, 100, 50,000 or λ−1 =10, 100,

50,000 are considered. The new procedure with λ = 10, 100 or λ−1 = 10, 100 per-

forms better than the Robbins-Monro-Joseph procedure, except for the λ = 100

for moderate p values under the extreme value distribution. Results for λ (or

λ−1) = 3.5, 50, 1,000 are omitted in order to keep the clarity of the graphs; these

results do not change the overall conclusions. The same simulation study was
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performed for the skewed logistic distribution F (x) = (1+e−x)−2 and the cauchy

distribution F (x) = arctan(x)/π+1/2. Because the results were similar to those

for the logistic distribution, they are omitted here. As λ increases, although

the new procedure is slightly worse for moderate p values, it still maintains a

clear advantage over the Robbins-Monro-Joseph procedure for extreme p values.

(These results are given in tables in the supplement.) However when the skewness

coefficient λ takes extremely large values, like λ =50,000 in Figure 1, the new

procedure can be undesirable, especially under the extreme value distribution.

5. Conclusions and Further Remarks

We have propose a skewed version of the Robbins-Monro-Joseph procedure

for binary data. Simulation study has shown that, for estimating the extreme

quantiles, it outperforms the original procedure over a wide range of values for

the skewness coefficient λ unless λ or λ−1 is exceedingly large. Our simulations

do not tell us exactly what value of λ should be chosen. The optimal choice of

λ is a complicated function of various factors, and theory does not help here.

Simulations do suggest that a wide range of λ values give good performance. To

find a good λ value requires some tweaking on the part of the experimenter.

An advantage of the proposed procedure is its flexibility in allocating more

runs above or below target by adjusting the value of λ. This can be more easily

seen for p values closer to 0.5. Consider the problem of estimating the effective

dose of a compound, where is common to use a sequential design procedure for

estimating or approximating the median dose ζ0.5; this is the ED50 problem in

bioassay (Finney (1978)). In this context, the Robbins-Monro-Joseph procedure

generates roughly equal numbers of y = 1 and y = 0. If y = 1 means death

or damage of an experimental subject, it is desirable to reduce the number of

y = 1. This can be easily achieved by using the proposed procedure with an

appropriate value of λ larger than 1. If λ is moderately larger than 1, then the

loss of estimation efficiency relative to the Robbins-Monro-Joseph procedure is

small. A small simulation study was done to compare the skewed version (with

λ = 10) and the original version (with λ = 1) in terms of the conflicting goals

of estimation efficiency and reducing numbers of y = 1. In Table 2, the results

of MSE and ♯ of {yi = 1}, i = 1, . . . , 20 are reported for the normal, logistic and

extreme value distributions. The loss of efficiency by using λ = 10 ranges from

mild (normal) to moderate (logistic and extreme value) while the reduction of

♯ of {yi = 1} is consistently around 30%. Of course a moderately large λ does

not have the flexibility in allocating the sample sizes between above target and

below target. The reverse is true if λ is chosen to be much larger than 1. How to

make a proper choice between the two objectives is a subject for further study.
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Table 2. MSE and average of ♯{yi = 1} of estimating ED50 with 20 sample
for three distributions.

MSE ♯{yi = 1}
λ = 1 λ = 10 λ = 1 λ = 10

Normal distribution 0.0791 0.0817 10.008 7.093
Logistic distribution 0.0723 0.1149 10.072 7.291
Extreme value distribution 0.1073 0.1424 10.054 7.296

For the sake of clarity, we have focused our discussions on the extreme high

quantiles like p ≥ 0.99. Extreme low quantiles are equally important in practice.

For example, measures such as LD1, the dosage required to kill 1% of the test

population, are useful for the safety study of compounds. Our discussions and

conclusions can be similarly made by changing from p to 1− p.
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Appendix

Joseph (2004) gave the following result about the convergence of the proce-

dure in (3.1).

Lemma A.1. If (1)
∑∞

n=1 an = ∞,
∑∞

n=1 a
2
n < ∞ and (2)

∑∞
n=2 an|bn −

p|
∑n−1

j=1 an < ∞ hold, then zn →p 0.

Here we show that the sequences {an} and {bn} given in (3.9) and (3.10)

with approximate formula (3.12) satisfy the conditions of Lemma A1 and thus

prove Theorem 1.

Proof. Let ηn = γ2τ2n. From (3.4), (3.9), and (3.12), we have

ηn+1 = ηn − η2nI{(Φ−1(p)− γυn)/
√
1 + ηn}

(1 + ηn)
, (A.1)

where I(u) = ϕ2(u)/[Φ(u){1 − Φ(u)}] is the Fisher information of u in binary

data with probability of response equal to Φ(u). From the proof of Proposition

1 in Joseph (2004), we have ηn → 0, or equivalently τ2n → 0, which together with

(3.8) implies υn → 0. Thus zn →p 0 if F is the normal distribution function.
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For general F, let h(ηn) be the right side of (A.1), n∗ = 1/I(2Φ−1(p)) and

η∗ = 1/I2(2Φ−1(p)). As in the proof of Proposition 2 in Joseph (2004), we can

show that there exists an ñ and some η′ and η′′ such that ηn ≤ η′/n and ηn ≥ η′′/n

for all n ≥ ñ, and that an ≤ η′/(
√
2πp(1− p)nγ) and an ≥ 4η′′ϕ(Φ−1(p))/{γ(n+

1)} for all n ≥ ñ. Thus {an} satisfies condition (1) of Lemma A1.

Next we verify condition (2). From (3.8) we have υn+1/τn+1 = (λ− 1)

ϕ(−υn+1/τn+1)/{(λ − 1)Φ(−υn+1/τn+1) + 1}. Let g(−υn+1/τn+1) be the right

side of this equation. Because g(−x)− x = 0 has a unique root, there exists an

M such that υn+1 = Mτn+1. From (3.10), we have an(bn− p) = an[Φ{(Φ−1(p)+

γυn)/(1+γ2τ2n)
1/2}−p]−M(τn−τn+1). Using Taylor series expansion we obtain

Φ{(Φ−1(p)+γυn)/(1+γ2τ2n)
1/2} = p+Mγϕ{Φ−1(p)}τn+O(τ2n). From (3.4), we

have τn − τn+1 = a2nΦ{(Φ−1(p) + γυn)/(1 + ηn)
1/2}[1 − Φ{(Φ−1(p) + γυn)/(1 +

ηn)
1/2}]/(τn + τn+1). Since ηn = γ2τ2n was previously shown to be of the order

1/n, τn = O(n−1/2) and also an = O(1/n). Thus we obtain an|bn−p| = O(n−3/2).

This implies that condition (2) of Lemma A1 holds. Thus by Lemma A1, zn →p 0.
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