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Abstract: Canonical correlation analysis (CCA) is widely applied in statistical

analysis of multivariate data to find associations between two sets of multidimen-

sional variables. However, we often cannot use CCA directly for survival data

or their monotone transformations, owing to right-censoring in the data. In this

paper, we propose a new robust rank CCA (RRCCA) method based on Kendall’s τ

correlation, and adjust it to deal with multivariate survival data, without requiring

any model assumptions. Owing to the nature of rank correlation, the RRCCA

is invariant against monotone transformations of the data. We establish the

estimation consistency of the RRCCA approach under weak conditions. Simulation

studies demonstrate the superior performance of the RRCCA in terms of estimation

accuracy and empirical power. Lastly, we demonstrate the proposed method by

applying it to Stanford heart transplant data.

Key words and phrases: Canonical correlation analysis, inverse probability of

censoring weighting, Kendall’s τ correlation, right-censoring.

1. Introduction

Canonical correlation analysis (CCA), introduced by Hotelling (1936), is

a well-known statistical technique for finding associations between two sets of

multidimensional variables. It searches for linear projections of each set of

variables, such that the projected variables are maximally correlated. Extensions

of the classical CCA have been proposed for particular kinds of practical data sets.

For example, Akaho (2001) developed a kernel CCA for discovering nonlinear

correlations among variables, Vı́a, Santamaŕıa and Pérez (2007) proposed a

generalization of the CCA that can handle several data sets. Sparse CCAs

(Witten, Tibshirani and Hastie (2009); Hardoon and Shawe-Taylor (2011); Mai

and Zhang (2019); Chen et al. (2020)) have been proposed for high-dimensional

data sets, and supervised CCAs (Witten and Tibshirani (2009); Golugula et al.

(2011)) are used when the two sets of variables are associated with the outcomes.

In medicine, demography, economics, and other fields, available data on the

time to some event are not always exact and complete. These survival times,
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such as time to death, divorce, or the acceptance of a job offer, are subject to

right-censoring. Here, it is important that we be able to measure the correlation

between survival times, such as the times to blindness of the two eyes, and

some works have been done for bivariate survival times (Oakes (1982); Newton

and Rudel (2007); Schemper et al. (2013); Kang et al. (2015)). However, to

the best of our knowledge, no works have focused on the canonical correlation

between random vectors of multivariate survival data, even though such data arise

naturally in many contexts. Typical examples include recurrent events data, for

instance, repeated occurrences of ear infections for each individual, and clustered

survival data, for instance, the possible failure of several dental fillings for an

individual, or the lifetimes of related individuals in family groups (Aalen, Borgan

and Gjessing (2008)). Treating right-censored data as regular data in a CCA can

lead to substantial bias and inaccuracy.

In this study, we address this gap in the literature by developing a new CCA

method under multivariate survival data, where right-censoring can occur. First,

we handle the censoring by using the inverse probability of censoring weighting

technique. Next, we construct the proposed robust rank CCA (RRCCA) method

based on Kendall’s τ correlation, and adjust it to deal with multivariate survival

data, without requiring any model assumptions. Owing to the nature of a

rank correlation, the RRCCA is invariant against monotone transformations of

any of the variables. This is a nice property, because survival times are often

modeled using accelerated failure time models with a logarithmic transformation,

or using transformation models with an unknown increasing function. In addition,

we establish the estimation consistency of the RRCCA approach under weak

conditions.

The rest of the paper is organized as follows. Section 2 gives a brief review of

the classical CCA. In Section 3, we present the RRCCA approach, and establish

its estimation consistency in Section 4. In Section 5, we use simulation studies to

examine the estimation accuracy and empirical power of the proposed approach,

and demonstrate it using Stanford heart transplant data in Section 6. Section 7

concludes the paper.

2. A Brief Review of CCA

For two random vectors X̃ = (X̃1, . . . , X̃p) ∈ Rp and Ỹ = (Ỹ1, . . . , Ỹq) ∈ Rq,

denote the covariance matrix of (X̃T, ỸT)T as

Σ =

(
ΣXX ΣXY

ΣYX ΣYY

)
.
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Note that we remove the tilde symbol from the subscript for simplicity of notation

throughout the remainder of the paper. A CCA seeks vectors a ∈ Rp and b ∈ Rq

that maximize ρc = Cor(aTX̃, bTỸ); that is

ρc = max
a,b

aTΣXYb√
aTΣXXa

√
bTΣYYb

. (2.1)

The correlation ρc is called the first canonical correlation, and the vectors a and

b are the first pair of canonical vectors. If ΣXX and ΣYY are invertible, ρc is

equal to the square root of the largest eigenvalue of the matrices

Σ−1
XXΣXYΣ−1

YYΣYX and Σ−1
YYΣYXΣ−1

XXΣXY, (2.2)

and a and b are the respective eigenvectors of (2.2) corresponding to the largest

eigenvalue.

In practice, the sample covariance matrices of the observed data (X̃(1), Ỹ(1)),

. . . , (X̃(n), Ỹ(n)) ∈ Rp × Rq are computed, and the canonical vectors and

correlations are obtained based on the eigenvectors and the eigenvalues of the

sample covariance matrices

Σ̂−1
XXΣ̂XYΣ̂−1

YYΣ̂YX and Σ̂−1
YYΣ̂YXΣ̂−1

XXΣ̂XY. (2.3)

3. Methodology

In practice, in addition to covariates, some or all of the components of X̃

and Ỹ may be survival times, or some monotone transformations of survival

times, such as logarithmic survival times. Hence, in general, we assume each

component varies from −∞ to ∞. We show later that our proposed method

is unaffected by monotone transformations. Because the survival times are

subject to right-censoring, without loss of generality, we denote Ck as the

censoring variable corresponding to X̃k, and Dl as the censoring variable of Ỹl,

for k = 1, . . . , p and l = 1, . . . , q. Let the censoring variable be positive infinity

if there exists no censoring for some X̃k or Ỹl. We assume both Ck and Dl are

independent of X̃k and Ỹl. For simplicity, we further assume that Ck and Dl are

independent, as are Ck and Ck′ and Dl and Dl′ . Let X
(i)
k = min(X̃

(i)
k , C

(i)
k ), δ

(i)
k =

I(X̃
(i)
k ≤ C

(i)
k ); Y

(i)
l = min(Ỹ

(i)
l , D

(i)
l ), ϕ

(i)
l = I(Ỹ

(i)
l ≤ D

(i)
l ), for i = 1, . . . , n.

Then, the independent and identically distributed (i.i.d.) sample we observe

is (X(i),Y(i), δ(i),ϕ(i)), where X(i) = (X
(i)
1 , . . . , X

(i)
p ),Y(i) = (Y

(i)
1 , . . . , Y

(i)
q ),

δ(i) = (δ
(i)
1 , . . . , δ

(i)
p ),ϕ(i) = (ϕ

(i)
1 , . . . , ϕ

(i)
q ).
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3.1. Inverse probability of censoring weighting

Let SCk
(t) = Pr(Ck > t) and SDl

(t) = Pr(Dl > t) be the survival functions

of Ck and Dl, respectively. We obtain the following unbiased variances and

covariances in (2.2):

Cov(X̃k, Ỹl)=E

{
δkϕlXkYl

SCk
(Xk)SDl

(Yl)

}
− E

{
δkXk

SCk
(Xk)

}
E

{
ϕlYl

SDl
(Yl)

}
,

Cov(X̃k, X̃k′)=


E
{

δkδk′XkXk′

SCk
(Xk)SC

k′ (Xk′ )

}
− E

{
δkXk

SCk
(Xk)

}
E
{ δk′Xk′

SCk′ (Xk′)

}
, k ̸= k′;

E
{

δkX2
k

SCk
(Xk)

}
−
[
E
{

δkXk

SCk
(Xk)

}]2
, k = k′,

Cov(Ỹl, Ỹl′)=

E
{

ϕlϕl′YlYl′

SDl
(Yl)SD

l′
(Yl′ )

}
− E

{
ϕlYl

SDl
(Yl)

}
E
{

ϕl′Yl′

SD
l′
(Yl′ )

}
, l ̸= l′;

E
{

ϕlY 2
l

SDl
(Yl)

}
−
[
E
{

ϕlYl

SDl
(Yl)

}]2
, l = l′.

Their sample versions can be estimated using corresponding moment estimators.

For example, Cov(X̃k, Ỹl) can be estimated by

1

n

n∑
i=1

δ
(i)
k

ŜCk
(X

(i)
k )

ϕ
(i)
l

ŜDl
(Y

(i)
l )

X
(i)
k Y

(i)
l

−

{
1

n

n∑
i=1

δ
(i)
k

ŜCk
(X

(i)
k )

X
(i)
k

}{
1

n

n∑
i=1

ϕ
(i)
l

ŜDl
(Y

(i)
l )

Y
(i)
l

}
,

where ŜCk
(t) and ŜDl

(t) are Kaplan–Meier estimators of SCk
and SDl

, respec-

tively. Specifically, ŜCk
(t) =

∏
s≤t(1 − ∆NCk

(s)/Gk(s)), where NCk
(t) =

∑n
i=1

N
(i)
Ck

(t), with N
(i)
Ck

(t) = I(X
(i)
k ≤ t, δ

(i)
k = 0), and Gk(t) =

∑n
i=1G

(i)
k (t), with

G
(i)
k (t) = I(X

(i)
k ≥ t); ŜDl

(t) is defined similarly. Hence, a CCA can still use

the sample estimators of the above adjusted variances and covariances in (2.3).

For simplicity of presentation, we refer to the CCA with inverse probability of

censoring weighting approach as CCA-IPCW.

Remark 1. The CCA-IPCW approach may not be robust for survival data,

because the sample covariance matrices are used in solving the eigen-problem.

This procedure is optimal for the classical CCA under a multivariate normal

distribution, but is less efficient with heavier-tailed model distributions. As

shown by (Romanazzi (1992)), the sample covariance matrices are highly sensitive

to outliers, and a canonical analysis based on these matrices will yield unreliable

results. The CCA-IPCW is also not invariant against a monotone transformation.

We demonstrate these drawbacks in our simulation results in Section 5. Moreover,

though some versions of the CCA are robust, for example, using the minimum

covariance determinant estimator (Rousseeuw (1985); Croux and Dehon (2002))
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or the robust alternating regressions method (Filzmoser, Dehon and Croux

(2000); Branco et al. (2005)), they cannot be applied directly to right-censored

survival data.

3.2. RRCCA

In survival analysis, a common approach to assess the effects of covariates on

survival is to use a semiparametric regression model, such as the transformation

model. The transformation model, which includes the proportional hazards model

and the proportional odds model as special cases, assumes that an unknown

monotone transformation of the underlying failure time is linearly related to

the covariates with various error distributions. When multivariate survival

data are available, the analysis model becomes more complicated, such as the

multivariate frailty model (Aalen, Borgan and Gjessing (2008)). Therefore, we

need a simpler statistical tool that is both robust and invariant against monotone

data transformations.

We propose a new RRCCA based on Kendall’s τ correlation, without needing

any model assumptions. Because (2.1) is scale free, the problem is equivalent if

we replace the covariance matrices with their corresponding correlation matrices.

Hence, in this case, the solution (2.2) is no different. We then replace the Pearson

correlations of every pair of random variables in the correlation matrices with

Kendall’s τ correlations, which are more robust. When right-censoring occurs, it

is necessary to adjust these rank correlations to avoid severe bias. Specifically,

using the inverse probability of censoring weighting technique, we construct the

following unbiased Kendall’s τ correlations for the survival data:

τ̂XkYl
=

4

n(n− 1)

n∑
i ̸=j

δ
(j)
k

Ŝ2
Ck
(X

(j)
k )

ϕ
(j)
l

Ŝ2
Dl
(Y

(j)
l )

I(X
(i)
k > X

(j)
k )I(Y

(i)
l > Y

(j)
l )− 1,

τ̂XkXk′ =
4

n(n− 1)

n∑
i ̸=j

δ
(j)
k

Ŝ2
Ck
(X

(j)
k )

δ
(j)
k′

Ŝ2
Ck′

(X
(j)
k′ )

I(X
(i)
k > X

(j)
k )I(X

(i)
k′ > X

(j)
k′ )− 1,

τ̂YlYl′ =
4

n(n− 1)

n∑
i ̸=j

ϕ
(j)
l

Ŝ2
Dl
(Y

(j)
l )

ϕ
(j)
l′

Ŝ2
Dl′

(Y
(j)
l′ )

I(Y
(i)
l > Y

(j)
l )I(Y

(i)
l′ > Y

(j)
l′ )− 1.

In this way, we can perform an RRCCA by solving the eigenvalues and

eigenvectors of the following matrices:

Ŝ−1
XXŜXYŜ−1

YYŜYX, (3.1)
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where

ŜXX = (τ̂XkXk′ )p×p, ŜXY = (τ̂XkYl
)p×q, and ŜYY = (τ̂YlYl′ )q×q (3.2)

are sample versions of Kendall’s τ correlation matrices. We denote the maximum

canonical correlation obtained this way as τ̂ c. A similar inverse probability of

censoring weighting technique for Kendall’s τ correlation is used in Song et al.

(2014), who consider the correlation measure between a right-censored response

and a regular covariate, both univariate, in the variable screening problem. The

RRCCA is invariant under any coordinatewise monotone data transformations,

unlike the CCA-IPCW. We discuss the benefits of using a robust rank correlation

in our numerical experiments.

4. Theory

In this section, we prove the estimation consistency of the RRCCA under

general conditions. For two random variables Ũ and Ṽ from a joint distribution,

let (Ũ1, Ṽ1) and (Ũ2, Ṽ2) be two independent realizations without censoring.

Then, the population Kendall’s rank correlation is τUV = Cov{sgn(Ũ1 − Ũ2),

sgn(Ṽ1 − Ṽ2)}, and

SXX = (τXkXk′ )p×p, SXY = (τXkYl
)p×q, and SYY = (τYlYl′ )q×q

are the population Kendall’s rank correlation matrices that (3.2) estimates

for. We denote the matrix spectral norm ∥A∥ ≡ sup{∥AX∥ : ∥X∥ = 1} =

λ
1/2
max(ATA) for any matrix A, which for symmetric matrices reduces to ∥A∥ =

maxi |λi(A)|.
The following conditions are required:

(C1) There exist positive constants κ and ω, such that min{λmin(SXX),

λmin(SYY)} ≥ κ, λ
1/2
max(ST

XYSXY) ≤ 1/ω.

(C2) There exist positive constants uk and vl for every k = 1, . . . , p and l =

1, . . . , q, such that Pr(Ck = uk) > 0, Pr(Dl = vl) > 0, and Pr(Ck > uk) =

Pr(Dl > vl) = 0.

Condition (C1) ensures that the rank-based correlation matrices are well

conditioned; similar conditions can be found in Bickel and Levina (2008).

Condition (C2) is common in the survival literature (Peng and Fine (2009); Song

et al. (2014)) for asymptotic analysis, and is satisfied in many clinical settings.

Note that both p and q can vary with the sample size n in the theorem.

Theorem 1. Under Conditions (C1) and (C2), there exists a positive constant

M , where, for any 0 < ϵ < 1, when n > 4Mϵ−2, p2 log np2 = o(n), q2 log nq2 =
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o(n), and pq log npq = o(n) hold, then we have

∥Ŝ−1
XXŜXYŜ−1

YYŜYX − S−1
XXSXYS−1

YYSYX∥ = op(1).

Theorem 1 confirms the consistency of the product of rank-based sample

correlation matrices, and hence the canonical correlations and vectors obtained

thereafter are also consistent. The technical proofs are relegated to the Appendix.

5. Simulation

5.1. Estimation accuracy

In this section, we use simulations to examine the estimation accuracy of

CCA-IPCW and RRCCA. We consider two sample sizes, n = 100 and 200, and

the number of replications is M = 1,000. We set the same censoring rates for

all components of the two random vectors in our simulation, and 10% and 30%

censoring rates are considered.

The data-generating model is similar to those in Branco et al. (2005)

and Taskinen et al. (2006), although we add a censoring mechanism. First,

the following sampling distributions of (X̃, Ỹ) are considered: (i) a normal

distribution: Np+q(0,Σ); (ii) a multivariate t distribution with three degrees of

freedom and scatter parameter Σ; (iii) a normal distribution with contamination:

0.95Np+q(0,Σ) + 0.05Np+q(0, 9Σ); and (iv) a lognormal distribution: log X̃ and

log Ỹ are generated from Np+q(0,Σ). We take the covariance matrices of (X̃, Ỹ)

((log X̃, log Ỹ) for case (iv)) as

Σ =

(
Ip R

R Ip

)
,

where R = diag(ρ1, . . . , ρp). Our choices are (a) ρ1 = 0.8, ρ2 = 0.2, (b) ρ1 =

0.6, ρ2 = 0.4, and (c) ρ1 = 0.9, ρ2 = 0.6, ρ3 = 0.3.

Next, we independently generate the censoring variables Ck and Dl as Ck =

logGk and Dl = logHl for distributions (i)–(iii), and Ck = Gk and Dl = Hl for

distribution (iv). Here, Gk and Hl are uniform random variables, defined on the

intervals (0, gk) and (0, hl), respectively, where gk and hl are chosen to achieve

the desired censoring ratio. Finally, X
(i)
k = min(X̃

(i)
k , C

(i)
k ), δ

(i)
k = I(X̃

(i)
k ≤ C

(i)
k )

and Y
(i)
l = min(Ỹ

(i)
l , D

(i)
l ), ϕ

(i)
l = I(Ỹ

(i)
l ≤ D

(i)
l ).

We need to find the population target of estimation in order to check the

estimation accuracy.

The population canonical correlations: We use ρcj and τ cj to denote the

population canonical correlations for CCA-IPCW and RRCCA, respectively. For
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(i) the normal distribution or (iii) the contaminated normal case, by (2.2), ρcj
is just ρj . Furthermore, using τ = 2π−1 arcsin ρ, the well-known relations for

the bivariate normal distribution with linear correlation ρ, we have that τ cj is

2π−1 arcsin ρj . Under (ii) the multivariate t distribution, ρcj is still ρj , and τ cj
remains 2π−1 arcsin ρj , because the relation between Kendall’s τ and the linear

correlation ρ holds more generally for all elliptical distributions with continuous

marginals, including the bivariate Student t distribution (Lindskog, McNeil and

Schmock (2003)). For (iv) the lognormal distribution, the invariance property

against monotone transformations of rank correlations means that τ cj is still the

same as that under the normal distribution. It can be shown that the variance

matrix of Z̃ = (eX̃, eỸ) is Var(Z̃) = {E(Z̃)E(Z̃)T} ◦ {eΣ − 1(p+q)×(p+q)}, where ◦
represents elementwise multiplication. Hence, a simple calculation shows that ρcj
is equal to (eρj − 1)/(e− 1).

The population canonical vectors: In most cases, the canonical vectors for

an RRCCA differ from those for a CCA-IPCW, because they have different

population covariance matrices. However, in this example, it is easy to see that

these matrices are all diagonal, by the above argument, and that the canonical

vectors are the same unit vectors.

To assess the estimation accuracy, we adopt the following two criteria.

Criterion 1 (The mean squared error (MSE) when estimating the

direction of a canonical vector (Branco et al. (2005))). . For the jth

canonical vector for X, the MSE is measured by

MSE(âj) =
1

M

M∑
m=1

arccos

{
|aT

j â
(m)
j |

∥aj∥∥â(m)
j ∥

}
,

where aj is the jth population canonical vector for X, and â
(m)
j is the estimate

obtained from the mth generated sample. Using angles makes the MSE invariant

to whether we choose the standardized or unstandardized canonical vectors.

Because the results of MSE(b̂j) for Y are similar in our example, we omit them

to conserve space.

Criterion 2 (The mean squared relative error (MSRE) when estimating

the magnitude of a canonical correlation (Kudraszow and Maronna

(2011))). For the jth canonical correlation, the MSRE compares the jth

canonical correlation estimate with its corresponding theoretical one. Note that

the two approaches estimate different population quantities of the canonical
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correlation. Therefore, we compute

MSRE(ρ̂cj) =
1

M

M∑
m=1

{
(ρ̂cj)

(m) − ρcj
ρcj

}2

,

MSRE(τ̂ cj ) =
1

M

M∑
m=1

{
(τ̂ cj )

(m) − τ cj
τ cj

}2

,

where (ρ̂cj)
(m) and (τ̂ cj )

(m) are the corresponding estimates computed from the

mth replication.

The results of the simulation are presented in Tables 1 and 2, and show that

the RRCCA outperforms the CCA-IPCW in all cases. The advantage of using

the RRCCA is most evident under the lognormal distribution. The RRCCA

performs similarly under different distributions.

5.2. Empirical power of permutation test based on maximum CCA

A classical application of a CCA is to test the independence of two sets of

variables. If X̃ is independent of Ỹ, then ΣXY is 0, and all orders of canonical

correlations are consequently zero. For the multivariate normal distribution, the

independence and the maximum canonical correlation being zero are equivalent.

For other distributions, the conclusion of dependence can be drawn if the

maximum canonical correlation is not zero, but independence cannot be inferred,

even if the latter is zero. Therefore, to some extent, the maximum canonical

correlation can be used to test the independence of X̃ and Ỹ. We propose

using the maximum RRCCA as the test statistic, and using the permutation

test procedure to set the critical value. We consider a simulation design to check

the type-I error rate and the power of the test with a significance level of 0.05,

based on 2,000 Monte Carlo replications.

We generate the data from the same model as in the previous subsection,

except with a different R = diag(ρ1, ρ2). We use ρ1 = ρ2 = 0, 0.1, 0.3, and 0.5.

When ρ1 = ρ2 = 0, X̃ and Ỹ are independent for distributions (i), (iii), and

(iv), but not for the t distribution. Thus, we leave the t distribution out of this

simulation study. The type-I error rates are given in Table 3. When ρ1 and ρ2
are not zero, X̃ and Ỹ are correlated and dependent; the power is given in Table

4.

Table 3 shows that the CCA-IPCW has the correct type-I error under the

normal distribution and the lognormal distribution with a low censoring rate, but

that this error becomes inflated for the contaminated normal distribution, and is

incorrect for the lognormal distribution with a higher censoring rate. Thus, its

power becomes meaningless under the latter two distributions. In contrast, the
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Table 1. The mean squared error (MSE) of estimating the direction of the jth canonical
vector.

Case (a) Case (b) Case (c)

n censoring distribution methods j = 1 j = 2 j = 1 j = 2 j = 1 j = 2 j = 3

100 10% normal CCA-IPCW 0.12 0.14 0.37 0.39 0.22 0.34 0.31

RRCCA 0.07 0.10 0.27 0.28 0.10 0.23 0.23

t(3) CCA-IPCW 0.16 0.21 0.46 0.49 0.29 0.52 0.47

RRCCA 0.08 0.11 0.30 0.32 0.11 0.27 0.27

contaminated normal CCA-IPCW 0.13 0.16 0.40 0.42 0.23 0.40 0.36

RRCCA 0.08 0.11 0.27 0.29 0.10 0.24 0.24

lognormal CCA-IPCW 0.36 0.36 0.62 0.60 0.65 0.85 0.70

RRCCA 0.07 0.10 0.26 0.28 0.10 0.23 0.23

30% normal CCA-IPCW 0.21 0.21 0.47 0.48 0.43 0.59 0.48

RRCCA 0.11 0.13 0.34 0.36 0.18 0.33 0.31

t(3) CCA-IPCW 0.19 0.24 0.50 0.54 0.34 0.60 0.52

RRCCA 0.12 0.15 0.37 0.39 0.17 0.36 0.35

contaminated normal CCA-IPCW 0.20 0.22 0.50 0.51 0.37 0.56 0.49

RRCCA 0.11 0.14 0.35 0.36 0.17 0.34 0.32

lognormal CCA-IPCW 0.71 0.70 0.74 0.73 0.92 0.96 0.93

RRCCA 0.11 0.14 0.35 0.36 0.17 0.34 0.32

200 10% normal CCA-IPCW 0.08 0.10 0.26 0.27 0.15 0.25 0.22

RRCCA 0.05 0.07 0.18 0.19 0.06 0.16 0.16

t(3) CCA-IPCW 0.12 0.16 0.38 0.41 0.20 0.40 0.37

RRCCA 0.06 0.08 0.20 0.22 0.07 0.18 0.18

contaminated normal CCA-IPCW 0.09 0.12 0.31 0.33 0.17 0.30 0.27

RRCCA 0.05 0.07 0.19 0.21 0.07 0.16 0.16

lognormal CCA-IPCW 0.29 0.29 0.57 0.57 0.62 0.80 0.58

RRCCA 0.05 0.07 0.17 0.19 0.07 0.16 0.16

30% normal CCA-IPCW 0.15 0.16 0.40 0.41 0.32 0.44 0.36

RRCCA 0.07 0.09 0.24 0.26 0.11 0.21 0.21

t(3) CCA-IPCW 0.15 0.21 0.44 0.49 0.26 0.48 0.45

RRCCA 0.08 0.11 0.26 0.28 0.12 0.25 0.24

contaminated normal CCA-IPCW 0.15 0.16 0.42 0.44 0.29 0.44 0.38

RRCCA 0.07 0.10 0.24 0.26 0.11 0.23 0.22

lognormal CCA-IPCW 0.67 0.64 0.76 0.76 0.88 0.97 0.91

RRCCA 0.07 0.09 0.23 0.24 0.11 0.22 0.21

RRCCA has the correct type-I error under all scenarios. Moreover, the RRCCA

has better power than that of the CCA-IPCW in all cases. Not surprisingly, the

power is monotone with respect to ρ. When ρ = 0.5, the RRCCA has near perfect

power, even with n = 100 and a 30% censoring rate. When ρ = 0.1, the power is

much lower, indicating the difficulty of the testing problem, even under a sample

size of n = 200. The more interesting case is ρ = 0.3, where the RRCCA still has

relatively high power for n = 100 and a censoring rate of 10%.

6. Real-Data Analysis

Here, we demonstrate the proposed method by using it to analyze Stanford

heart transplant data. The original data set can be found in Crowley and Hu
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Table 2. The mean squared relative error (MSRE) of estimating the magnitude of the
jth canonical correlation.

Case (a) Case (b) Case (c)

n censoring distribution methods j = 1 j = 2 j = 1 j = 2 j = 1 j = 2 j = 3

100 10% normal CCA-IPCW 0.01 0.30 0.03 0.08 0.01 0.03 0.15

RRCCA 0.01 0.26 0.02 0.06 0.00 0.02 0.11

t(3) CCA-IPCW 0.02 0.54 0.04 0.14 0.01 0.04 0.23

RRCCA 0.01 0.28 0.02 0.08 0.00 0.02 0.15

contaminated normal CCA-IPCW 0.01 0.35 0.03 0.10 0.01 0.03 0.17

RRCCA 0.01 0.26 0.02 0.06 0.00 0.02 0.13

lognormal CCA-IPCW 0.12 1.27 0.32 0.40 0.06 0.19 0.44

RRCCA 0.01 0.25 0.02 0.06 0.00 0.02 0.12

30% normal CCA-IPCW 0.03 0.48 0.07 0.20 0.02 0.06 0.25

RRCCA 0.02 0.34 0.03 0.12 0.01 0.03 0.18

t(3) CCA-IPCW 0.02 0.64 0.06 0.19 0.01 0.05 0.25

RRCCA 0.02 0.35 0.03 0.15 0.01 0.04 0.23

contaminated normal CCA-IPCW 0.03 0.48 0.06 0.18 0.02 0.05 0.24

RRCCA 0.02 0.34 0.03 0.12 0.01 0.03 0.20

lognormal CCA-IPCW 0.18 3.32 0.67 0.51 0.17 0.45 0.64

RRCCA 0.02 0.33 0.03 0.12 0.01 0.03 0.20

200 10% normal CCA-IPCW 0.01 0.20 0.02 0.05 0.00 0.01 0.08

RRCCA 0.00 0.14 0.01 0.03 0.00 0.01 0.06

t(3) CCA-IPCW 0.01 0.38 0.03 0.10 0.01 0.03 0.15

RRCCA 0.00 0.17 0.01 0.04 0.00 0.01 0.07

contaminated normal CCA-IPCW 0.01 0.24 0.02 0.06 0.00 0.02 0.11

RRCCA 0.00 0.15 0.01 0.04 0.00 0.01 0.07

lognormal CCA-IPCW 0.11 1.21 0.23 0.33 0.06 0.16 0.41

RRCCA 0.00 0.14 0.01 0.03 0.00 0.01 0.06

30% normal CCA-IPCW 0.02 0.35 0.05 0.14 0.02 0.04 0.20

RRCCA 0.01 0.21 0.02 0.06 0.01 0.02 0.10

t(3) CCA-IPCW 0.02 0.49 0.04 0.12 0.01 0.03 0.18

RRCCA 0.01 0.25 0.02 0.08 0.01 0.02 0.15

contaminated normal CCA-IPCW 0.02 0.34 0.04 0.12 0.01 0.04 0.18

RRCCA 0.01 0.21 0.02 0.07 0.01 0.02 0.12

lognormal CCA-IPCW 0.17 2.07 0.50 0.43 0.13 0.32 0.50

RRCCA 0.01 0.22 0.02 0.06 0.01 0.02 0.10

(1977), and is reproduced by Kalbfleisch and Prentice (1980). We focus on the

data of 69 patients who waited for a donor heart and received a transplantation.

Denote the waiting time, in days, for these patients as Y1, and their post-

transplant survival as Y2. The waiting times are all uncensored among these

patients, and 24 are censored for their post-transplant survival times. We include

two covariates in the analysis: age at acceptance into the program (X1), and the

mismatch score (X2). The latter is one of three measures of the degree to which

a donor and a recipient are mismatched for tissue type, and is the only one found

to be useful in previous analyses (Aitkin, Laird and Francis (1983)). Four of the

transplanted patients have incomplete data on mismatch score, and so are not

used in our analysis.
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Table 3. Type-I error rate of the permutation test based on maximum CCA.

Distribution

n censoring method normal contaminated normal lognormal

100 10% CCA-IPCW 0.052 0.130 0.050

RRCCA 0.051 0.062 0.054

30% CCA-IPCW 0.046 0.091 0.004

RRCCA 0.044 0.069 0.050

200 10% CCA-IPCW 0.051 0.151 0.048

RRCCA 0.047 0.078 0.046

30% CCA-IPCW 0.044 0.098 0.007

RRCCA 0.042 0.060 0.050

Table 4. Power of the permutation test based on maximum CCA.

Distribution

n censoring ρ method normal contaminated normal lognormal

100 10% 0.1 CCA-IPCW 0.100 0.225 0.062

RRCCA 0.126 0.156 0.122

0.3 CCA-IPCW 0.621 0.676 0.160

RRCCA 0.826 0.838 0.814

0.5 CCA-IPCW 0.984 0.980 0.360

RRCCA 1.000 1.000 1.000

30% 0.1 CCA-IPCW 0.068 0.133 0.006

RRCCA 0.060 0.068 0.064

0.3 CCA-IPCW 0.207 0.334 0.007

RRCCA 0.470 0.475 0.462

0.5 CCA-IPCW 0.564 0.659 0.007

RRCCA 0.962 0.967 0.969

200 10% 0.1 CCA-IPCW 0.172 0.334 0.092

RRCCA 0.248 0.261 0.225

0.3 CCA-IPCW 0.923 0.929 0.237

RRCCA 0.994 0.990 0.994

0.5 CCA-IPCW 1.000 1.000 0.487

RRCCA 1.000 1.000 1.000

30% 0.1 CCA-IPCW 0.077 0.165 0.007

RRCCA 0.097 0.114 0.101

0.3 CCA-IPCW 0.340 0.528 0.013

RRCCA 0.875 0.832 0.854

0.5 CCA-IPCW 0.782 0.872 0.014

RRCCA 1.000 1.000 1.000
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Figure 1. Histograms of Y1 and Y2 in the real-data example.

Table 5. Canonical vectors of RRCCA in the real-data example.

â1: 0.893 0.450 b̂1: 0.025 -1.000

â2: -0.521 0.854 b̂2: -0.984 0.178

We first test the independence between (X1, X2) and (Y1, Y2). A permutation

test of the CCA-IPCW with a significance level of 0.05 does not reject the

hypothesis of independence. However, the corresponding RRCCA with the same

significance level rejects the hypothesis of independence, which partially coincides

with the dependence conclusion between Y1 and Y2 in Shih and Louis (1996). The

histograms in Figure 1 show that the two survival times are heavy-tailed, and

that the CCA-IPCW may not be robust. Even if we apply a log transformation

to Y1 and Y2, the results of the permutation tests remain the same.

Next, we conduct a canonical analysis. The first and second canonical

correlations for the RRCCA approach are 0.34 and 0.08, respectively. The

coefficients of the canonical vectors, often used to interpret the canonical variates,

are given in Table 5. It can be seen that Y2 has a mild association with X1 and

X2, where â1 is determined mainly by X1, and to a lesser extent, by X2. Thus

an older age and a greater mismatch score of tissue type may result in a shorter

post-transplant survival.

7. Conclusion

We have used the inverse probability of censoring weighting and Kendall’s

rank correlation to construct an RRCCA for survival data with right-censoring.

We have demonstrated the benefits of using the rank correlation by means of
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simulations. We could also consider a version of the RRCCA approach based

on Spearman’s rank correlation, where we replace the unbiased Kendall’s rank

correlations in (3.1) with adjusted Spearman’s rank correlations. Specifically,

τ̂XkYl
is replaced with

r̂XkYl
=

12

n(n2 − 1)

n∑
i=1

{
n∑

j=1

δ
(i)
k

Ŝ2
Ck
(X

(i)
k )

I(X
(j)
k > X

(i)
k )

}
{

n∑
m=1

ϕ
(i)
l

Ŝ2
Dl
(Y

(i)
l )

I(Y
(m)
l > Y

(i)
l )

}
− 3(n− 1)

n+ 1
,

and τ̂XkX′
k
and τ̂YlY ′

l
are replaced similarly with r̂XkX′

k
and r̂YlY ′

l
, respectively.

Using a numerical study, we also analyzed this Spearman’s correlation version

of the RRCCA, finding that it performs similarly to, but slightly worse than

Kendall’s version. For the full results, see the online Supplementary Material.

Therefore, we have presented only the Kendall’s τ version to conserve space.

Our theory assumes that the censoring variables are uncorrelated, and so

it would be interesting to consider the case when they are correlated. Here,

we would need to modify the probability of the censoring weight using a

bivariate survival function. Estimating bivariate survival functions is well studied

in the literature, yielding, for example, the bivariate Kaplan–Meier estimate

(Dabrowska (1988)). The formulation of the corresponding RRCCA would be

much more complicated, and thus we leave it for future research.

Another possible avenue for future work is to extend the proposed method

to include complex data types. The key idea is to construct an unbiased

estimator of the rank correlation for the pairwise underlying population. For

instance, we can cope with multivariate interval-censored data by using a modified

Kendall’s τ statistic (Kim, Lim and Park (2015)) in our formulation. To handle

multivariate missing data with some auxiliary information under a missing-

at-random assumption, we can apply a similar inverse probability weighted

complete-case estimator (Tsiatis (2006)) to the rank correlation. These are

interesting research topics for future investigation.

Supplementary Material

The online Supplementary Material contains simulation results, theory, and

proofs for the Spearman rank CCA approach.
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Appendix

To simplify the notations, we denote ŜCk
(X

(i)
k ) as Ŝ

(i)
k and ŜDl

(Y
(i)
l ) as

Ŝ
(i)
l , i = 1, . . . , n; k = 1, . . . , p; l = 1, . . . , q. Let ∥ · ∥∞ be the maximum

absolute value of all elements in a vector. Denote the i.i.d. sample as W(i) =

(X(i),Y(i), δ(i),ϕ(i)). For any matrix A ∈ Rp×q, define Frobenius norm as

∥A∥F = (
∑p

i=1

∑q
j=1 |Aij |2)1/2 = {tr(ATA)}1/2, and maximum norm as ∥A∥max

= maxi,j |Aij |. We have

∥A∥ = λ1/2
max(A

TA) ≤

{
s∑

i=1

λi(A
TA)

}1/2

= ∥A∥F ≤ (pq)1/2∥A∥max (.1)

where s ≤ min(p, q) is the rank of A. We use the capital letter C and M to

denote generic constants that could vary from line to line.

To prove Theorem 1, we need the following lemmas.

Lemma 1 (Bitouzé, Laurent and Massart (1999), Theorem 1). Let {X̃(i)
k }ni=1

and {C(i)
k }ni=1 be independent sequences of independently identically distributed

nonnegative random variables with distribution functions F and G, respectively.

Let F̂n be the Kaplan–Meier estimator of the distribution function F . There exists

a positive constant M , such that for any positive constant λ,

Pr
{
n1/2∥(1−G)(F̂n − F )∥∞ > λ

}
≤ 2.5 exp(−2λ2 +Mλ).

Lemma 2 (Hoeffding (1963)). Let h = h(x1, . . . , xm) be a symmetric kernel of

the U -statistic, U , with a ≤ h(x1, . . . , xm) ≤ b. For any t > 0 and n ≥ m, we

have

Pr{|U − E(U)| ≥ t} ≤ 2 exp

{
−2[n/m]t2

(b− a)2

}
.

Lemma 3. Under Condition (C2), there exists a positive constant M , for any

ϵ > 0, when n > M(ϵ/(1 + ϵ))−2, we have
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Pr

{
max

i

∣∣∣(S
(i)
k

Ŝ
(i)
k

)2(S
(i)
l

Ŝ
(i)
l

)2

− 1
∣∣∣ ≥ ϵ

}
≤ Cn exp

{
− Cn

(
ϵ

ϵ+ 1

)2}
,

for every k = 1, . . . , p; l = 1, . . . , q.

Moreover, for any 0 < ϵ < 1, when n > 4Mϵ−2, we have

Pr

{
max

i

∣∣∣(S
(i)
k

Ŝ
(i)
k

)2(S
(i)
l

Ŝ
(i)
l

)2

− 1
∣∣∣ ≥ ϵ

}
≤ Cn exp(−Cnϵ2).

Proof of Lemma 3. Let Gk(t) = Pr(X̃k ≤ t), Gl(t) = Pr(Ỹl ≤ t), by Condition

(C2), there exist ξk > 0, ηl > 0, such that ξk ≤ S
(i)
k ≤ 1, ηl ≤ S

(i)
l ≤ 1,

ξk ≤ 1 − Gk(Y
(i)
k ) ≤ 1, ηl ≤ 1 − Gl(Y

(i)
l ) ≤ 1, and 0 ≤ Ŝ

(i)
k ≤ 1, 0 ≤ Ŝ

(i)
l ≤ 1.

Denote ν = mink=1,...,p;l=1,...,q{ξk, ηl}.
If A and B are two positive constants, it can be shown that for ϵ > 0,

|A−1−B−1| ≥ ϵB−1implies |A−B| ≥ ϵB/(1 + ϵ). Combine this fact with Lemma

1, we have

Pr

{∣∣∣(S
(i)
k

Ŝ
(i)
k

)2(S
(i)
l

Ŝ
(i)
l

)2

− 1
∣∣∣ ≥ ϵ

}

≤ Pr

{
|(Ŝ(i)

k )2(Ŝ
(i)
l )2 − (S

(i)
k )2(S

(i)
l )2| > ϵ

1 + ϵ
(S

(i)
k )2(S

(i)
l )2

}
≤ Pr

{
(Ŝ

(i)
l )2|(Ŝ(i)

k )2 − (S
(i)
k )2|+ (S

(i)
k )2|(Ŝ(i)

l )2 − (S
(i)
l )2| > ϵ

1 + ϵ
ν4
}

≤ Pr

{
|(Ŝ(i)

k )2 − (S
(i)
k )2| > ν4ϵ

2(1 + ϵ)

}
+ Pr

{
|(Ŝ(i)

l )2 − (S
(i)
l )2| > ν4ϵ

2(1 + ϵ)

}
≤ Pr

{
|Ŝ(i)

k − S
(i)
k | > ν4ϵ

4(1 + ϵ)

}
+ Pr

{
|Ŝ(i)

l − S
(i)
l | > ν4ϵ

4(1 + ϵ)

}
≤ Pr

{
n1/2∥(1−Gk)(Ŝkn

− Sk)∥∞ > n1/2 ν5ϵ

4(1 + ϵ)

}
+ Pr

{
n1/2∥(1−Gl)(Ŝln − Sl)∥∞ > n1/2 ν5ϵ

4(1 + ϵ)

}
≤ 5 exp

[
−2n

{
ν5ϵ

4(1 + ϵ)

}2

+ M̃n1/2 ν5ϵ

4(1 + ϵ)

]
,

for some constant M̃ . When M̃n1/2(ν5ϵ/4(1 + ϵ)) < n{ν5ϵ/(4(1 + ϵ))}2, that is,
n > 16M̃2ν−10(ϵ/(1 + ϵ))−2 ≡ M(ϵ/(1 + ϵ))−2, we have

Pr

{
max

i

∣∣∣(S
(i)
k

Ŝ
(i)
k

)2(S
(i)
l

Ŝ
(i)
l

)2

− 1
∣∣∣ ≥ ϵ

}
≤ nPr

{∣∣∣(S
(i)
k

Ŝ
(i)
k

)2(S
(i)
l

Ŝ
(i)
l

)2

− 1
∣∣∣ ≥ ϵ

}
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≤ Cn exp

{
− Cn

(
ϵ

ϵ+ 1

)2}
.

If 0 < ϵ < 1, we have ϵ/(ϵ+ 1) > ϵ/2, hence the second inequality holds.

Lemma 4. Under Condition (C2), there exists a positive constant M , for any

0 < ϵ < 1, when n > 4Mϵ−2, we have

Pr(|τ̂XkYl
− τXkYl

| ≥ ϵ) ≤ Cn exp(−Cnϵ2),

Pr(|τ̂XkX′
k
− τXkX′

k
| ≥ ϵ) ≤ Cn exp(−Cnϵ2),

Pr(|τ̂YlY ′
l
− τYlY ′

l
| ≥ ϵ) ≤ Cn exp(−Cnϵ2).

Proof of Lemma 4. Rewrite τ̂XkYl
= 4
(
n
2

)−1∑
i<j h1(W

(i),W(j))− 1, where

h1(W
(i),W(j)) =

1

2

{
δ
(i)
k

(Ŝ
(i)
k )2

ϕ
(i)
l

(Ŝ
(i)
l )2

I(X
(j)
k > X

(i)
k )I(Y

(j)
l > Y

(i)
l )

+
δ
(j)
k

(Ŝ
(j)
k )2

ϕ
(j)
l

(Ŝ
(j)
l )2

I(X
(i)
k > X

(j)
k )I(Y

(i)
l > Y

(j)
l )

}

is the symmetric kernel of (τ̂XkYl
+ 1)/4. Hence, (τ̂XkYl

+ 1)/4 is a U -statistic.

Let Un[f ] ≡
(
n
2

)−1∑
i<j{f(x(i), x(j)) + f(x(j), x(i))}/2 denote the empirical

function for this U -statistics. We have

τ̂XkYl
− τXkYl

4

= Un

[{
1

(Ŝ
(i)
k )2

1

(Ŝ
(i)
l )2

− 1

(S
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k )2

1
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l )2

}
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(i)
k ϕ

(i)
l I(X
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]

+ (Un − E)
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+max
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Under Condition (C2) and the constant ν we denoted in the proof of Lemma

3, we have 0 ≤ (1/2){(δ(i)k /(S
(i)
k )2)(ϕ

(i)
l /(S

(i)
l )2)I(X
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k > X
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(i)
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(j)
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l )} ≤ 1/ν4. By Lemma 2,

for any ϵ > 0, we have
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[
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}
≤ 2 exp(−Cnϵ2).

Because |E[(δ
(i)
k /(S

(i)
k )2)(ϕ

(i)
l /(S

(i)
l )2)I(X

(j)
k > X

(i)
k )I(Y

(j)
l > Y

(i)
l )]| ≤ 1,

therefore, by Lemma 3, there exists a positive constant M , for any 0 < ϵ < 1,

when n > 4Mϵ−2, we have

Pr(|τ̂XkYl
− τXkYl

| ≥ ϵ) ≤ Cn exp(−Cnϵ2).

The other two inequalities can be shown in the same way.

Lemma 5. Under Condition (C2), there exists a positive constant M , for any

0 < ϵ < 1, when n > 4Mϵ−2, we have

Pr(∥ŜXY − SXY∥ ≥ ϵ) ≤ Cnpq exp

(
− C

n

pq
ϵ2
)
,

Pr(∥ŜXX − SXX∥ ≥ ϵ) ≤ Cnp2 exp

(
− C

n

p2
ϵ2
)
,

Pr(∥ŜYY − SYY∥ ≥ ϵ) ≤ Cnq2 exp

(
− C

n

q2
ϵ2
)
,

which means,

∥ŜXY − SXY∥ = Op

(√
pq log npq

n

)
,

∥ŜXX − SXX∥ = Op

(√
p2 log np2

n

)
,

∥ŜYY − SYY∥ = Op

(√
q2 log nq2

n

)
.

Proof of Lemma 5. By Inequality .1, the subadditivity of probability and

Lemma 4 , we have
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Pr(∥ŜXY − SXY∥ ≥ ϵ) ≤ Pr{∥ŜXY − SXY∥max ≥ ϵ(pq)−1/2}
≤ pqPr{|τ̂XkYl

− τXkYl
| ≥ ϵ(pq)−1/2}

≤ Cnpq exp

(
− C

n

pq
ϵ2
)
.

Let ϵ = O(
√

pq log npq/n), we have the desired conclusion. The other two

inequalities can be shown in the same way.

Lemma 6. Under Condition (C1) and (C2), there exists a positive constant M ,

for any 0 < ϵ < 1, when n > 4Mϵ−2, we have

∥ŜXY∥ = Op

(√
pq log npq

n

)
+Op

(
1

ω

)
.

If further pq log npq = o(n) holds, then

∥ŜXY∥ = Op(1).

Proof of Lemma 6. Since

∥ŜXY∥ ≤ ∥ŜXY − SXY∥+ ∥SXY∥,

it is a direct result from Lemma 5.

Lemma 7. Under Condition (C1) and (C2), there exists a positive constant M ,

for any 0 < ϵ < 1, when n > 4Mϵ−2, we have

Pr

{
∥Ŝ−1

XX∥ ≥ 1

κ(1− ϵ)

}
≤ Cnp2 exp

(
− C

n

p2
ϵ2
)
,

Pr

{
∥Ŝ−1

YY∥ ≥ 1

κ(1− ϵ)

}
≤ Cnq2 exp

(
− C

n

q2
ϵ2
)
.

If further p2 log np2 = o(n) and q2 log nq2 = o(n) hold, then

∥Ŝ−1
XX∥ = Op(1),

∥Ŝ−1
YY∥ = Op(1).

Proof of Lemma 7. For any symmetric matrix H, we have the fact that

λ−1
min(H) = λmax(H

−1). If A and B are two positive constants, it is shown in

the proof of Lemma 5 of Fan, Feng and Song (2011) that for ϵ ∈ (0, 1),

|A−1 −B−1| ≥
(

1

1− ϵ
− 1

)
B−1 implies |A−B| ≥ ϵB.
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Combine these two facts, we have

Pr

{
∥Ŝ−1

XX∥ ≥ 1

κ(1− ϵ)

}
≤ Pr

(
∥Ŝ−1

XX∥ ≥ 1

1− ϵ
∥S−1

XX∥
)

≤ Pr

{∣∣∣∥Ŝ−1
XX∥ − ∥S−1

XX∥
∣∣∣ ≥ ( 1

1− ϵ
− 1

)
∥S−1

XX∥
}

≤ Pr{|λmin(ŜXX)− λmin(SXX)| ≥ ϵλmin(SXX)}

≤ Pr(∥ŜXX − SXX∥ ≥ κϵ)

≤ Cnp2 exp

(
− C

n

p2
ϵ2
)
.

The fourth inequality follows from the fact that

|λmin(A)− λmin(B)| ≤ max{|λmin(A−B)|, |λmin(B−A)|},

for any symmetric matrices A and B, which is also proved in the Lemma 5 of

Fan, Feng and Song (2011). And the fifth inequality follows from Lemma 5.

For a fixed ϵ, if log np2 − C(n/p2)ϵ2 → −∞, we have

∥Ŝ−1
XX∥ = Op(1).

The result for ∥Ŝ−1
YY∥ can be shown in the same way.

Lemma 8. Under Condition (C1) and (C2), there exists a positive constant M ,

for any 0 < ϵ < 1, when n > 4Mϵ−2, if p2 log np2 = o(n) and q2 log nq2 = o(n)

hold, we have

∥Ŝ−1
XX − S−1

XX∥ = op(1),

∥Ŝ−1
YY − S−1

YY∥ = op(1).

Proof of Lemma 8. By the submultiplicativity of matrix norm, Lemma 5 and

Lemma 7, we have

∥Ŝ−1
XX − S−1

XX∥ ≤ ∥Ŝ−1
XX∥ · ∥SXX − ŜXX∥ · ∥S−1

XX∥ = Op(1)op(1)Op

(
1

κ

)
= op(1).

The second equation can be proved in the same way.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Combine triangle inequality with Lemma 5, Lemma 6,

Lemma 7 and Lemma 8, we have

∥Ŝ−1
XXŜXYŜ−1

YYŜYX − S−1
XXSXYS−1

YYSYX∥

≤ ∥Ŝ−1
XXŜXYŜ−1

YYŜYX − Ŝ−1
XXŜXYS−1

YYSYX∥
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+ ∥Ŝ−1
XXŜXYS−1

YYSYX − S−1
XXSXYS−1

YYSYX∥

≤ ∥Ŝ−1
XXŜXY∥

(
∥Ŝ−1

YY − S−1
YY∥ · ∥ŜT

XY∥+ ∥S−1
YY∥ · ∥ŜT

XY − ST

XY∥
)

+
(
∥Ŝ−1

XX − S−1
XX∥ · ∥ŜXY∥+ ∥S−1

XX∥ · ∥ŜXY − SXY∥
)
∥S−1

YYST

XY∥

≤ ∥Ŝ−1
XX∥ · ∥ŜXY∥2 · ∥Ŝ−1

YY − S−1
YY∥+ ∥S−1

YY∥ · ∥SXY∥ · ∥ŜXY∥ · ∥Ŝ−1
XX − S−1

XX∥

+
(
∥Ŝ−1

XX∥ · ∥ŜXY∥+ ∥S−1
XX∥ · ∥SXY∥

)
∥S−1

YY∥ · ∥Ŝ−1
XY − S−1

XY∥

= Op(1){Op(1)}2op(1) +Op

(
1

κ

)
Op

(
1

ω

)
Op(1)op(1)

+

{
Op(1)Op(1) +Op

(
1

κ

)
Op

(
1

ω

)}
Op

(
1

κ

)
op(1)

= op(1).
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Bitouzé, D., Laurent, B. and Massart, P. (1999). A Dvoretzky-Kiefer-Wolfowitz type inequality

for the Kaplan-Meier estimator. Annales de l’Institut Henri Poincare (B) Probability and

Statistics 35, 735–763.

Branco, J. A., Croux, C., Filzmoser, P. and Oliveira, M. R. (2005). Robust canonical correlations:

A comparative study. Computational Statistics 20, 203–229.

Chen, S., Ma, S., Xue, L. and Zou, H. (2020). An alternating manifold proximal gradient

method for sparse principal component analysis and sparse canonical correlation analysis.

INFORMS Journal on Optimization 2, 192–208.

Croux, C. and Dehon, C. (2002). Analyse canonique basée sur des estimateurs robustes de la

matrice de covariance. Revue de Statistique Appliquée 50, 5–26.

Crowley, J. and Hu, M. (1977). Covariance analysis of heart transplant survival data. Journal

of the American Statistical Association 72, 27–36.

Dabrowska, D. M. (1988). Kaplan-Meier estimate on the plane. The Annals of Statistics 16,

1475–1489.

Fan, J., Feng, Y. and Song, R. (2011). Nonparametric independence screening in sparse ultra-

high-dimensional additive models. Journal of the American Statistical Association 106,

544–557.

Filzmoser, P., Dehon, C. and Croux, C. (2000). Outlier resistant estimators for canonical

correlation analysis. In COMPSTAT (Edited by J. G. Bethlehem and P. G. M. van der

Heijden), 301–306. Physica-Verlag HD, Heidelberg.



1720 HE, ZHOU AND ZOU

Golugula, A., Lee, G., Master, S., Feldman, M., Tomaszewski, J., Speicher, D. et al. (2011).

Supervised regularized canonical correlation analysis: Integrating histologic and proteomic

measurements for predicting biochemical recurrence following prostate surgery. BMC

Bioinformatics 12, 483.

Hardoon, D. and Shawe-Taylor, J. (2011). Sparse canonical correlation analysis. Machine

Learning 83, 331–353.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal

of the American Statistical Association 58, 13–30.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika 28, 321–377.

Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. 2nd

Edition. Wiley, New York.

Kang, L., Chen, W., Petrick, N. A. and Gallas, B. D. (2015). Comparing two correlated C indices

with right-censored survival outcome: A one-shot nonparametric approach. Statistics in

Medicine 34, 685–703.

Kim, Y., Lim, J. and Park, D. (2015). Testing independence of bivariate interval-censored data

using modified Kendall’s tau statistic. Biometrical Journal 57, 1131–1145.

Kudraszow, N. L. and Maronna, R. A. (2011). Robust canonical correlation analysis: A

predictive approach. Working paper. Universidad Nacional de la Plata, Buenos Aires.

Lindskog, F., McNeil, A. and Schmock, U. (2003). Kendall’s tau for elliptical distributions.

In Credit Risk (Edited by G. Bol, G. Nakhaeizadeh, S. T. Rachev, T. Ridder and K.-H.

Vollmer), 149–156. Physica-Verlag HD, Heidelberg.

Mai, Q. and Zhang, X. (2019). An iterative penalized least squares approach to sparse canonical

correlation analysis. Biometrics 75, 734–744.

Newton, E. and Rudel, R. (2007). Estimating correlation with multiply censored data

arising from the adjustment of singly censored data. Environmental Science and

Technology 41, 221–228.

Oakes, D. (1982). A concordance test for independence in the presence of censoring.

Biometrics 38, 451–455.

Peng, L. and Fine, J. P. (2009). Competing risks quantile regression. Journal of the American

Statistical Association 104, 1440–1453.

Romanazzi, M. (1992). Influence in canonical correlation analysis. Psychometrika 57, 237–259.

Rousseeuw, P. (1985). Multivariate estimation with high breakdown point. In Mathematical

Statistics and Applications, 283–297. Reidel, Dordrecht.

Schemper, M., Kaider, A., Wakounig, S. and Heinze, G. (2013). Estimating the correlation of

bivariate failure times under censoring. Statistics in Medicine 32, 4781–4790.

Shih, J. H. and Louis, T. A. (1996). Tests of independence for bivariate survival data.

Biometrics 52, 1440–1449.

Song, R., Lu, W., Ma, S. and Jeng, X. J. (2014). Censored rank independence screening for

high-dimensional survival data. Biometrika 101, 799–814.

Taskinen, S., Croux, C., Kankainen, A., Ollila, E. and Oja, H. (2006). Influence functions and

efficiencies of the canonical correlation and vector estimates based on scatter and shape

matrices. Journal of Multivariate Analysis 97, 359–384.

Tsiatis, A. A. (2006). Semiparametric Theory and Missing Data. Springer, New York.
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