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Abstract: We develop statistical inference methods for fitting logistic regression

models to data arising from the two-phase stratified case-control sampling design,

where a subset of covariates are available only for a portion of cases and controls,

who are selected based on the case-control status and fully collected covariates. In

addition, we characterize the distribution of incomplete covariates, conditional on

fully observed ones. Here, we include all subjects in the analysis in order to achieve

consistency in the parameter estimation and optimal statistical efficiency. We de-

velop a semiparametric maximum likelihood approach under the rare disease as-

sumption, where the parameter estimates are obtained using a novel reparametrized

profile likelihood technique. We study the large-sample distribution theory for the

proposed estimator, and use simulations to demonstrate that it performs well in

finite samples and improves on the statistical efficiency of existing approaches. We

apply the proposed method to analyze a stratified case-control study of breast cancer

nested within the Breast Cancer Detection and Demonstration Project, where one

breast cancer risk predictor, namely, percent mammographic density, was measured

only for a subset of the women in the study.

Key words and phrases: Logistic regression model, profile likelihood, semiparametric

maximum likelihood, stratified case-control study, two-phase sampling.

1. Introduction

In a stratified case-control study design, cases and controls are selected by

stratified matching from population subgroups with or without the outcome of

interest. The logistic regression model is most frequently adopted to relate the

binary outcome status with the covariates of interest, where the stratified sam-

pling is accounted for by adjusting matching strata in the model. Specialized

methods have been studied when the covariates are fully observed and inter-

est lies in the effect of the covariates involved in forming the matching strata
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(Fears and Brown (1986); Breslow and Cain (1988); Scott and Wild (1991)). Here,

we consider the two-phase stratified case-control design, where some covariates

are collected in the first phase for all subjects in a stratified case-control sample,

and the remaining covariates are collected in the second phase only for a subset

of cases and controls. The resulting incomplete data conform to a missing-at-

random mechanism (Little and Rubin (1987)). We develop statistical methods

to achieve two analytical goals, namely, to obtain consistent and efficient esti-

mates of the odds ratio (OR) association parameters for the covariates collected

in both phases, and to estimate the distribution of the incomplete covariates,

conditional on the observed ones. The second goal is important when we need to

quantify the added value of incompletely measured covariates, such as expensive

biomarkers, for prediction.

The two-phase sampling design (Neyman (1938); White (1982)) is widely

used as a cost-effective option for data collection. For binary outcomes, numer-

ous statistical methods have been proposed for analyzing two-phase data when

Phase I consists of a cross-sectional or unstratified case-control sample (Breslow

and Chatterjee (1999); Breslow and Holubkov (1997b); Lawless, Kalbfleisch and

Wild (1999); Chatterjee and Chen (2007)). These methods focus on improving

the statistical efficiency for a consistent estimation of the OR association pa-

rameters, without imposing structural constraints on the covariate distribution

(Breslow and Cain (1988); Schill et al. (1993); Scott and Wild (1997); Breslow

and Holubkov (1997a)). To date, the two-phase stratified case-control study de-

sign has received limited attention, despite its frequent use. Although the data

from a stratified case-control design are analyzed in essentially the same way as

standard case-control data, available statistical methods for analyzing two-phase

case-control data cannot accommodate the stratified matching in Phase I. When

Phase II subjects are selected performed within the Phase I matching strata,

the data can be analyzed using two-phase case-control methods, as long as the

matching strata are fully adjusted for in the model and their effects are not of

interest. However, such analyses can be highly inefficient (Chen et al. (2008)),

and may yield biased estimates when the Phase II sampling does not fully comply

with the Phase I stratified matching.

We develop a novel semiparametric maximum likelihood (ML) approach

when a parametric regression model is imposed for the conditional distribution of

the incomplete covariates. Our method yields consistent and efficient estimates

for all of the parameters simultaneously. In the same spirit as a prospective analy-

sis of standard case-control data (Prentice and Pyke (1979)), our method does not

impose structural constraints on the distribution of the fully observed covariates.
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This nuisance distribution function is eliminated from the empirical retrospec-

tive likelihood function using a novel reparametrized profile likelihood technique.

The computation of our estimates is therefore highly efficient. The rest of this

article is organized as follows. In Section 2, we describe our method and present

the large-sample theory. We also describe an existing pseudo-likelihood (PL) ap-

proach (Chen et al. (2008)) that addresses the challenge when the selection of

Phase II subjects is stratified on variables other than those used in the Phase

I matching. The PL requires an enumeration of the cases and controls in each

Phase I matching stratum in the underlying cohort from which the Phase I sam-

ple was drawn. It does not provide an estimate of the conditional distribution of

the incomplete covariates. In Section 3, we demonstrate our method using data

from the Breast Cancer Detection and Demonstration Project (BCDDP). Sec-

tion 4 presents the results from extensive simulation studies used to evaluate the

finite-sample performance of our method compared with that of the PL. Section

5 concludes the paper.

2. Methods

2.1. Notation and model assumptions

Let Y denote the case-control status (Y = 1: case; Y = 0: control) and

(X, Z) denote the covariates of interest, where X is a p × 1 vector, X =

(X1, . . . , Xp)
T , and Z is univariate. Let A denote matching strata taking the value

a, for a = 1, . . . , S, where A can be defined based on X. In Phase I, n1a cases and

n0a controls are sampled from the conditional distributions Pr(X | Y = 1, A = a)

and Pr(X | Y = 0, A = a), respectively, for a = 1 . . . , S, for which X is observed.

The Phase I sample then consists of a total of n ≡
∑1

y=0

∑S
a=1 nya subjects,

with n1 ≡
∑S

a=1 n1a cases and n0 ≡
∑S

a=1 n0a controls. In Phase II, a sub-

set is selected from n subjects to collect data on Z by Bernoulli sampling, with

the success probability ω(Y,X, A) depending on the observed data (Y,X, A).

Let R denote the selection decision (R = 1: yes; R = 0: no). The observed

data then consist of O =
⋃

y=0,1

⋃
a=1,...,S

Oya ≡ {(Ri,XT
i , ZiRi)

T , i = 1, . . . , nya},

which we refer to as two-phase stratified case-control data. Because the selec-

tion does not depend on Z, the incompleteness of Z occurs at random, that is,

ω(Y,X, A) ≡ Pr(R | Y,X, A) = Pr(R | Y,X, Z,A).

We are interested in assessing the relationship between the outcome variable

Y and the covariates (XT , Z,A)T using the following logistic regression model:

Pr(Y = 1 |X, Z;A = a) ≡ prisk(Y = 1, A = a,X, Z;αa,β)
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=
exp(αa + βT1 X + β2Z)

1 + exp(αa + βT1 X + β2Z)
, a = 1, . . . , S, (2.1)

where β denotes (βT1 , β2)T . Below, we use α to denote the collection of stratum-

specific intercept parameters (α1, . . . , αS)T . It is also of interest to describe the

distribution of Z conditional on (X, A), Pr(Z |X, A). Because (X, A) may have

a large number of values, modeling Pr(Z |X, A) nonparametrically is challenging

in practice. Therefore, we adopt a parametric model for Pr(Z | X, A), denoted

as pθ(Z |X, A), with θ being the index parameter vector. We develop statistical

methods to jointly estimate β and θ using the observed data O. In subsequent

development, we do not impose a model structure on the distribution Pr(X |
A = a), because it is not of interest, and it is also infeasible to impose reasonable

multivariate parametric models for this whole vector of covariates. We assume

that the outcome is rare (Spinka, Carroll and Chatterjee (2005); Chen, Chatterjee

and Carroll (2007)). Then, Pr(X | A;Y = 0) and Pr(Z | X, A;Y = 0) can be

approximated by Pr(X | A) and pθ(Z |X, A), respectively.

2.2. Estimation of OR parameters and conditional distribution of Z

Let δax denote the probability mass of X = x in the ath matching stratum

(a = 1, . . . , S), which satisfies
∑
x δ

a
x = 1. Let δa denote the collection of δax, for

a = 1, . . . , S. The totality of the nuisance parameters {δa, a = 1, . . . , S}, denoted

as δ, increases with the sample size n. The retrospective log-likelihood function

for the observed data O can be written as

`0(β,θ, δ) = log Pr{Ri, i = 1, . . . , n | Yi,Xi, Ai, i = 1, . . . , n}

+ log

{ ∏
i∈PI/PII

Pr(Xi | Ai, Yi)
∏
i∈PII

Pr(Xi, Zi | Ai, Yi)

}
,

where PI and PII denote subjects in Phase I and Phase II, respectively. Because

the missingness is at random, we can obtain the semiparametric ML estimator of

(βT ,θT )T by maximizing the second part of `0(β,θ, δ). Using a result in Satten

and Kupper (1993), Pr(X, Z | A;Y = 1) is related to Pr(X, Z | A;Y = 0), as

follows:

Pr(X, Z | A;Y = 1) =
exp(βT1 X + β2Z) Pr(X, Z | A;Y = 0)∑
x,z exp(βT1 x+ β2z) Pr(x, z | A;Y = 0)

.

The second part of `0(β,θ, δ) for a rare outcome can then be written as
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`(β,θ, δ) =

n∑
i=1

[
Ri log

{
exp(Yi(β

T
1 Xi + β2Zi)) pθ(Zi |Xi, Ai)

}
+(1−Ri)Yi log

{∑
z

exp(βT1 Xi + β2z)pθ(Z = z |Xi, Ai)

}
+ log δAi

Xi

]

−
∑
a

n1a log

{∑
x,z

exp(βT1 x+ β2z)pθ(Z = z | x, a) · δax

}
. (2.2)

We seek estimates for the interest parameters (β,θ), (β̂T , θ̂T ), as the maximizer

for `(β,θ, δ). If X has only a small number of unique values, then (β̂T , θ̂T , δ̂T )T

can be obtained simultaneously as estimates for (βT ,θT , δT )T by applying the

standard expectation-maximization (EM) algorithm. However, in reality, X may

have many values, and the number of unique values increases with the sample size

when some components are continuous. It is well known that the EM algorithm

breaks down when the data are sparse relative to the number of parameters

(Little and Rubin (1987)). Therefore, we first eliminate the high-dimensional

nuisance parameter δ by deriving the profile log-likelihood `p(β,θ, δ̂(β,θ)) ≡
supδ`(β,θ, δ) with respect to (β,θ).

Below, using the profile likelihood approach, we establish a key result that the

estimates (β̂T , θ̂T ) can be obtained by maximizing a proper prospective likelihood

function with desirable large-sample properties. We introduce new parameters

µa = µa(β,θ, δa) = exp(−αa) · {Pr(Y = 1 | A = a)/Pr(Y = 0 | A = a)}, for

a = 1, . . . , S. Let µ denote (µ1, . . . , µS). Recall that the two-phase stratified

case-control data arise from the distribution Pr(R,X, Z | Y = y,A = a), as

defined in Section 2.1. We define a modified two-phase prospective study design

in which the data conform to the distribution P ∗(R, Y,X, Z | A = a), as follows.

Define a modified logistic regression model, as

P ∗(Y = 1 | x, z;A = a) =
exp(α∗a + βT1 x+ β2z)

1 + exp(α∗a + βT1 x+ β2z)
, (2.3)

where α∗a = log(n1a/n0a) − logµa = αa + log(n1a/n0a) − log(Pr(Y = 1 | A =

a)/Pr(Y = 0 | A = a)). At Phase I, conventional predictors X are collected from

P ∗(X = x | A = a), which is unspecified. At Phase II, Z is collected from a

modified conditional distribution P ∗(Z = z | x, a),

P ∗(Z = z | x, a) ≡ (1 + exp(α∗a + βT1 x+ β2z)) pθ(Z = z | x;A = a)∑
z′{(1 + exp(α∗a + βT1 x+ β2z′)) pθ(Z = z′ | x;A = a)}

.

(2.4)
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The modified and actual conditional distributions of Z turn out to be identical,

P ∗(Z = z | x, a;Y = y) = Pr(Z = z | x, a;Y = y),

as shown in the Supplementary Material. The modified and true missingness

probabilities are the same as well, that is, P ∗(R = 1 | Y,X, Z,A) = Pr(R =

1 | Y,X, Z,A) = ω(Y,X, A). The corresponding two-phase prospective log-

likelihood can be written as follows:

`∗ML =

n∑
i=1

logP ∗(Ri | Yi,Xi, Ai)

+

n∑
i=1

Ri logP ∗(Yi, Zi |Xi, Ai) + (1−Ri) logP ∗(Yi |Xi, Ai).

We show in the lemmas and theorems below that the ML estimator (β̂T , θ̂T ) can

be obtained by maximizing the second part of `∗ML,

`∗(β,θ,µ) ≡
n∑
i=1

Ri logP ∗(Yi, Zi |Xi, Ai) + (1−Ri) logP ∗(Yi |Xi, Ai).

In this sense, the two-phase stratified case-control design is equivalent to the

modified prospective two-phase case-control design. We formally establish this

result in Lemma 1 below. Let ηaxz = exp(βT1 x+ β2z) pθ(Z = z |X = x, A = a).

From (2.3) and (2.4), we obtain

P ∗(Y = 1, Z = z | x, a) =
n1a η

a
xz/µa

n0a + n1a(
∑

z′ η
a
xz′/µa)

,

P ∗(Y = 0, Z = z | x, a) =
n0a pθ(Z = z | x, a)

n0a + n1a(
∑

z′ η
a
xz′/µa)

.

Note that
∑

z f(z), the summation of f(z) with all possible values of Z, is a

general notation, where f(z) can be any measurable function of z. When Z is

continuous,
∑

z f(z) =
∫
f(z)dz.

Lemma 1. Let nxz denote the total number of cases and controls, with X = x

and Z = z. The profile log-likelihood `p(β,θ, δ̂(β,θ)) is equivalent to `∗(β,θ,

µ̂(β,θ)) up to a constant term, where µ̂(β,θ) is defined by the solution to the

equations

n1a =
∑
x,z

nxzP
∗(Y = 1, Z = z | x, a), a = 1, . . . , S.
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Although `∗(β,θ,µ) is not a genuine log-likelihood, we show below that the

ML estimator of (β̂T , θ̂T ) can be obtained as the root to the “pseudo” score

function

S∗(β,θ,µ) =

(
∂`∗ (β,θ,µ)

∂βT
,
∂`∗ (β,θ,µ)

∂θT
,
∂`∗ (β,θ,µ)

∂µT

)T
,

corresponding to the prospective likelihood `∗(β,θ,µ), and that `∗(β,θ, µ̂(β,θ))

≡ supµ`
∗(β,θ,µ). Our theory generalizes a result in Scott and Wild (2001) and

Chatterjee and Chen (2007), where Phase I is a cross-sectional sample and Phase

II is a stratified subsample. As a result, for the ath stratum, for a in 1, . . . , S, we

reduce the number of nuisance parameters, that is, the number of unique values

of X, to one. The form of S∗(β,θ,µ) is given in Lemma 2.

Lemma 2. Let W denote the vector of risk factors (XT , Z)T , and Φ denote the

vector of parameters (βT ,θT ,µT )T . Write

h(Y,W , A) = Y log

(
n1A · ηAXZ

µA

)
+ (1− Y ) log(n0A pθ(Z |X, A)).

Then the “pseudo” score function S∗(Φ) can be written as

S∗ (Φ) =
∂`∗ (Φ)

∂Φ

=
∑
i

{
Ri
∂h(Yi,Wi, Ai)

∂Φ
+ (1−Ri)E∗Z

(
∂h(·)
∂Φ

| Yi,Xi, Ai

)
−E∗

(
∂h(·)
∂Φ

|Xi, Ai

)}
≡

n∑
i=1

ϕ(Ri, Yi,Wi, Ai), (2.5)

where E∗Z(· | Y,X, A) and E∗(· |X, A) denote the expectations taken with respect

to P ∗(Z | Y,X, A) and P ∗(Y,Z |X, A), respectively. Moreover, ∂`∗(β,θ,µ)/∂µT

≡ 0 at µ = µ̂(β,θ), so that (β̂, θ̂) can be obtained by treating µ as an indepen-

dent set of parameters when solving the “pseudo” score equations S∗(β,θ,µ) = 0.

Lemmas 1 and 2 show that the MLE of β can be obtained by maximizing

the modified prospective likelihood of the form Pr(Y = 1|x, z;A = a,Rscc =

1) ≡ P ∗(Y = 1|x, z;A = a) in model (2.3), where Rscc is the indicator variable

for whether or not a subject was selected into the Phase I stratified case-control

sample (Rscc = 1: yes; Rscc = 0: no). Here, Pr(Rscc = 1|Y = y,A = a), the
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probability of a subject being selected into stratum (Y = y,A = a), is fixed at

its asymptotic value and reflected by the new parameter µa. Proofs of the two

lemmas are provided in the Supplementary Material.

2.3. Asymptotic theory

We develop the asymptotic theory when the total sample size n =
∑1

y=0

∑S
a=1

nya goes to infinity and the sampling proportion in each matching stratum,

namely, nya/n, converges to a positive constant πya,
∑1

y=0

∑S
a=1 πya = 1. We

repeatedly use the theorem below that establishes the relationship between the

expectation under the stratified case-control sampling design and that under the

pseudo prospective distributions, as characterized by (2.3) and (2.4).

Theorem 1. Under the two-phase stratified case-control sampling design, for any

measurable function Q(R, Y,W , A) that satisfies

0 <

∫
E∗(Q(R, Y,W , A) | x, a) · ga(x)dFa(x) <∞, a = 1, . . . , S,

where ga(x) = (n0a/n) + (n1a/n) · (
∑

z′ η
a
xz′/µa) and Fa(x) is the distribution of

X given A = a,

n−1
n∑
i=1

Q(Ri, Yi,Wi, Ai)
p→
∑
a

∫
E∗(Q(R, Y,W , A) | x, a) · ga(x)dFa(x).

We obtain the following corollary from Theorem 1 pertaining to the two-

phase sampling, which, together with Lemma 2, leads directly to the asymptotic

unbiasedness of the “pseudo” score functions S∗(β,θ,µ). Note that the contri-

bution to ES∗(β,θ,µ) by each individual subject is not equal to zero, because

l∗ is not the true log-likelihood function, but the total contribution by the cases

cancels out that by the controls.

Corollary 1. For any measurable function Q(Y,W , A) that satisfies

0 <

∫
E∗(Q(Y,W , A) | x, a) · ga(x)dFa(x) <∞, a = 1, . . . , S,

where ga(x) and Fa(x) are defined in Theorem 1,

n−1
n∑
i=1

RiQ(Yi,Wi, Ai) + (1−Ri)E∗Z(Q(Y,W , A) | Yi,Xi, Ai)

p→
∑
a

∫
E∗(Q(Y,W , A) |X = x, A = a) · ga(x)dFa(x).
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To derive the main asymptotic limiting results, we obtain the large-sample

limit of the second derivatives of `∗(Φ) in the following lemma.

Lemma 3. Let V ∗Y Z(· |X, A) and V ∗Z (· | Y,X, A) denote variance functions with

respect to P ∗(Y, Z | X, A) and P ∗(Z | Y,X, A) respectively. With the function

h(Y,W,A), defined in Lemma 2, we show that

− 1

n

∂2`∗(Φ)

∂2Φ

p→
S∑
a=1

∫
V ∗Y Z

(
∂h

∂Φ
| x, a

)
ga(x)dFa(x)−M ≡ ζ, (2.6)

where M =
∑

y,a

∫
(1 − ω(y,x, a))V ∗Z (∂h/∂Φ | Y = y,x, a)P ∗(Y = y | x, s, a)

ga(x)dFa(x).

In the proof of Lemma 3, we show that the elements in M , except for the

submatrix corresponding to (βT ,θT )T , are equal to zero. If Z is fully observed,

M becomes a zero matrix.

Building on the lemmas and theorems above, we establish the large-sample

properties of (β̂T , θ̂T )T in Theorem 2.

Theorem 2. Under the regularity conditions listed in the Supplementary Mate-

rial, we have the following:

(i) The estimating equations S∗(Φ) =
∑n

i=1 ϕ(Ri, Yi,Xi, Zi, Ai) = 0 defined

in (2.5) have a unique sequence of solutions {Φ̂n}n>1. Φ̂n
p→ Φ0, where

Φ0 ≡ (βT0 ,θ
T
0 )T is the true value for (βT ,θT )T .

(ii)
√
n(Φ̂n −Φ0)

d→ N(0,Σ), where Σ = ζ−1 − (ζ−1)TΩ ζ−1, with

Ω =
∑
a

n0a

n

(
E

(
∂ϕ

∂Φ

∣∣∣∣Y = 0, A = a

)⊗2
)

+
n1a

n

(
E

(
∂ϕ

∂Φ

∣∣∣∣Y = 1, A = a

)⊗2
)
.

By this theorem, the inverse of the observed “pseudo” information matrix

ζ−1 |Φ=Φ̂n
is an asymptotically conservative estimator for Cov(Φ̂n). The bias

is corrected by the term (ζ−1)TΩ ζ−1. We show in the Supplementary Material

that Ω = ζ(
∑

aK
T
aKa)ζ, with

Ka =

 0, . . . , 0,︸ ︷︷ ︸
length of (βT ,θT )

0, . . . , 0︸ ︷︷ ︸
a−1

, µa

(
n

n0a
+

n

n1a

)1/2

, 0, . . . , 0︸ ︷︷ ︸
S−a

 .
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Therefore, the elements in the correction term (ζ−1)TΩ ζ−1 corresponding to

(β̂T , θ̂T ) are equal to zero. That is, the correction term does not influence the

variance-covariance matrix of (β̂T , θ̂T ), so that the variance-covariance matrix of

(β̂T , θ̂T ) can be obtained directly from the corresponding element of the inverse

of the observed “pseudo” information matrix ζ−1 |Φ=Φ̂n
. The variance of µa

needs to subtract µ2
a (n/n0a + n/n1a).

2.4. Comparison with the PL method

Here, we will compare the efficiency of our ML estimator with that of an

existing PL estimator (Chen et al. (2008)), described below using our notation.

The original PL requires a stratum-specific enumeration of the cases and con-

trols in the cohort used to generate the stratified case-control sample in order

to get an estimate of µa. Here, we describe PL with µa fixed at the true value,

because this does not affect the estimation of the OR parameters for X and Z.

The PL estimator maximizes a pseudo two-phase prospective likelihood based on

the prospective models (2.3) and the distribution function of Z in the stratified

case-control sample, P ∗(Z | X, A). However, it does not specify a parametric

model for Pr(Z | X, A), and the nuisance distribution P ∗(Z | X, A) is treated

nonparametrically instead of using the form (2.4). To do this, the Phase I data X

are coarsened into discrete strata, denoted as K(X). The PL function is written

as

`PL =

n∑
i=1

[
Ri log {P ∗(Yi |Xi, Zi, Ai)P

∗(Xi, Zi, Ai | K(Xi))}

+(1−Ri) log {P ∗(Yi | K(Xi))}
]

=

n∑
i=1

Ri log {P ∗(Yi |Xi, Zi, Ai)P
∗(Xi, Zi, Ai | K(Xi))}+ (1−Ri)

× log

{∫
x,z,a

P ∗(Yi | x, z, a)P ∗(X = x, Z = z,A = a | K(Xi))dxdzda

}
.

(2.7)

The estimation proceeds by maximizing this PL function, where P ∗(Xi, Zi, Ai |
K(Xi)) is profiled out, as in the ML for standard two-phase case-control data

(Breslow and Cain (1988); Scott and Wild (1997)). Note that, as revealed by

P ∗(Xi, Zi, Ai | K(Xi)), the age-stratum A and any information in X not cap-

tured by K(X) are also considered to be incomplete data. Ignoring A from

Phase I avoids sparse cells resulting from stratifying on both X and A, allowing
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a maximum stratification on X that increases the efficiency of estimating the OR

parameters for X. The ML and PL methods differ in three important respects.

First, the ML method eliminates the need to estimate parameters correspond-

ing to the matching strata in model (2.3) using a rare disease approximation,

whereas the PL method does estimate the intercept parameters α∗a. Second, the

ML method adopts a parametric model for the Phase II variable Z. The PL

method bypasses this need by enforcing a coarsening of X into strata K(X) to

facilitate maximizing the PL, which incurs a loss of information on X. Third,

when our primary interest is to estimate the OR parameters, compared with the

complete data analysis using the Phase II data, the ML method achieves an effi-

ciency gain by fully using the Phase I data. However, the extent of the efficiency

gain for the PL estimates is tied to the construction of K(X). The predictors in

X not used to form K(X) do not enjoy an efficiency gain.

3. Real-Data Analysis

To demonstrate the proposed method, we develop a multivariate OR function

for predicting breast cancer risk using data from BCDDP, which was started in

1973 to assess whether mammographic screening can reduce the morbidity and

mortality of breast cancer. The study recruited 243,221 white women between

1973 and 1975, and followed each woman for at least five years. An age-stratified

case-control sample was assembled within the BCDDP in 1979 that included

2,808 cases and 3,119 controls. Data for age at first live birth (Ageflb; X1), age

at menarche (Agemen; X2), number of previous breast biopsies (Nbiops; X3), and

number of first-degree relatives with breast cancer (Numrel; X4) were analyzed in

relation to the risk of breast cancer in order to develop an OR model for the NCI

Breast Cancer Risk Assessment Tool (BCRAT; Gail et al. (1989)). Using the same

study sample, it was later shown that incorporating the percent mammographic

breast density (BD; Z) into the BCRAT as a new predictor may lead to improved

discriminatory accuracy (Chen et al. (2006)). However, the BD data were only

available for a subset of 1,217 cases and 1,616 controls. The availability of BD

was found to relate only to the case-control status and age. Therefore, the PL

method was adopted for the analysis, treating the data as if it arose from a two-

phase age-stratified case-control sampling design. The stratified case-control data

were treated as the Phase I sample, and the subset that had BD data available

was treated as the Phase II sample. BD was then considered as the Phase II

covariate. The age strata (Ac) were coded as 1, 2, . . . , 9, corresponding to the age

intervals < 40, [40, 45), [45, 50), [50, 55), . . . , [70, 75), and > 75 years. Here, we
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re-analyze the data using the proposed ML method, additionally characterizing

the conditional distribution of BD; see the Supplementary Material, Tables S1

and S2, in Chen et al. (2008) for the descriptive statistics of the predictors. The

variable weight, X5, which is available for all cases and controls, is included as

the auxiliary information for BD, because the two are strongly correlated (Byrne

et al. (1995)). We followed the same convention as the BCRAT to discretize X =

(X1, X2, X3, X4, X5)T , and applied both the PL and the ML methods to analyze

the data. For the PL method, discrete strata K(X) in (2.7) were constructed by

the cross-classification of 1(X1 > 0) and 1(X2 > 1), resulting in four strata. Note

that the PL function (2.7) cannot be used to estimate θ.

We fitted the following logistic regression model to relate breast cancer status

(Y = 1: case; Y = 0: control) to the predictors, where Z is categorized into five

intervals, denoted as Zc, following Chen et al. (2008):

Pr(Y = 1 |X, Zc;Ac = a) =
exp(αa + βT1 X + β2Z

c)

1 + exp(αa + βT1 X + β2Zc)
, a = 1, . . . , 9. (3.1)

Note that our method does not require a categorization of Z. We use Zc instead of

continuous Z in (3.1) mainly to facilitate the risk calculation. After some initial

explorations (see the Supplementary Material), we adopted a mixture of the

Bernoulli distribution and beta regression model to parametrize the conditional

distribution of the continuous variable Z, given X and continuous age A. Let

fγ denote the probability density function of the beta distribution, and let Fγ
be the corresponding cumulative distribution function. Let κ denote the mean

parameter and φ the precision parameter, which are allowed to vary with respect

to (X, A), governed by logistic and exponential regression models with regression

parameters γmean and γprecision, respectively. Let γ denote (γmean,γprecision). The

conditional distribution function for Z is then specified as

pθ(Z = z |X, A) =

{
ρ+ (1− ρ)Fγ(zmin |X, A) if z = 0

(1− ρ)fγ(Z = z |X, A) if z ∈ (zmin, 1), θ = (ρ,γT )T ,

where ρ ∈ (0, 1) is the parameter denoting the mixture proportion, and

fγ(Z = z |X, A) =
Γ(φ)

Γ(κφ)Γ(φ− κφ)
zκφ−1(1− z)φ−κφ−1, (3.2)

κ = logit−1
{

(γmean)T (1,XT , A)T
}
, (3.3)

φ = exp
{

(γprecision)T (1,XT , A)T
}
. (3.4)

We first fitted a full model that included all of the candidate predictors, age,
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Table 1. Analysis of BCDDP data using the ML and PL methods: The estimate (Est),
asymptotic standard error (SE), and p-values for the log OR parameter estimates (β)
and the parameters in the conditional distribution of Z, (γT

mean,γ
T
precision, ρ).

ML PL

Est (SE) p value Est (SE) p value

Log Odds Ratio
Parameters β

Ageflb (X1) 0.145 (0.034) < 0.001 0.120 (0.041) 0.004

Agemen (X2) 0.123 (0.042) 0.003 0.134 (0.047) 0.004

Nbiops (X3) 0.240 (0.049) < 0.001 0.181 (0.069) 0.009

Numrel (X4) 0.641 (0.061) < 0.001 0.652 (0.089) < 0.001

Weight (X5) 0.177 (0.030) < 0.001 0.229 (0.043) < 0.001

Density (Zc) 0.412 (0.039) < 0.001 0.427 (0.044) < 0.001

Mean Parameters
γmean

Intercept 1.551 (0.131) < 0.001

Ageflb (X1) 0.137 (0.023) < 0.001

Agemen (X2) -0.106 (0.028) < 0.001

Nbiops (X3) 0.245 (0.028) < 0.001

Weight (X5) -0.384 (0.023) < 0.001

Age (A) -0.032 (0.002) < 0.001

Precision Parameters
γprecision

Intercept 1.180 (0.178) < 0.001

Nbiops (X3) 0.129 (0.044) 0.003

Weight (X5) -0.090 (0.031) 0.003

Age (A) 0.008 (0.003) 0.008

Mixture Proportion ρ 0.109 (0.008) < 0.001

Ageflb, Agemen, Nbiops, Numrel, Weight, BD, and Age (data not shown) in all

models. The results showed that all predictors are significantly associated with

breast cancer risk (3.1). In model pθ(Z = z | X, A), the mixture parameter ρ is

significantly different from zero. Numrel is nonsignificant in the model for κ, and

Ageflb, Agemen, and Numrel are nonsignificant in the model for φ. The results

with these nonsignificant predictors eliminated from the corresponding models

are presented in Table 1.

The ML and PL estimates of the log OR association parameters are close,

with the variance of the ML method being between 20% and 53% smaller. For

Ageflb, Agemen, and Nbioips, the ML method yields smaller p-values. To check

the goodness of fit for the BD model, we performed a Pearson’s chi-squared test

on the observed and estimated BD categories in the controls. The p-value when

the expected counts are calculated using the ML estimates is 0.167. Therefore,

there is no statistically significant difference between the estimated and observed

BD categories in the controls, indicating the good fit of the zero-inflated beta

regression model. To gain further insight into the relative efficiency of the ML

method when estimating the log OR parameters, we randomly deleted some BD

data to increase the missingness probability. Table 2 shows that the variance of
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Table 2. Analysis of BCDDP data using the ML and PL methods when the missingness
probability is increased to 70% or 90%: The estimate (Est) and asymptotic standard
error (SE) of the log OR parameter estimates (β) and the parameters in the conditional
distribution of Z, (γT

mean,γ
T
precision, ρ).

Missingness Probability 70% Missingness Probability 90%

ML PL ML PL

Est (SE) Est (SE) Est (SE) Est (SE)

Log Odds Ratio
Parameters β

Ageflb (X1) 0.148 (0.035) 0.123 (0.046) 0.123 (0.039) 0.137 (0.063)

Agemen (X2) 0.118 (0.042) 0.149 (0.050) 0.108 (0.046) 0.185 (0.064)

Nbiops (X3) 0.231 (0.050) 0.154 (0.091) 0.206 (0.056) 0.149 (0.158)

Numrel (X4) 0.641 (0.061) 0.809 (0.115) 0.641 (0.061) 1.144 (0.208)

Weight (X5) 0.175 (0.032) 0.230 (0.056) 0.177 (0.038) 0.280 (0.099)

Density (Zc) 0.417 (0.050) 0.454 (0.057) 0.462 (0.085) 0.459 (0.099)

Mean Parameters
γmean

Intercept 1.590 (0.164) 1.106 (0.284)

Ageflb (X1) 0.126 (0.029) 0.182 (0.048)

Agemen (X2) -0.088 (0.035) -0.052 (0.061)

Nbiops (X3) 0.272 (0.035) 0.316 (0.057)

Weight (X5) -0.375 (0.028) -0.338 (0.046)

Age (A) -0.033 (0.003) -0.028 (0.004)

Precision Parameters
γprecision

Intercept 1.221 (0.223) 0.774 (0.374)

Nbiops (X3) 0.171 (0.055) 0.233 (0.098)

Weight (X5) -0.112 (0.038) -0.065 (0.070)

Age (A) 0.008 (0.004) 0.015 (0.007)

Mixture Proportion ρ 0.101 (0.011) 0.118 (0.019)

the ML method for β is between 23% and 72% smaller when the missingness

probability is 70%, and between 26% and 91% smaller when the missingness

probability is 90%. The efficiency gain is very apparent, especially for Nbiops

and Numrel, reflecting the information loss of the PL method when constructing

of the strata K(X). Interestingly, the ML estimates are very close at different

missingness proportions for BD, whereas the PL estimates vary quite noticeably.

For example, the log OR ML estimates for Numrel are 0.641, 0.641, and 0.641,

but the PL estimates are 0.652, 0.809, and 1.144.

4. Simulation Study

In this section, we report on extensive simulation studies used to compare

the unbiasedness and statistical efficiency of the proposed ML estimator and the

PL estimator. We also evaluate the robustness of our method with respect to

a violation of the rare disease assumption and a misspecification of the model

for Z. First, we generated a large random sample of data for the variable A,

conventional predictors X = {(X1, X2, X3, X4, X5)T }, and new predictor Z. A

is generated from a uniform distribution in the range (30, 80). The match-
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ing variable Ac is obtained as a categorized version of A, taking values one

to five corresponding to the intervals [30, 40), [40, 50), [50, 60), [60, 70), and

[70, 80), respectively. The variables X were generated from similar distribu-

tions of the corresponding variables observed in the BCDDP controls, as follows:

X1 and X2 are generated independently from a multinomial distribution with

the probabilities (0.1, 0.35, 0.43, 0.12) and (0.3, 0.55, 0.15), respectively; X3 takes

the value zero, one, or two, corresponding to the values 0, 1, or ≥ 2 gener-

ated from the Poisson(0.5) distribution; X4 takes a value of zero or one, cor-

responding to the values 0 or ≥ 1 generated from the Poisson(1) distribution;

X5 is generated by categorizing data from the truncated normal distribution

TN(140, 252; 80, 300), taking the value zero, one, two, or three, corresponding to

the intervals (80, 125], (125, 150], (150,175], and (175, 300], respectively; Z is gen-

erated from the beta distribution fγ(Z = z |X, A), as specified in the data anal-

ysis above, with γTmean and γTprecision set as (1.5, 0.15,−0.1, 0.2, 0.05,−0.4,−0.03)

and (1.2,−0.08,−0.05, 0.1, 0.05,−0.1, 0.01), respectively; and Zc takes the value

zero, one, two, or three, corresponding to the Z intervals (0, 0.25), [0.25, 0.50),

[0.50, 0.75); and [0.75, 1), respectively. Lastly, we generated the outcome status

from the logistic regression model (3.1), with a = 1, 2, . . . , 5, βT1 = (β1 X1
, β1 X2

,

β1 X3
, β1 X4

, β1 X5
) = (0.15, 0.1, 0.2, 0.65, 0.2), and β2 = β2 Zc = 0.4. The

stratum-specific intercept parameters α = (α1, . . . , α5)T were chosen to have

Pr(Y = 1) = 0.035 and Pr(Y = 1 | Ac = a) = 1%, 2%, 3%, 5%, 6.5%, for

a = 1, . . . , 5, respectively. We then used variable probability sampling to se-

lect 50, 100, 200, or 400 cases, and the same number of controls from each of the

five Ac matching strata, resulting in a total sample size of n = 500, 1000, 2000,

or 4000. To create a two-phase stratified case-control sample, we deleted data

Z and Zc from a proportion of cases and controls randomly, and the proportion

ranged from 10% to 90%. We applied the ML and PL methods in different sce-

narios. However, the PL method cannot estimate the parameters γ in the model

for Z. Chen, Chatterjee and Carroll (2007) directly fit Pr(Z|X, A;γ) in the con-

trols to roughly resolve this problem, because the breast cancer is rare. We view

their analysis as an existing method of estimating γ, and report the results for

comparison. The simulation was repeated 1,000 times.

The results summarized in Figure 1 and Table 3 demonstrate the consistency

and high statistical efficiency of the proposed ML method. In the above simula-

tion scenarios, the mean estimates are close to the true values, and the averaged

standard error estimates are close to the simulation standard error. The coverage

is near the nominal value 95% for all estimates. In Figure 1, where the missing-

ness probability was 50%, the averaged estimates appear to be close to their true
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values across all four sample sizes considered, and the variances of the ML esti-

mates are all smaller than those of the PL method. At a sample size of 1,000,

the relative efficiency (“RE”) of the ML method is 1.22∼1.87 for estimating β,

and as high as above two for estimating γ. For some parameters, such as the

third component of γprecision, the ML estimate can be even more efficient than

the PL estimate obtained from double the sample size. The RE for estimating β

is larger than one, and decreases slowly with increasing sample sizes. The RE for

estimating γ is about two across all sample sizes, suggesting that the efficiency

gain is mainly from incorporating the cases and the information from the Phase

I data. Table 3 shows the efficiency gain increase of the ML method with respect

to an increased missingness probability at a sample size of n = 2000. When the

missingness probability increases from 10% to 90%, the RE of the ML estimates

increases from 1.039 to 2.041 for βX1
, and from 1.202 to 1.474 for βZ . The RE

for γ also increases but the increase is much smaller. These results indicate that

the ML method exhibits superior performance when a large proportion of miss-

ingness occurs, but that it can also have a reasonable efficiency advantage even

when the missingness probability is small. The results under the sample sizes

n = 500 and n = 1000 are largely similar, and are presented in Tables S4 and S5

in Supplementary Material.

To examine the robustness of the proposed ML method with respect to the

outcome prevalence, we set the prevalence as Pr(Y = 1) = 0.1 with Pr(Y =

1 | Ac = a) = 3%, 6%, 9%, 14%, 18%, a = 1, . . . , 5, or Pr(Y = 1) = 0.2

with Pr(Y = 1 | Ac = a) = 6%, 12%, 18%, 28%, 36%, a = 1, . . . , 5. The

estimation for β is presented in Table 4, where the sample size is n = 1000

and the missingness probability of Z is 50%. The biases appear to be minimal,

and remain nearly unchanged with increasing outcome prevalence. The largest

bias occurs for β̂Z , but is only about 4% with Pr(Y = 1) = 0.2 and 13% with

Pr(Y = 1) = 0.5 (unreported result). The ML estimates have smaller averaged

MSEs than those of the PL estimates in all parameter settings, and are nearly

identical under different values for Pr(Y = 1). Both methods have coverage

probabilities close to the nominal level. The averaged asymptotic standard error

remains close to the simulation standard error. The estimates for γ are presented

in the Supplementary Material, Table S6. The percent biases ranged from 0%

to 46% for the ML estimates, and from 2% to 96% for the control-only analysis

when Pr(Y = 1) was equal to 0.2.

To evaluate the robustness of the proposed ML method for estimating β

when the model for the conditional distribution of Z is misspecified, we fitted

the same model (3.2), but with constant precision parameters γ = (γTmean, φ)T .



ML METHOD FOR TWO-PHASE STRATIFIED CASE-CONTROL SAMPLING 2249
Sa
m
pl
e

50
0

1
00
0

2
00
0

4
00
0
M
et
ho
d

M
L

PL

−0
.10.
0

0.
1

0.
2

0.
3

0.
4

50
0
1
00
0
2
00
0
4
00
0

β 1
_
X

1
; 

  
R

E
=

1
.2

4
7

−0
.20.
0

0.
2

0.
4

50
0
1
00
0
2
00
0
4
00
0

β 1
_
X

2
; 

  
R

E
=

1
.2

5
0

0.
0

0.
2

0.
4

50
0
1
00
0
2
00
0
4
00
0

β 1
_
X

3
; 

 R
E

=
1
.5

5
9

0.
0

0.
5

1.
0

50
0
1
00
0
2
00
0
4
00
0

β1
_
X

4
; 

 R
E

=
1
.8

7
1

0.
0

0.
2

0.
4

50
0
1
00
0
2
00
0
4
00
0

β1
_
X

5
; 

 R
E

=
1
.8

2
4

0.
2

0.
4

0.
6

50
0
1
00
0
2
00
0
4
00
0

β2
_
Z

; 
 R

E
=

1
.2

2
0

0.
0

0.
1

0.
2

0.
3

50
0
1
00
0
2
00
0
4
00
0

γ m
ea

n
_
X

1
; 

R
E

=
2
.0

3
6

−0
.1

−0
.2

−0
.30.
0

0.
1

50
0
1
00
0
2
00
0
4
00
0

γ m
ea

n
_
X

2
; 

R
E

=
1
.9

8
1

0.
0

0.
1

0.
2

0.
3

0.
4

50
0
1
00
0
2
00
0
4
00
0

γm
ea

n
_
X

3
; 

R
E

=
2
.3

3
4

−0
.20.
0

0.
2

0.
4

50
0
1
00
0
2
00
0
4
00
0

γ m
ea

n
_
X

4
; 

R
E

=
2
.7

7
8

−0
.3

−0
.4

−0
.5

50
0
1
00
0
2
00
0
4
00
0

γm
ea

n
_
X

5
; 

R
E

=
2
.2

3
6

−0
.0
20

−0
.0
25

−0
.0
30

−0
.0
35

−0
.0
40

50
0
10
00
2
00
0
4
00
0

γm
ea

n
_
A

 R
E

=
2
.1

6
1

−0
.2

−0
.40.
0

0.
2

50
0
1
00
0
2
00
0
4
00
0

γ p
re

ci
si

o
n
_
X

1
;R

E
=

2
.2

8
0

−0
.2

−0
.40.
0

0.
2

50
0
1
00
0
2
00
0
4
00
0

γ p
re

ci
si

o
n
_
X

2
;R

E
=

2
.3

2
1

−0
.20.
0

0.
2

0.
4

50
0
1
00
0
2
00
0
4
00
0

γ p
re

ci
si

o
n
_
X

3
;R

E
=

2
.2

4
6

−0
.50.
0

0.
5

50
0
1
00
0
2
00
0
4
00
0

γ p
re

ci
si

o
n
_
X

4
;R

E
=

2
.8

5
7

−0
.4

−0
.20.
0

0.
2

50
0
1
00
0
2
00
0
4
00
0

γ p
re

ci
si

o
n
_
X

5
;R

E
=

2
.2

6
1

0.
00

0.
01

0.
02

50
0
1
00
0
2
00
0
4
00
0

γ p
re

ci
si

o
n
_
A

;R
E

=
2
.1

6
6

F
ig

u
re

1.
T

h
e

m
ea

n
es

ti
m

at
es

an
d

co
rr

es
p

on
d

in
g

95
%

co
n

fi
d

en
ce

in
te

rv
a
ls

fo
r

th
e

p
a
ra

m
et

er
s

in
th

e
d

is
ea

se
-r

is
k

m
o
d

el
(β

)
an

d
th

e
p

ar
am

et
er

s
in

th
e

co
n

d
it

io
n

al
d

is
tr

ib
u

ti
o
n

o
f
Z

(γ
m
e
a
n
,γ

p
re
c
is
io
n
).

T
h

e
re

la
ti

ve
effi

ci
en

cy
(“

R
E

”
)

of
th

e
M

L
es

ti
m

at
es

co
m

p
ar

ed
w

it
h

th
at

of
th

e
P

L
es

ti
m

a
te

s
w

h
en

th
e

sa
m

p
le

si
ze

is
n

=
1
0
0
0

is
n

o
te

d
a
b

ov
e

ea
ch

su
b

-fi
gu

re
.

T
h

e
p

re
va

le
n

ce
is

0.
03

5
an

d
th

e
m

is
si

n
gn

es
s

p
ro

b
a
b

il
it

y
o
f
Z

in
P

h
a
se

II
is

5
0
%

.



2250 CAO ET AL.

T
ab

le
3.

R
esu

lts
o
f

1
,0

0
0

rep
etition

s,
as

d
escrib

ed
in

S
ectio

n
4
,

w
h

en
th

e
p

reva
len

ce
is

0
.0

3
5
,

th
e

sam
p

le
size

n
=

2000,
an

d
th

e
m

issin
g
n

ess
p

ro
b

a
b

ility
o
f
Z

is
10%

,
30%

,
50%

,
70%

,
an

d
9
0
%

.

P
a
ram

eter
T

ru
e

M
issin

gn
ess

P
rob

ab
ility

=
0.1

M
issin

gn
ess

P
ro

b
ab

ility
=

0.3
M

issin
gn

ess
P

ro
b

a
b

ility
=

0
.5

M
issin

g
n

ess
P

ro
b

a
b

ility
=

0
.7

M
issin

gn
ess

P
rob

ab
ility

=
0.9

M
ean

S
E

Ŝ
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Table 4. Simulation results under different prevalence for Y , or when the conditional
distribution of Z is modestly misspecified.

True
Mean MSE×100 SE×100 (ŜE× 100) CP

PL ML PL ML PL ML PL ML

Pr(Y = 1)
= 0.1

β1 X1
= 0.15 0.149 0.149 0.9 0.7 9.3 (8.6) 8.3 (8.2) 92.4 94.4

β1 X2 = 0.1 0.102 0.101 1.4 1.1 11.7(10.8) 10.5(10.2) 93.3 94.6

β1 X3
= 0.2 0.210 0.209 1.3 0.8 11.4(10.7) 9.0 (8.8) 93.6 95.1

β1 X4
= 0.65 0.666 0.651 5.2 2.6 22.7(22.8) 16.1(16.1) 96.4 95.7

β1 X5
= 0.2 0.199 0.195 1.3 0.7 11.4(11.0) 8.4 (8.1) 95.0 93.4

β2 Zc = 0.4 0.407 0.392 1.4 1.1 11.7(11.4) 10.5(10.3) 95.3 94.7

Pr(Y = 1)
= 0.2

β1 X1 = 0.15 0.153 0.153 0.9 0.7 9.3 (8.6) 8.3 (8.2) 93.2 94.1

β1 X2 = 0.1 0.103 0.100 1.4 1.1 11.9(10.8) 10.6(10.2) 92.5 94.1

β1 X3
= 0.2 0.206 0.209 1.3 0.8 11.5(11.1) 8.9 (8.8) 93.8 94.4

β1 X4
= 0.65 0.680 0.665 6.0 2.6 24.2(23.4) 16.1(16.5) 94.2 96.0

β1 X5 = 0.2 0.211 0.197 1.3 0.7 11.1(11.0) 8.1 (8.1) 94.5 95.2

β2 Zc = 0.4 0.411 0.383 1.2 1.0 11.1(11.4) 10.1(10.3) 95.8 94.3

Modest
mis-specification

for the conditional
distribution of Z

β1 X1 = 0.15 0.152 0.157 0.8 0.7 8.8 (8.3) 8.2 (8.1) 94.2 94.4

β1 X2 = 0.1 0.108 0.103 1.2 1.0 10.9(10.4) 10.2(10.1) 94.0 95.2

β1 X3
= 0.2 0.207 0.206 1.0 0.7 9.8 (9.6) 8.6 (8.7) 94.5 95.9

β1 X4
= 0.65 0.650 0.650 3.6 2.4 19.1(18.9) 15.6(15.8) 95.6 95.7

β1 X5 = 0.2 0.214 0.202 0.9 0.6 9.2 (9.2) 7.7 (7.8) 94.8 95.6

β2 Zc = 0.4 0.410 0.381 1.0 0.8 10.1 (9.5) 8.7 (8.4) 94.0 93.7

Mean, mean estimates; SE, simulation standard error; ŜE, average asymptotic standard error estimates;
CP, 95% coverage probabilities; MSE is computed by averaging (β − β̂)2 over 1,000 repetitions.

The Pearson’s chi-squared goodness of fit test indicated that this model did not

fit well in the controls (p-value = 0.03). The results are shown in Table 4, where

the sample size is n = 1000, the missingness probability of Z is 50%, and the

prevalence is 0.035. The ML estimates remain close to the true values and have

smaller MSEs. The largest bias occurred for βZ , and is only about 5%. The

coverage probabilities are close to 95%, and the averaged asymptotic standard

error remains close to the simulation standard error. An additional simulation

that investigates the finite-sample performance under a different model for Z is

presented in the Supplementary Material.

5. Discussion

It is widely known that the intercept parameter is unidentifiable from case-

control data when the distribution of the covariates is unrestricted (Prentice

and Pyke (1979)). The stratum-specific intercept parameters α = (α1, . . . , αS)T

in model (2.1) are similarly unidentifiable. However, this is no longer the case

when structural constraints are imposed on the covariate distribution. When

assessing gene-environment interactions under a logistic regression model with
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case-control data, the gene-environment independence constraint can be exploited

to increase statistical efficiency (Chatterjee and Carroll (2005)). Interestingly,

this constraint was found to result in the identifiability of the intercept parameter.

The information used to estimate the intercept parameter turns out to be very

sparse, as evidenced by a much smaller efficiency gain when estimating the gene-

environment interaction OR parameter (Chen and Chen (2011)). In this work,

we considered the outcome variable to be rare to eliminate the need to estimate

the intercept parameter. Simulation studies showed that our method is robust to

the rare outcome requirement, where the parameter estimates were reasonably

close to the true values, even when the outcome prevalence was 20%. Unreported

simulation results showed that some parameter estimates, especially those for

Phase II variables, are biased when the outcome prevalence is 50%. In practice,

when there is concern about the rare outcome assumption, we suggest using the

external information of Pr(Y = 1|A = a) to resolve the problem of estimating

the intercept parameters.

When analyzing standard case-control data, a prospective logistic regression

analysis that ignores retrospective sampling is equivalent to a retrospective like-

lihood analysis (Prentice and Pyke (1979)), even in the presence of missing data

(Roeder, Carroll and Lindsay (1996)). However, when constraints are enforced on

the covariate distribution, the prospective logistic regression analysis that ignores

the information on the covariate distribution is valid, but no longer semiparamet-

ric efficient. Under a gene-environment independence assumption, Chatterjee and

Carroll (2005) developed an efficient retrospective ML approach by maximizing a

“modified” prospective likelihood, which differs from the likelihood function for

the prospective logistic regression analysis (Chatterjee et al. (2006)). This ap-

proach of solving “modified” prospective score functions to obtain ML estimates

for OR parameters has been extended to exploit different covariate distribution

constraints (Chen, Chatterjee and Carroll (2007); Spinka, Carroll and Chatter-

jee (2005); Mukherjee and Chatterjee (2008)). In this work, we have established

a key theoretical result that stratified two-phase case-control data can be seen

as arising from a novel “modified” prospective distribution under the rare dis-

ease assumption and a parametric model for Phase II variables, which leads to

convenient statistical inference.

In a real-data analysis, we compared our proposed ML method with the PL

method (Chen et al. (2008)). Although a finer construction of strata K(X) in

(2.7) may improve the efficiency of the PL method, its application is limited by

a practical trade-off between the number of strata and the number of cases and

controls in each stratum. Additional results showed that ML estimates have a
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smaller variance than PL estimates do, as long as the information of X is not

fully captured in K(X). We have described our ML method by considering a

univariate Phase II variable, but our method is general, and can readily accom-

modate multivariate Phase II variables if a parametric model can be specified

for Pr(Z|X, A). Additional simulation results for the bivariate Phase II variable

(Z1, Z2) are presented in the Supplementary Material. We have demonstrated

the robustness of our method using simulation studies under a modest misspec-

ification of the conditional distribution for the Phase II variables. However, the

bias becomes larger if the misspecification becomes severe. Therefore, caution

needs to be exercised when deciding on suitable distributions. Here, exploring

the model forms and checking the goodness of fit using control data, as in our

real-data analysis, can be highly useful. When Phase II variables are of low

dimension, it is potentially feasible to adopt a semiparametric or nonparamet-

ric model for the joint distribution. In the absence of Phase I covariates X,

Song, Zhou and Kosorok (2009) developed a nonparametric ML method in which

P (Z) is estimated nonparametrically. With multivariate Z and X, it is gener-

ally challenging to deal with Pr(Z|X) likelihood-based methods. In a recent ML

method for analyzing prospective two-phase data (Tao, Zeng and Lin (2017)), a

sieve approximation was adopted for Pr(Z|X), which appears to work well when

X is of modest dimension. We will explore extensions of our method along this

line in future work. We have focused on increasing the efficiency of the parameter

estimation in this work. The estimated OR function can be used as a risk score for

risk assessment. Then, it is of interest to estimate the corresponding predictive

accuracy measures, such as the area under the receiver operating characteristic

curve, for which the estimated conditional distribution of the Phase II variables

is needed. We will consider statistical inference procedures for estimating these

measures using two-phase stratified case-control data in future work.

Supplementary Material

The online Supplementary material includes appendices and the tables ref-

erenced in Sections 2, 3, and 4.

Acknowledgments

Drs. Jinbo Chen, Lu Chen, and Yaqi Cao were supported by NIH grants

R01-ES016626 and R01-CA236468-01A1. Drs. Ying Yang and Yaqi Cao were

supported by the National Natural Science Foundation of China, No. 11771241

and 11931001.



2254 CAO ET AL.

References

Breslow, N. E. and Cain, K. C. (1988). Logistic regression for two-stage case-control data.

Biometrika 75, 11–20.

Breslow, N. E. and Chatterjee, N. (1999). Design and analysis of two-phase studies with binary

outcome applied to wilms tumour prognosis. Applied Statistics 48, 457–468.

Breslow, N. E. and Holubkov, R. (1997a). Maximum likelihood estimation of logistic regression

parameters under two-phase, outcome-dependent sampling. Journal of the Royal Statistical

Society, Series B (Methodological) 59, 447–461.

Breslow, N. E. and Holubkov, R. (1997b). Weighted likelihood, pseudo-likelihood and max-

imum likelihood methods for logistic regression analysis of two-stage data. Statistics in

Medicine 16, 103–116.

Byrne, C., Schairer, C., Wolfe, J., Parekh, N., Salane, M., Brinton, L. A. et al. (1995). Mam-

mographic features and breast cancer risk: Effects with time, age, and menopause status.

Journal of the National Cancer Institute 87, 1622–1629.

Chatterjee, N. and Carroll, R. J. (2005). Semiparametric maximum likelihood estimation ex-

ploiting gene-environment independence in case-control studies. Biometrika 92, 399–418.

Chatterjee, N. and Chen, Y.-H. (2007). Maximum likelihood inference on a mixed condition-

ally and marginally specified regression model for genetic epidemiologic studies with two-

phase sampling. Journal of the Royal Statistical Society, Series B (Statistical Methodol-

ogy) 69, 123–142.

Chatterjee, N., Spinka, C., Chen, J. and Carroll, R. J. (2006). Comment. Journal of the Amer-

ican Statistical Association 101, 108–111.

Chen, H. Y. and Chen, J. (2011). On information coded in gene-environment independence in

case-control studies. American Journal of Epidemiology 174, 736–743.

Chen, J., Ayyagari, R., Chatterjee, N., Pee, D., Schairer, C., Byrne, C. et al. (2008). Breast

cancer relative hazard estimates from case-control and cohort designs with missing data on

mammographic density. Journal of the American Statistical Association 103, 976–988.

Chen, J., Pee, D., Ayyagari, R., Graubard, B., Schairer, C., Byrne, C. et al. (2006). Projecting

absolute invasive breast cancer risk in white women with a model that includes mammo-

graphic density. Journal of the National Cancer Institute 98, 1215–1226.

Chen, Y.-H., Chatterjee, N. and Carroll, R. J. (2007). Retrospective analysis of haplotype-based

case-control studies under a flexible model for gene-environment association. Biostatis-

tics 9, 81–99.

Fears, T. R. and Brown, C. C. (1986). Logistic regression methods for retrospective case-control

studies using complex sampling procedures. Biometrics 42, 955–960.

Gail, M. H., Brinton, L. A., Byar, D. P., Corle, D. K., Green, S. B., Schairer, C. et al. (1989).

Projecting individualized probabilities of developing breast cancer for white females who

are being examined annually. Journal of the National Cancer Institute 81, 1879–1886.

Lawless, J. F., Kalbfleisch, J. D. and Wild, C. J. (1999). Semiparametric methods for response-

selective and missing data problems in regression. Journal of the Royal Statistical Society,

Series B (Statistical Methodology) 61, 413–438.

Little, R. J. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. John Wiley &

Sons.

Mukherjee, B. and Chatterjee, N. (2008). Exploiting gene-environment independence for analysis

of case–control studies: An empirical Bayes-type shrinkage estimator to trade-off between

bias and efficiency. Biometrics 64, 685–694.



ML METHOD FOR TWO-PHASE STRATIFIED CASE-CONTROL SAMPLING 2255

Neyman, J. (1938). Contribution to the theory of sampling from human populations. Journal of

the American Statistical Association 33, 101–116.

Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence models and case-control studies.

Biometrika 66, 403–411.

Roeder, K., Carroll, R. J. and Lindsay, B. G. (1996). A semiparametric mixture approach to

case-control studies with errors in covariables. Journal of the American Statistical Associ-

ation 91, 722–732.

Satten, G. and Kupper, L. (1993). Inferences about exposure-disease associations using

probability-of-exposure information. Journal of the American Statistical Association 88,

200–208.

Schill, W., Jockel, K.-H., Drescher, K. and Timm, J. (1993). Logistic analysis in case-control

studies under validation sampling. Biometrika 80, 339–352.

Scott, A. J. and Wild, C. (2001). Maximum likelihood for generalized case-control studies.

Journal of Statistical Planning and Inference 96, 3–27.

Scott, A. J. and Wild, C. J. (1991). Fitting logistic regression models in stratified case-control

studies. Biometrics 47, 497–510.

Scott, A. J. and Wild, C. J. (1997). Fitting regression models to case-control data by maximum

likelihood. Biometrika 84, 57–71.

Song, R., Zhou, H. and Kosorok, M. R. (2009). A note on semiparametric efficient inference for

two-stage outcome-dependent sampling with a continuous outcome. Biometrika 96, 221–

228.

Spinka, C., Carroll, R. J. and Chatterjee, N. (2005). Analysis of case-control studies of genetic

and environmental factors with missing genetic information and haplotype-phase ambiguity.

Genetic Epidemiology 29, 108–127.

Tao, R., Zeng, D. and Lin, D.-Y. (2017). Efficient semiparametric inference under two-phase

sampling, with applications to genetic association studies. Journal of the American Statis-

tical Association 112, 1468–1476.

White, J. E. (1982). A two stage design for the study of the relationship between a rare exposure

and a rare disease. American Journal of Epidemiology 115, 119–128.

Yaqi Cao

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perel-

man School of Medicine, Philadelphia, PA 19104, USA.

Department of Mathematical Sciences, Tsinghua University, Beijing, P.R. China.

E-mail: Yaqi.Cao@pennmedicine.upenn.edu

Lu Chen

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perel-

man School of Medicine, Philadelphia, PA 19104, USA.

E-mail: daisychen1009@gmail.com

Ying Yang

Department of Mathematical Sciences, Tsinghua University, Beijing, P.R. China.

E-mail: yangying@tsinghua.edu.cn

mailto:Yaqi.Cao@pennmedicine.upenn.edu
mailto:daisychen1009@gmail.com
mailto:yangying@tsinghua.edu.cn


2256 CAO ET AL.

Jinbo Chen

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perel-

man School of Medicine, Philadelphia, PA 19104, USA.

E-mail: jinboche@pennmedicine.upenn.edu

(Received June 2021; accepted January 2022)

mailto:jinboche@pennmedicine.upenn.edu

	Introduction
	Methods
	Notation and model assumptions
	Estimation of OR parameters and conditional distribution of Z
	Asymptotic theory
	Comparison with the PL method

	Real-Data Analysis
	Simulation Study
	Discussion

