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Abstract: In financial high frequency data analysis, the efficient price of an asset is

commonly assumed to follow a continuous-time stochastic volatility model, contam-

inated with a microstructure noise. In this study, we consider a goodness-of-fit test

problem for the efficient price models based on discretely observed samples and em-

ploy a goodness-of-fit test based on the empirical characteristic function. We show

that the proposed test is asymptotically a weighted sum of products of centered

normal random variables. To evaluate the proposed test, we conducted a simulation

study using a bootstrap method. A data analysis is provided for illustration.
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1. Introduction

High-frequency financial time series provides a rich source of problems as

to trading processes and market microstructure. In particular, owing to special

characteristics that occur in this field, such as microstructure noise effects, the

analysis of high-frequency data has brought a new challenge to economists and

statisticians, see Tsay (2010, Chap. 5). It is conventionally assumed that, instead

of observing the efficient log-price p at transaction time ti, we observe p with

noise:

p̃ti = pti + ηti ,

where {ηti} are i.i.d. noises with mean zero and variance σ2η and are independent

of the process p. The noise term η represents a microstructure contamination ow-

ing to imperfections of trading processes. See, for instance, Aı̈t-Sahalia, Mykland,

and Zhang (2005) and Bandi and Russell (2006). This microstructure noise re-

sults from such information or non-information related factors as bid-ask spread,

differences in trade sizes, informational asymmetries of traders, inventory control

effects, and discreteness of price changes. It is well known that the microstruc-

ture noise dominates the signal in high-frequency data and creates problems in

the model-free estimation of integrated volatility of high-frequency data. For
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example, the conventional realized volatility estimator diverges to infinity when

the sampling frequency approaches zero: see Barndorff-Nielsen and Shephard

(2002), Aı̈t-Sahalia, Mykland, and Zhang (2005), Zhang, Mykland, and Aı̈t-

Sahalia (2005), Zhang (2006), Bandi and Russell (2006), Fan and Wang (2007),

Bandi and Russell (2008), Barndorff-Nielsen et al. (2008), Barndorff-Nielsen et

al. (2009), and Reiss (2011).

In this study, we assume that the efficient log price process satisfies the

stochastic volatility model (SVM){
dpt = σtdWt, p0 = x0,

dσ2t = b(σ2t )dt+
√
v(σ2t )dBt, σ20 = ζ,

(1.1)

where (Bt,Wt)t>0 is a two-dimensional standard Brownian motion, σ2t is the

instantaneous volatility at time t, and ζ is a positive random variable independent

of (Bt,Wt). Empirical evidence suggests that the SVM approach provides a

better modeling for high-frequency transaction data than the classical Black-

Scholes constant volatility method. One may also consider SDE models with

price jumps but, in such cases, the jump component can be smoothed by a

wavelet method as in Fan and Wang (2007). Thus we focus on Model (1.1) with

no price jumps.

Modeling of the SVM (1.1) emphasizes the specification of the diffusion co-

efficient v of the volatility process {σ2t } that plays an important role in derivative

pricing, portfolio allocation, and risk management. Since the diffusion coefficient

v is uniquely determined by both the marginal distribution and autocorrelation

function of σ2t , see Aı̈t-Sahalia (1996a,b), Bibby, Skovgaard, and Sørensen (2005),

and Chen, Gao, and Tang (2008), it can be well specified through a goodness-of-

fit test for the stationary distribution of σ2t , see the hypothesis testing problem

in (2.1). Motivated by this, Lin, Lee, and Guo (2013, 2014) studied a goodness-

of-fit test for {σ2t } of SVM (1.1) based on discretely sampled efficient log-price

{pt}, assuming no presence of microstructure noises. We aim to extend the

method of Lin, Lee, and Guo (2013, 2014) to the observed price p̃ of SVM (1.1)

with microstructure noises η. Specifically, we use the goodness-of-fit test based

on measuring differences between the empirical characteristic function (e.c.f.)

and true parametric characteristic function (c.f.) divided by the characteristic

function of the microstructure noise obtained from the hypothesized stochastic

volatility model. This issue is more challenging than that of our previous study,

since the volatility process is latent and the price process is contaminated with

noise.

The organization of the paper is as follows. In Section 2, the goodness-of-fit

test is introduced and its limiting null distribution is derived as a weighted sum
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of products of centered normal random variables. In Section 3, we study the

moment estimators of the volatility model parameters and use two SVMs for

illustration. In Section 4, we study noise parameter estimation and discuss the

performances of model and noise parameter estimation. In Section 5, simulation

and empirical studies are reported. Concluding remarks are provided in Section

6. Proofs are given in the Appendix.

2. Main Result

We need regularity conditions for b and v.

(A1) The functions b(x) and v(x) defined on (0,∞) satisfy b(x) ∈ C1, v(x) ∈
C2 for all x > 0, and there exists K > 0 such that, for all x > 0, |b(x)| ≤
K(1 + |x|) and v(x) ≤ K(1 + x2).

(A2) The scale and speed densities of the diffusion σ2t ,

s(x) = exp

(
−2

∫ x

x0

b(u)

v(u)
du

)
and m(x) =

1

v(x)s(x)
, x > 0,

satisfy∫
0+
s(x)dx = +∞,

∫ +∞
s(x)dx = +∞,

∫ +∞

0
m(x)dx =M < +∞,

where
∫
0+ denotes the integral over the interval (0, c) for some c > 0 and∫ +∞

denotes the integral over the interval (c′,∞) for some c′ > 0.

We impose conditions on the stationary density of σ2t ,

fσ,θ(x) =
1

M
m(x)1[x>0],

where θ denotes the true parameter.

(A3) The initial random variable σ20 = ζ has the density function fσ,θ and∫ ∞

0
|v|νfσ,θ(v)dv <∞ for some ν ≥ 2.

(A4) For all q ≥ 1, there exist constants Cq > 0 such that

Eθ|σs − σt|2q ≤ Cq|t− s|q.

(A1) and (A2) ensure that the unique solution of σ2t is positive and recurrent

on (0,∞), whereas (A3) entails that it is strictly stationary, ergodic, and time-

reversible. (A4) can be found in Prakasa Rao (1999) and Kessler (2000). With
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regard to the limit theorems of empirical processes and parameter estimation

for Model (1.1), we refer to Genon-Catalot, Jeantheau, and Larédo (1998, 1999,

2000).

We assume p̃t is observed at equispaced time points (t1, t2, · · · , tn), where
ti = ikn with kn → 0, nkn → ∞, and nk2n → 0 as n→ ∞. In this case, we write

the observed log return at time ti as

r̃i = p̃ti − p̃ti−1 = ri + εi,

where ri = pti − pti−1 denotes the nominal return, and εi = ηti − ηti−1 . Since the

ηti ’s are i.i.d. random variables with variance σ2η, the noise process {εi} is an

MA(1) process with V ar(ϵi) = σ2ε = 2σ2η. The distribution of εi can be obtained

from the marginal distribution of η using a convolution method. We further

assume that ηt has a stationary density fη,β wherein β denotes the true vector

parameter.

Let {fσ,θ : θ ∈ Θ ⊂ Rd} and {fη,β : β ∈ B ⊂ Rd1} be families of density

functions and suppose that one wishes to test the hypotheses

H0 : σ
2
t ∼ fσ,θ and ηt ∼ fη,β for some θ ∈ Θ, β ∈ B vs. H1 : not H0. (2.1)

Set ξi = σti−1(Wti −Wti−1)/k
1/2
n and

ξ̂i =
(pti − pti−1)

k
1/2
n

=

∫ ti

ti−1

σsd
Ws

k
1/2
n

= ξi +∆ni (2.2)

with ∆ni =
∫ ti
ti−1

(σs−σti−1)dWs/k
1/2
n . It can be seen that under H0, due to (A4),

Eθ|∆ni|2q = O(kqn) for any q = 1, 2, . . .(cf., Lee (2010)).

For estimation of θ and β, we need the following conditions.

(A5) Let ψ : Θ × R → Rd be a vector-valued function and take Un(θ) =∑n
j=1 ψ(θ, ξ̂j) with ψ(θ, x) = (ψ1(θ, x), . . . , ψd(θ, x))

′. Let θ̂ be the solution

of Un(θ) = 0 based on the full sample {ξ̂j}nj=1 with decreasing sampling

intervals. Then, under H0, for i = 1, . . . , d,

sup
t

{∣∣∣ 1
n

n∑
j=1

(∂ψi

∂θi
(t, ξ̂j)−

∂ψi

∂θi
(θ, ξ̂j)

)∣∣∣ : |t− θi| ≤ an

}
P−→

n→∞
0

whenever an → 0, and θ̂
P−→θ as n→ ∞.

For the vector of real-valued functions g, it holds that

θ̂ = θ + h(θ, r̃) + op

(
nk

−1/2
)
, (2.3)
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h(θ, r̃) =
1

n

n∑
j=1

g(θ, ξ̂j) + op

(
nk

−1/2
)
, (2.4)

where r̃ = (r̃1, . . . , r̃n)
′ and nk = nkn.

The function g(θ, x) = (g1(θ, x), . . . , gd(θ, x))
′ satisfies Eθgr(θ, ξj) = 0,

Eθ|gr(θ, ξj)|2ν <∞ for some ν > (2− κ)/(1− κ), 0 < κ < 1, and

|gr(θ, x1)− gr(θ, x2)| ≤ wr(x1, x2, θ)|x1 − x2|

for some real-valued continuous functions wr ≥ 0 satisfying

sup
j,k∈N

Eθ sup
a∈[−A,A]

[∣∣∣wr(ξj + a, ξk, θ)
∣∣∣2ν + ∣∣∣wr(ξ1 + a, ξ̃1, θ)

∣∣∣2ν] <∞

for any independent copy ξ̃1 of ξ1 and for some A > 0, we write W =

(w1, . . . , wd).

(A6) β̂ = β +Op(n
−1/2).

Remark 1. We illustrate that the method of moment estimator satisfies (2.3)

and (2.4). For example, consider the Heston model defined in (3.2), and let

SL(a
∗) and m̂4 denote the estimators of integrated volatility and quarticity, re-

spectively, as described in Section 3. Set

U(θ) = (U1(θ), U2(θ))
T =

(
α

λ
, 3(

α

λ2
+
α2

λ2
)

)T

, U(θ̂) =

(
α̂

λ̂
, 3(

α̂

λ̂2
+
α̂2

λ̂2
)

)T

,

ψ(θ, x) = (ψ1(θ, x)ψ2(θ, x))
T =

(
x2 − α

λ
, x4 − 3(

α

λ2
+
α2

λ2
)

)T

, (2.5)

y(θ, r̃1, . . . , r̃n) =

(
SL(a

∗)− α

λ
, 3m̂4 − 3(

α

λ2
+
α2

λ2
)

)T

.

Then, by (2.5), we have

U(θ̂) = U(θ) + y(θ, r̃) + op(n
−1/2
k ). (2.6)

We can see that

1

n

n∑
j=1

Eψ(θ, ξ̂j) =


1

nkn
E

∫ nkn

0
σ2sds−

α

λ
3

nkn
E

∫ nkn

0
σ4sds− 3(

α

λ2
+
α2

λ2
)

 ,

and thus
1

n

n∑
j=1

ψ(θ, ξ̂j)−
1

n

n∑
j=1

Eψ(θ, ξ̂j) = Op(
√
kn), (2.7)
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y(θ, r̃)− 1

n

n∑
j=1

Eψ(θ, ξ̂j) = Op(n
−1/4). (2.8)

For the orders of (2.7) and (2.8), see, for example, Andersen et al. (2001) and

Lin and Guo (2015).

By the Mean Value Theorem, we have

U(θ̂)− U(θ) = A(θ∗)(θ̂ − θ), (2.9)

where A(θ∗) = [[aik]], aik = ∂Ui
∂θk

(θ∗), and θ∗ lies on the line segment determined

by θ̂ and θ. If A is invertible, by plugging (2.9) to (2.6), we have θ̂ = θ+h(θ, r̃)+

op(n
−1/2
k ), where h(θ, r̃) = A−1y(θ, r̃) and (2.3) holds. Then, multiplying (2.7)

and (2.8) with A−1, we get

1

n

n∑
j=1

g(θ, ξ̂j)−
1

n

n∑
j=1

Eg(θ, ξ̂j) = Op(
√
kn), (2.10)

h(θ, r̃)− 1

n

n∑
j=1

Eg(θ, ξ̂j) = Op(n
−1/4), (2.11)

where g(θ, ξ̂j) = A−1ψ(θ, ξ̂j). Finally, combining (2.10) and (2.11), we have

h(θ, r̃) =
1

n

n∑
j=1

g(θ, ξ̂j) +Op(
√
kn) +Op

(
n−1/4

)
=

1

n

n∑
j=1

g(θ, ξ̂j) + op(n
−1/2
k ),

where we have used the fact that Op

(
n−1/4

)
= op

(
nk

−1/2
)
and Op

(√
kn

)
=

op
(
nk

−1/2
)
, since kn → 0, nkn → ∞, and nk2n → 0 as n → ∞. Hence, (2.4)

holds.

Let
ϕ̂n(t) =

1

n

n∑
j=1

eitr̃j/k
1/2
n

be the empirical characteristic function (e.c.f.) based on the observed log returns,

ϕ̂ξ(t) = Eθ(e
itξ1)

∣∣
θ=θ̂

be the characteristic function (c.f.) of ξ1 with θ replaced

by its estimator θ̂, and ϕ̂η(t) = Eβ

(
eitη1

) ∣∣
β=β̂

be the c.f. of η1 with β replaced

by its estimator β̂. We need the following conditions.

(A7) ϕξ(t) = Eθ(e
itξ1) is continuously differentiable with respect to θ and

∇ϕξ(t) = (∂ϕξ(t)/∂θ1, . . . , ∂ϕξ(t)/∂θd)
′ satisfies∫ ∥∥∥∥∂ϕξ(t)∂θi

∥∥∥∥2ν dG(t) <∞.
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(A8) (i) The characteristic function of η satisfies

|ϕη(t)| = e−α0(β)|t|α1+R(β,t) as t→ ∞,

where ∥∇βα0(β)∥1 = O(1), 0 < α1 < 1, and R(β, t) = o(|t|α1) with

∥∇βR(β, t)∥1 = o(|t|α1).

(ii) The characteristic function of η satisfies

|ϕη(t)| = α0(β)|t|−α1(β) +R(β, t) as t→ ∞,

where ∥∇βα0(β)∥1 = O(1), 0 < α1(β), ∥∇βα1(β)∥1 = O(1), and R(β, t) =

o(|t|−α1(β)) with ∥∇βR(β, t)∥1/R(β, t) = O(|t|−α3) for some α3 > 0.

Remark 2. Condition (A8)(i) is related to the supersmoothness case of Fan

(1991) that includes the t and generalized error distributions. Condition (A8)(ii)

is related to the ordinary smoothness case of Fan (1991) that includes the expo-

nential and gamma distributions.

Consider the characteristic function based test statistic:

T̂n = nk

∫ ∣∣∣∣∣ ϕ̂n(t)− ϕ̂ξ(t)ϕ̂η(t/k
1/2
n )ϕ̂η(−t/k1/2n )

ϕ̂η(t/k
1/2
n )ϕ̂η(−t/k1/2n )

∣∣∣∣∣
2

dG(t). (2.12)

Since the asymptotic distribution of T̂n is hard to derive directly, we introduce

T̂ ∗
n = nk

∫ ∣∣∣ 1
n

n∑
j=1

eitξ̂j − ϕ̂ξ(t)
∣∣∣2dG(t),

the characteristic function-based test statistic for the noiseless case; its limiting

null distribution can be seen in Lin, Lee, and Guo (2013). Similarly to Section

3.1 there, we can get∣∣∣T̂ ∗
n − nk

∫ ∣∣∣ 1
n

n∑
j=1

eitξ̂j − Eθe
itξ̂1 − (∇ϕξ(t))′

1

n

n∑
j=1

ġ(θ, ξ̂j)
∣∣∣2dG(t)∣∣∣ = op(1),

where ġ(θ, ξ̂j) = g(θ, ξ̂j) − Eθg(θ, ξ̂1) for j = 1, 2, . . . , n, and the expectation is

under the stationary law of ξ̂1. Subsequently, T̂ ∗
n should have the same limiting

null distribution as

nk

∫ ∣∣∣ϕ̂n(t)− Eθe
itξ̂1 − (∇ϕξ(t))′

1

n

n∑
j=1

ġ(θ, ξ̂j)
∣∣∣2dG(t),

which is also named as T̂ ∗
n without any confusion. A result ensures that T̂ ∗

n can

be approximated by a degree-2 degenerate V -statistic (cf., Lemma 3.1 of Lin,

Lee, and Guo (2013)).
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Lemma 1. If (A5) holds, T̂ ∗
n is a degree-2 degenerate V-statistic,

T̂ ∗
n =

nk
n2

n∑
j=1

n∑
k=1

k(ξ̂j , ξ̂k; θ), (2.13)

where Eθk(x, ξ̂1) = Eθk(ξ̂1, x) = 0 for any x ∈ R and

k(x, y; θ) = Re {I1(x, y) + I2(y) + I3(x, y)} (2.14)

with

I1(x, y) =

∫ [
e−itx

(
eity − Eθe

itξ̂1
)
− e−itx(∇ϕξ(t))′ġ(θ, y)

]
dG(t),

I2(y) =

∫ [
Eθe

−itξ̂1
(
−eity +Eθe

itξ̂1
)
+ Eθe

−itξ̂1(∇ϕξ(t))′ġ(θ, y)
]
dG(t),

I3(x, y) =

∫ [
(∇ϕξ(−t))′ġ(θ, x)

(
−eity + Eθe

itξ̂1
)

+(∇ϕξ(−t))′g(θ, x)(∇ϕξ(t))′ġ(θ, y)
]
dG(t).

We decompose (2.13) using wavelet functions. By (A5) and (2.14),∫ ∫
k(x, y)2dF̃ (x; θ)dF̃ (y; θ) <∞, (2.15)

where F̃ (x; θ) denotes the stationary distribution of ξ̂1. Let Φ be a Lipschitz-
continuous scale function and Ψ be a Lipschitz-continuous wavelet mother func-
tion with a compact support such that

∫∞
−∞Φ(x)dx = 1 and

∫∞
−∞Ψ(x)dx = 0.

Define the sequence of wavelet functions

Φj,l(x) = 2j/2Φ(2jx− l), Ψj,l(x) = 2j/2Ψ(2jx− l), j ∈ N ∪ {0}, l ∈ Z;

this is an orthonormal basis of L2-space satisfying∫
Φj,l(x)Φj′,l′(x)dx =

{
1, if j = j′ & l = l′,

0, otherwise.

Owing to (2.15), the kernel function k has a decomposition (cf., Daubechies
(2002)) in the L2-sense,

k(x, y) =

∞∑
j=0

∞∑
k1,k2=−∞

λj;k1,k2φj,k1(x)φj,k2(y),

where

φj,k1 =

{
Φj,k1 , j = 0,

Ψj,k1 , j ∈ N,

λj;k1,k2 =

∫ ∫
ḣ(c)(x, y)φj,k1(x)φj,k2(y)dxdy. (2.16)

We have two conditions on the scale density of (σ2t ) in (A1),
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(B1)

∫
0+
s(v)

[∫ v

0
fσ,θ(u)du

]2
dv <∞;

(B2)

∫ ∞
s(v)

[∫ ∞

v
uν/2fσ,θ(u)du

]2
dv <∞

to obtain the following (cf., Theorem 3.1 of Lin, Lee, and Guo (2013)).

Theorem 1. Let {pt} and {σ2t } be as at (1.1). Suppose that (A1)∼(A5), (A7),

(B1), and (B2) hold and the distribution function G satisfies

lim
t→∞

dG(t)

dF̃ (t; θ)
= 0.

If the α-mixing coefficients of {σt} satisfy ασ(m) = O(e−am) for some a > 0,

then, under H0 as n→ ∞,

T̂ ∗
n

d−→ Z ≡
∞∑
j=0

∞∑
k1,k2=−∞

λj;k1,k2Zj,k1Zj,k2 , (2.17)

where Zj,k, j = 0, 1, 2, . . ., k = 0,±1,±2, . . ., are correlated centered normally

distributed random variables and λj;k1,k2 are the wavelet coefficients of the kernel

function ḣ(c) in (2.14) (cf., (2.16)).

Theorem 2. Under the assumptions of Theorem 1, (A6), and (A8)(i), under

H0,

(i) T̂n − T̂ ∗
n = op(1);

(ii) T̂n has the limiting distribution as at (2.17).

Theorem 3. Under the assumptions of Theorem 1, (A6), and (A8)(ii), under

H0,

(i) T̂n − T̂ ∗
n = op(1);

(ii) T̂n has the limiting distribution as at (2.17).

3. Volatility Parameter Estimation

In this section, we consider two SVM examples as illustrations. The char-

acteristic functions and parameter estimations based on the method of moment

estimates are provided. The integrated second and fourth moments of the effi-

cient returns {ri} are

m2 = E

(∫ nkn

0
σ2sds

)
, m4 = E

(∫ nkn

0
σ4sds

)
, (3.1)

and their corresponding estimators are denoted by m̂2 and m̂4.
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Example 1 (Heston model). The process {pt} of the Heston (1993) model sat-

isfies {
dpt = σtdWt,

dσ2t = −ρ(σ2t − µ)dt+ ω
√
σ2t dBt,

(3.2)

where {Wt : t ≥ 0} and {Bt : t ≥ 0} are independent Wiener processes. The

volatility σ2t has a stationary Gamma(α, λ) distribution with α = 2ρµ/ω2, λ =

2ρ/ω2: see, for example, Bibby, Skovgaard, and Sørensen (2005). In view of

Proposition 4.1 of Lin, Lee, and Guo (2013), it can be seen that the characteristic

function of {ξi} is

ϕH =

(
2λ

2λ+ t2

)α

.

The two moment equations for the parameters α and λ are given by

m2 = E

(∫ nkn

0
σ2sds

)
= nkn

α

λ
,

m4 = E

(∫ nkn

0
σ4sds

)
= nkn

(
α

λ2
+
α2

λ2

)
,

and one has

α̂ =
m̂2

2

nknm̂4 − m̂2
2

, λ̂ =
nknm̂2

nknm̂4 − m̂2
2

.

Example 2 (Stein and Stein model). The process {pt} of the Stein and Stein

(1991) model satisfies {
dpt = σtdWt,

dσt = −ρ(σt − µ)dt+ ωdBt.
(3.3)

The volatility σt has a stationary N(µ, τ2) distribution with τ2 = ω2/(2ρ): see,

for example, Bibby, Skovgaard, and Sørensen (2005). Owing to Proposition 4.1

of Lin, Lee, and Guo (2013), it can be seen that the characteristic function of

{ξi} is

ϕS =

√
1

1 + t2τ2
exp

{
− µ2t2

2(1 + t2τ2)

}
.

The moment equations are{
m2 = nkn

(
µ2 + τ2

)
,

m4 = nkn
(
µ4 + 6µ2τ2 + 3τ4

)
,

so the moment estimators of µ and τ are

µ̂ =

[
3m̂2

2 − nknm̂4

2(nkn)2

]1/4
, τ̂2 =

2m̂2 −
√

6m̂2
2 − 2nknm̂4

2nkn
.
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Here the {ri} are unobservable, and the observed returns {r̃i} are contaminated

by microstructure noise. Thus, to estimate m̂2 and m̂4, a method of filtering

out the noise process is required. For estimating m4, we adopt the estimator of

Jacod et al. (2009, Remark 4) to obtain

m̂4 =
1

3c2ψ2
2

n−ln+1∑
i=0

(r̄ni )
4 − knψ1

c4ψ2
2

n−2ln+1∑
i=0

(r̄ni )
2
i+2ln−1∑
j=i+ln

r̃2j +
knψ

2
1

4c4ψ2
2

n−2∑
i=1

r̃2i r̃
2
i+2,

where ψ1 = 1, ψ2 = 1/12, ln = ⌊ck−1/2
n ⌋, c = 3,

r̄ni =

ln−1∑
j=1

g

(
j

ln

)
r̃i+j ,

and g(x) = min{x, 1− x}.

There are various methods for estimating
∫ 1
0 σ

2
sds, the integrated volatility,

in the fixed-span in-fill setting (kn → 0 and nkn → constant). For example,

the two-scaled estimator of Zhang, Mykland, and Aı̈t-Sahalia (2005); the multi-

scaled estimator of Zhang (2006); the kernel estimator of Barndorff-Nielsen et al.

(2009); the pre-averaging estimator of Jacod et al. (2009); the optimal restricted

quadratic estimator of Lin and Guo (2015). Here we employ the quadratic esti-

mator of Lin and Guo (2015) because of its finite sample efficiency.

The quadratic estimator of Lin and Guo (2015) is

SL(a) = a0

n+1∑
j=1

r̃2j + a1

n∑
j=1

r̃j r̃j+1 + . . .+ aℓ

n+1−ℓ∑
j=1

r̃j r̃j+ℓ

= a0L0 + a1L1 + . . .+ aℓLℓ,

where Lh =
∑
r̃j r̃j+h denotes the lag h sample autocovariance. We set a0 = 1

and a1 = 2 to ensure the unbiasedness of SL: see Lemma 1 of Lin and Guo

(2015). The optimal weights, a∗ = (a∗2, . . . , a
∗
ℓ), are chosen to minimize the finite

sample variance and to satisfy the system of equations (for details, see (16) of

Lin and Guo (2015)):
µ2a2 + ρ3a3 + γ4a4 = −γ2 − 2ρ2,

ρ3a2 + µ3a3 + ρ4a4 + γ5a5 = −2γ3,

γh+2ah + ρh+2ah+1 + µh+2ah+2 + ρh+3ah+3 + γh+4ah+4 = 0

(3.4)

for 2 6 h 6 ℓ − 2, where µh = E [V arG (Lh)], ρh = E [CovG (Lh−1, Lh)], γh =

E [CovG (Lh−2, Lh)], and G is the σ-field generated by {σt, t ≥ 0}.
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Lemma 2. Assume the log price p̃t’s are observed at equispaced time points

{t1, . . . , tn} where ti = ikn where kn → 0, nkn → ∞, and nk2n → 0 as n → ∞.

Let K = E(η4t )/(Eη
2
t )

2. Then,

µ0 = 2knE

(∫ nkn

0
σ4sds

)
+ 4σ2εE

(∫ nkn

0
σ2sds

)
+ (nK − 1)σ4ε + o(nk3n),

µ1 = knE

(∫ nkn

0
σ4sds

)
+ 2σ2εE

(∫ nkn

0
σ2sds

)
+2A1+

(K+4)n−6

4
σ4ε+o(nk

3
n),

ρ1 = −2σ2εE

(∫ nkn

0
σ2sds

)
− 2A1 −

(K + 1)n− 2

2
σ4ε ,

µh = knE

(∫ nkn

0
σ4sds

)
+ 2σ2εE

(∫ nkn

0
σ2sds

)
+Ah+Bh+

3n−3h

2
σ4ε+o(nk

3
n),

ρh = −σ2εE
(∫ nkn

0
σ2sds

)
− 1

2
Ah −

1

2
Bh −

2n− 2h+ 1

2
σ4ε , 2 6 h 6 ℓ,

where Ah = σ2εE
(∫ nkn

(n−h)kn
σ2sds

)
and Bh = σ2εE

(∫ hkn
0 σ2sds

)
, 1 6 h 6 ℓ.

The proof of Lemma 2 is given in the Appendix. The results for the γh’s are

those in Lemma 2 of Lin and Guo (2015).

By dividing both sides of (3.4) by nσ4ε and ignoring the O(ℓkn/n) terms, we

obtain the system of equations
µ̇2a2 + ρ̇3a3 + γ̇4a4 + γ̇2 + 2ρ̇2 = 0,

ρ̇3a2 + µ̇3a3 + ρ̇4a4 + γ̇5a5 + 2γ̇3 = 0,

γ̇h+2ah + ρ̇h+2ah+1 + µ̇h+2ah+2 + ρ̇h+3ah+3 + γ̇h+4ah+4 = 0,

(3.5)

where 2 6 h 6 ℓ− 2 and

µ̇h = S2
nr + 2Snr +

3n− 3h

2n
, ρ̇h = −Snr −

2n− 2h+ 1

2n
,

γ̇2 =
n− 1

2n
, γ̇h =

n− h+ 1

4n
, Snr =

E
∫ nkn
0 σ2sds

nσ2ε
,

for 2 ≤ h ≤ ℓ. We then use (3.5) to solve the optimal weights a∗. The nu-

merator of Snr is slightly modified from that of Lin and Guo (2015) for our

setting, and the system of equations (3.5) depends only on Snr. Thus, we can

use the recursive algorithm proposed by Lin and Guo (2015), Section 3, that

employs the Newton-Raphson and Gauss-Seidel methods to solve a∗. We derive

the asymptotic distribution of SL(a
∗) via an approach similar to Lin and Guo

(2015, Thm. 1).
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4. Noise Parameter Estimation

In this section, we discuss the estimators of the noise distribution parameters

by using the method of moment estimator. We suggest using the lag-1 sample

autocovariance and the fourth moment of the observed returns to obtain the

moment estimators:

E

(
1

n

n∑
j=1

r̃j r̃j+1

)
= −E(η2t ),

E

(
1

n

n∑
j=1

r̃4j

)
= 3k2nm4 + 12knm2E(η2t ) + 2E(η4t ) + 6(E(η2t ))

2,

(4.1)

where m2 and m4 are the ones defined in (3.1).

For example, if ηt has a scaled t distribution, the moment estimators of s

and ν can be solved from

1

n

n∑
j=1

r̃j r̃j+1 =
−s2ν
ν − 2

,

1

n

n∑
j=1

r̃4j = 3k2nm4 + 12knm2
s2ν

ν − 2
+ 12

s4ν2(ν − 3)

(ν − 4)(ν − 2)2
.

(4.2)

As another example, if ηt
d
= E(β)−β−1, where E(β) is the exponential distribution

with expected value β−1, εt = ηt−ηt−1 follows a double exponential distribution

with parameter β. Then the moment estimator of β can be solved from

1

n

n∑
j=1

r̃j r̃j+1 = − 2

β2
.

We investigated the accuracy of the moment estimators for the volatility and

noise distributions. Recall that

Snr =
E
(∫ nkn

0 σ2sds
)

2nσ2η
,

the signal-to-noise ratio. For the Heston model in (3.2), the parameters were

set at ρ = 10, µ = 0.00048, and ω =
√
ρµ/2. For the Stein and Stein model

in (3.3), the parameters were set at ρ = 5, µ = 0.02, and ω =
√
0.0008. In

these settings, the numerator of Snr was 4.8 × 10−4. The sample size was n =

2×105. To investigate the performance of the moment estimators, we conducted

a simulation study for three values of Snr. The parameters of noise distribution

were ν = 5, s = 0.00035 (Snr = 0.12), ν = 8, s = 0.0002 (Snr = 0.45),

and ν = 10, s = 0.0001 (Snr = 1.9) for the scaled t distribution, and were
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Table 1. Relative errors of parameter estimation.

Heston Model Stein and Stein Model
Snr = 0.12 Snr = 0.45 Snr = 1.9 Snr = 0.12 Snr = 0.45 Snr = 1.9

α̂o 0.1466 0.1537 0.1524 µ̂o 0.0421 0.0429 0.0429

λ̂o 0.1571 0.1637 0.1641 τ̂o 0.0933 0.0910 0.0904
α̂ 0.2247 0.1584 0.1569 µ̂ 0.0543 0.0455 0.0451

λ̂ 0.2265 0.1656 0.1659 τ̂ 0.1451 0.0940 0.0910
ν̂ 0.3586 0.2409 0.4141 ν̂ 0.2813 0.2763 0.4418
ŝ 0.1534 0.1249 0.3958 ŝ 0.1389 0.1186 0.4113

β̂ 0.0304 0.1074 0.2457 β̂ 0.0347 0.1098 0.3849

β = 2, 200 (Snr = 0.12), β =4,300 (Snr = 0.45), and β = 9, 000 (Snr = 1.9) for

the exponential distribution.

The relative errors of (α̂, λ̂) and (µ̂, τ̂) are listed in Table 1. The results

demonstrate that the relative errors of the estimators of noise parameters (ν̂, ŝ

and β̂) increase as Snr increases, whereas those of the model parameter estimators

(α̂, λ̂) for the Heston model and (µ̂, τ̂) for the Stein and Stein model decrease as

Snr increases. To obtain bench mark relative errors, we considered the moment

estimators for noise free SVMs, ϵi = 0 for all i. In the same parameter settings

as before, we denote the moment estimators by (α̂o, λ̂o) and (µ̂o, τ̂o) for the SVM

with no microstructure noise. To showcase the microstructure noise effect on the

parameter estimation, the relative errors of (α̂o, λ̂o) and (µ̂o, τ̂o) are also listed

in Table 1, serving as benchmark values. These results indicate that (α̂, λ̂) and

(α̂o, λ̂o) perform comparably when Snr > 0.45. An analogous phenomenon can

be found in (µ̂, τ̂) and (µ̂o, τ̂o).

5. Simulation and Empirical Results

5.1. Simulation results

In this simulation study, we evaluated the performance of our test

T̂n = nkn

∫ ∣∣∣ ϕ̂n(t)− ϕθ̂n(t)

ϕ̂η(t/k
1/2
n )ϕ̂η(−t/k1/2n )

∣∣∣2dG(t) (5.1)

with

ϕ̂n(t) =
1

n

n∑
j=1

eitr̃j/k
1/2
n ,

ϕθ̂n(t) = Eθ(e
itξ1)Eβ

(
eitη1/k

1/2
n

)
Eβ

(
e−itη1/k

1/2
n

) ∣∣∣∣
{θ=θ̂n,β=β̂}

,

where θ̂n and β̂ are the moment estimators of the parameters of the volatility

and the microstructure noise, respectively.
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We considered the null hypotheses H0,ij : σt ∼ fi and ηt ∼ f
(j)
η for i = 1, 2

and j = 1, 2, where f1 ∼
√
Gamma (the Heston SVM, see (3.2)), f2 ∼ Normal

(the Stein and Stein SVM, see (3.3)), f
(1)
η ∼ stν and f

(2)
η ∼ E(β) − β−1. In the

next section, we discuss the choice of microstructure noise distribution based on

empirical data. Under H0,i1, we have

ϕ̂η(
t√
kn

)ϕ̂η(−
t√
kn

) =
(Bν/2(

√
ν|st/k1/2n |))2(

√
ν|st/k1/2n |)ν

(Γ(ν/2))22ν−2

∣∣∣∣
{ν=ν̂,s=ŝ}

,

where Bν/2 denotes a modified Bessel function of the third kind with index ν/2.

Under H0,i2, we have

ϕ̂η(
t√
kn

)ϕ̂η(−
t√
kn

) =
β2

β2 + k−1
n t2

∣∣∣
{β=β̂}

.

As in Lin, Lee, and Guo (2013), we adopted a strong order-one approximation of

the Ornstein-Uhlenbeck process to attain better approximation. See, for example,

Schurz (2000, p.242) and Fan (2005):{
pt+1 = pt + σt

√
knZt,

σ2t = σ2t−1 + ρ(κ− σ2t−1)kn + v(σt−1)
√
knWt +

1
2v(σt−1)v

′(σt−1)kn(W
2
t − 1).

Our simulation scheme was similar to that of Lin, Lee, and Guo (2013), and the

key steps were as follows.

1. Simulate a sample {pi}1≤i≤n from a hypothesized SVM and {ηi}1≤i≤n with

the corresponding true parameters θ and β = (s, ν).

2. Obtain the log prices p̃i = pi + ηi, the log returns r̃i = p̃i − p̃i−1, and the

normalized returns ξ̂i defined in (2.2).

3. The parameter estimators of noise distribution and the model parameters,

denoted by β̂n and θ̂n, respectively, are obtained from (4.2) and (3.3) for H0,1

and (4.2) and (3.4) for H0,2. Finally, T̂n is obtained from (5.1).

4. Generate B bootstrap samples of size n by replacing θ̂n and β̂n to the model

and noise parameters, respectively. Similarly to Steps 2 and 3, obtain the

bootstrap moment estimators to construct the bootstrap test statistics T̂ ∗b
n

from (5.1), b = 1, . . . , B. As in Section 5 of Lin, Lee, and Guo (2013), we

simply set ρ = 10.

5. Use the B bootstrap test statistics T̂ ∗b
n to estimate the sample (1 − α)th

quantile. Repeat Steps 1 to 3 1,000 times to obtain the sizes and powers.

The parameter settings were the same as described in Section 4, which cor-

respond to three Snr values (0.12, 0.45 and 1.9). The sizes and powers of the test



1320 LIANG-CHING LIN, SANGYEOL LEE AND MEIHUI GUO

Table 2. The sizes and powers (in percentage) of T̂n for H0,i1, i = 1, 2 versus five H1.

H0,11 :
√
Gamma H0,21 : Normal

H1 Snr = 0.12 Snr = 0.45 Snr = 1.9 Snr = 0.12 Snr = 0.45 Snr = 1.9√
Gamma 5.2 5.3 4.6 78.1 89.9 83.4
Normal 48.1 35.5 76.2 3.6 4.3 5.3
Uniform 99.9 99.9 100.0 94.8 87.3 96.8

F 82.5 70.8 90.2 90.6 99.7 99.4
IG 33.2 93 93 70.3 98.7 99.2

Table 3. The sizes and powers (in percentage) of T̂n for H0,i2, i = 1, 2 versus five H1.

H0,12 :
√
Gamma H0,22 : Normal

H1 Snr = 0.12 Snr = 0.45 Snr = 1.9 Snr = 0.12 Snr = 0.45 Snr = 1.9√
Gamma 3.6 4.7 5.8 61.7 61.5 50.9
Normal 82.3 93.8 90.8 6.5 5.1 5.2
Uniform 95.9 88.9 70.8 76.5 61.5 60.5

F 70.9 99.8 65.7 55.3 61.6 61.7
IG 68.7 82.7 94.1 67.1 75.8 87.8

statistic T̂n for H0,ij , i = 1, 2, j = 1, 2, versus H1’s corresponding to the volatil-

ity distributions
√
Gamma, Normal, Uniform, F, and Inverse Gamma (IG), are

presented in Table 2 (H0,i1, i = 1, 2,) and Table 3 (H0,i2, i = 1, 2). These results

support the validity of our test.

5.2. Data analysis

We considered the ultra high frequency tick-by-tick data of 13 stocks listed

on the New York Stock Exchange (NYSE): ABT, AMD, BAC, C, GE, JNJ, JPM,

KO, MCD, MER, NOK, PEP, XOM. The normal trading hours of NYSE is 6.5

hours from 9:30 to 16:00. Here, we use the previous tick interpolation scheme

(see, for example, Dacorogna et al. (2001)) to obtain the equi-spaced log prices

p̃ti ’s for each stock. To preprocess the suspicious jumps, we applied the wavelet

method of Fan and Wang (2007). The following analyses are based on the log

returns after the jumps are smoothed.

We first discuss appropriate microstructure noise distributions through a

high frequency data analysis. For this, we consider three stocks with differ-

ent transaction frequencies: ABT (low frequency), GE (middle frequency), and

JPM (high frequency). The nominal returns are ri =
∫ ti
ti−1

σsdWs = σti−1(Wti −
Wti−1) + k

1/2
n ∆ni, where ∆ni =

∫ ti
ti−1

(σs − σti−1)dWs/k
1/2
n , and thus,

V ar(ri) = knE
(σti−1(Wti −Wti−1)

k
1/2
n

+∆ni

)2
= O(kn),
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Figure 1. The left panel includes the empirical characteristic function (solid
line) of the JPM and the fitted characteristic functions of εt for ηt following
normal (thick line), generalized error (- - -), scaled log uniform (−−−) and
scaled t (· · · ) distributions. The right panel includes the corresponding log
characteristic functions.

which implies ri = OP (k
1/2
n ). Hence, when n is large (kn is small) and x is not

so small, we have

P (r̃i ≤ x) = P (ri + εi ≤ x) ≈ P (εi ≤ x) . (5.2)

This suggests that at the highest observed frequency, the empirical distribution of

the observed returns might resemble the microstructure noise distribution. Since

the microstructure noise εt = ηt − ηt−1 and ηt’s are i.i.d., the distribution of εt
can be obtained as the convolution of the density function of ηt. As for the candi-

date distributions of {ηt}, below we considered a scaled t distribution, a normal

distribution, a generalized error distribution, and an exponential distribution.

Consider the JPM case. In Figure 1 (left panel), we plot the empirical char-

acteristic function (solid line) of the JPM and the fitted characteristic functions

of εt = ηt − ηt−1 for ηt following a normal (thick line), a generalized error (- -

-), an exponential (− − −), and a scaled t (· · · ) distribution, respectively. The

corresponding log empirical/fitted characteristic functions versus log(t) are plot-

ted in the right panel of Figure 1. The parameters of these fitted characteristic

functions were estimated by the method of moments. The scaled t distribution

visually makes the best fit for the microstructure noise distribution of the JPM.

Likewise, the scaled t distribution provides the best fit in the cases of ABT and

GE. From this, we selected the scaled t distribution as our candidate distribution

for ηt.

To investigate the microstructure noise effect on model testing, both 2-

minute and 5-minute returns were considered. We utilized the high frequency

transaction data of the 21 trading days in the period 2002/01/02∼2002/01/31.

As with the setting of Lin, Lee, and Guo (2013), we regarded one hour as a time

unit and overnight returns were ignored. For the 5-minute returns, we set the

sampling time length at 60min×kn ≈ 5min. Thus, for each stock through 21
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normal trading days, the sample size was n = 1,638. For 2-minute returns, the

sample size was n = 4,095 for each stock. We utilized high frequency returns

to test the null hypotheses H0,i1 : σt ∼ fi and ηt ∼ scaled t, i = 1, 2, where

f1 ∼
√
Gamma (Heston model) and f2 ∼ Normal (Stein and Stein model) for

each stock.

We performed the proposed test T̂n (cf. (5.1)) at the nominal level 5%. For

a comparison, we also considered the test T̃n in Lin, Lee, and Guo (2013), where

T̃n = nk

∫ ∣∣∣ 1
n

n∑
j=1

eitr̃j/kn − ϕ̃ξ(t)
∣∣∣2dG(t),

r̃j , j = 1, . . . , n, are high frequency returns, and ϕ̃ξ(t) = Eθ(e
itξ1)

∣∣
θ=θ̃

with the

parameter θ̃ estimated based on the noise free model, see Section 4 of Lin, Lee,

and Guo (2013).

We chose both the 2-minute and 5-minute returns due to the reasons ad-

dressed below. Since the variance of the efficient returns is proportional to the

sampling frequency (see Section 3 for detail), in the 5-minute return case, the

test statistic T̃n should have a tendency to have a smaller bias owing to the mi-

crostructure noise. However, at the same time, the total sample size decreases

and this results in an increase of the variance of T̃n. Conversely, the total sam-

ple size increases in the 2-minute return case and the variance of T̃n gets lower

than that in the 5-minute return case. In the meantime, the effect of the mi-

crostructure noise becomes more prominent and this increases the bias owing to

the microstructure noise. The results are summarized as follows.

(i) T̂n accepts H0,11 and rejects H0,21 for all 13 stocks in both the 2-minute or

5-minute return cases.

(ii) T̃n yields the same result for the three stocks ABT, BAC, and PEP, but

rejects both H0,11 and H0,21 in the cases of AMD, C, GE, JPM, and MCD. A

main problem in using T̃n is that the obtained result varies with the sampling

frequency since the microstructure noise term is not taken into consideration.

For example, in the cases of JNJ, MER, and XOM, T̃n accepts H0,11 and

rejects H0,21 in the 5-minute return case, while it rejects both hypotheses

in the 2-minute return case. For KO and NOK, though, T̃n accepts both

the H0,11 and H0,21 when 5-minute returns are used, it rejects H0,21 when

2-minute returns are used.

The summary in (ii) indicates that T̂n yields more consistent results, reflects

the situation a lot better, and yields more accurate results than T̃n.

To explore the power of T̂n in testing the microstructure noise distribution,

we considered the null hypothesis: H0,12 : σt ∼
√
Gamma (Heston model) and



GOF FOR SVM BASED ON NOISY OBS 1323

ηt ∼ E(β) − β−1. Comparing H0,12 to H0,11, we kept the same distribution
assumption on σt, yet changed the one on ηt. The test T̂n rejected H0,12 for all
13 stocks for the 2-minute return case. This indicates that the proposed T̂n has
power in testing the the distribution assumption on ηt, and that the scaled t
distribution is preferable to E(β)−β−1 for the microstructure noise distribution.

6. Concluding Remarks

In this study, a goodness-of-fit test is proposed for continuous time stochas-
tic volatility models contaminated with microstructure noises. A focus is made
on the stationary marginal distribution of the volatility process. The proposed
test is designed to measure the deviations between the empirical and hypothe-
sized true characteristic functions divided by the characteristic function of the
microstructure noise. It is shown that under the null, the proposed test asymp-
totically follows a weighted sum of products of centered normal random variables.
A simulation study was conducted to evaluate the proposed test. Our data anal-
ysis shows that our test outperforms the test of Lin, Lee, and Guo (2013) in
terms of accuracy and practicability. Overall, our findings support the validity
of the proposed test in the presence of microstructure noise.
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Appendix. Proofs

The proof of Theorem 1. Since (2.12) is reexpressed as

T̂n = nkn

∫ ∣∣∣∣ ϕ̂n(t)− ϕ̂ξ(t)ϕ̂η(t/k
1/2
n )ϕ̂η(−t/k1/2n )

ϕ̂η(t/k
1/2
n )ϕ̂η(−t/k1/2n )

∣∣∣∣2dG(t)
= nkn

∫ ∣∣∣∣ 1
n

∑n
j=1 e

itr̃j/k
1/2
n − 1

n

∑n
j=1 e

itξ̂j ϕ̂η(t/k
1/2
n )ϕ̂η(−t/k1/2n )

ϕ̂η(t/k
1/2
n )ϕ̂η(−t/k1/2n )

+
1

n

n∑
j=1

eitξ̂j − ϕ̂ξ(t)

∣∣∣∣2dG(t),
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we get

|T̂n − T̂ ∗
n | ≤ nkn

∫ ∣∣∣∣ 1
n

∑n
j=1 e

itr̃j/k
1/2
n − 1

n

∑n
j=1 e

itξ̂j ϕ̂η(t/k
1/2
n )ϕ̂η(−t/k1/2n )

ϕ̂η(t/k
1/2
n )ϕ̂η(−t/k1/2n )

∣∣∣∣2dG(t)
= nkn

∫ ∣∣∣∣ 1
n

∑n
j=1 e

itξ̂j
[
eit(ηj−ηj−1)/k

1/2
n − ϕ̂η(t/k

1/2
n )ϕ̂η(−t/k1/2n )

]
ϕ̂η(t/k

1/2
n )ϕ̂η(−t/k1/2n )

∣∣∣∣2dG(t)
≤ 2nkn

∫ ∣∣∣∣ 1n
n∑

j=1

eitξ̂j
[
eit(ηj−ηj−1)/k

1/2
n − ϕη(t/k

1/2
n )ϕη(−t/k1/2n )

ϕ̂η(t/k
1/2
n )ϕ̂η(−t/k1/2n )

]∣∣∣∣2dG(t)
+2nkn

∫ ∣∣∣∣ϕη(t/k1/2n )ϕη(−t/k1/2n )

ϕ̂η(t/k
1/2
n )ϕ̂η(−t/k1/2n )

− 1

∣∣∣∣2dG(t)
= 2 ∗ (J1) + 2 ∗ (J2). (A.1)

We verify that both (J1) and (J2) are asymptotically negligible. By using
Taylor’s theorem and (A6), we can write

ϕ̂η(t) = ϕη(t) + (∇βϕη(t))
′(β̂ − β),

and thus,

(J2) = nkn

∫ ∣∣∣∣ 1

1 + h(t) + h(−t) + h(t)h(−t)
− 1

∣∣∣∣2 dG(t),
where h(t) =

[
∇β log(ϕη(t/

√
kn))

]′
(β̂ − β). Further, owing to (A8)(i), we get

|∇β log ϕη(
t√
kn

)| = −∇βα0(β)

∣∣∣∣ t√
kn

∣∣∣∣α1

+∇βR(β,
t√
kn

).

This together with (A6) implies

|h(t)| = − (∇βα0(β))
′
∣∣∣∣ t√
kn

∣∣∣∣α1

(β̂ − β) +

(
∇βR(β,

t√
kn

)

)′
(β̂ − β)

= Op

(
|t|α1k−α1/2

n n−1/2
)
+ op

(
|t|α1k−α1/2

n n−1/2
)

= Op

(
|t|α1(nkα1

n )−1/2
)
. (A.2)

Subsequently, since α1 < 1,

(J2) = nkn

∫
Op

(
|t|2α1(nkα1

n )−1
)
dG(t) = Op

(
k1−α1
n

∫
|t|2α1dG(t)

)
= op(1).

Meanwhile, notice that

(J1) = nkn

∫ ∣∣∣∣ 1n
n∑

j=1

eitξ̂j
[eit(ηj−ηj−1)/

√
kn/(ϕη(

t√
kn
)ϕη(− t√

kn
))− 1

ϕ̂η(
t√
kn
)ϕ̂η(− t√

kn
)/(ϕη(

t√
kn
)ϕη(− t√

kn
))

]∣∣∣∣2dG(t)
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= nkn

∫ ∣∣∣∣ 1n
n∑

j=1

eitξ̂j
[
eit(ηj−ηj−1)/

√
kn/(ϕη(t/

√
kn)ϕη(−t/

√
kn))− 1

1 + h(t) + h(−t) + h(t)h(−t)

]∣∣∣∣2dG(t).
By (A.2), we have h(t) = Op

(
|t|α1(nkα1

n )−1/2
)
= op(1) since nkα1

n → ∞ as

n→ ∞. Therefore,

(J1) = nkn

∫ ∣∣∣ 1
n

n∑
j=1

Yj

∣∣∣2dG(t),
where

Yj = eitξ̂j
[ eit(ηj−ηj−1)/

√
kn

ϕη(t/
√
kn)ϕη(−t/

√
kn)

− 1
]
.

We derive the mean and the variance of Ȳ =
∑n

j=1 Yj . Since {ηt} is a white noise

process and independent of {pt}, it is immediate that

E
[ 1
n

n∑
j=1

Yj

]
= 0.

To handle the variance, let Y ∗
j be the complex conjugate of Yj . Then, since Yj

has only one-step correlation, we have

V ar(Ȳ ) = E
[( 1

n

n∑
j=1

Yj

)( 1

n

n∑
j=1

Y ∗
j

)]

=
1

n2

n∑
j=1

E(YjY
∗
j ) +

1

n2

n−1∑
j=1

E(YjY
∗
j+1) +

1

n2

n−1∑
j=1

E(Yj+1Y
∗
j )

= (J1− 1) + (J1− 2) + (J1− 3). (A.3)

By simple algebra, we can check that

(J1− 1) =
1

n

[ 1

ϕ2η(t/
√
kn)ϕ2η(−t/

√
kn)

− 1
]
. (A.4)

Owing to (A8)(i),∣∣∣∣ϕ2η( t√
kn

)ϕ2η(−
t√
kn

)

∣∣∣∣ = e−4α0(β)|t|α1k
−α1/2
n +R′(β,t/

√
kn),

where R′(β, t/
√
kn) = 2R(β, t/

√
kn) + 2R(β,−t/

√
kn) is of order o(|t/

√
kn|α1).

Thus, by (A.4), we have

|(J1− 1)| =
∣∣∣∣ 1n [

e4α0(β)|t|α1k
−α1/2
n −R′(β,t/

√
kn) − 1

]∣∣∣∣
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≤
∣∣∣∣ 1n

(
4α0(β)|t|α1k−α1/2

n −R′(β,
t√
kn

)

)∣∣∣∣ (A.5)

= O
(
|t|α1(nkα1/2

n )−1
)
, (A.6)

where the inequality in (A.5) holds due to the fact that |ex − 1| ≤ |x| ∀x.
Similarly, we have

|(J1− 2)| =
∣∣∣ 1
n2

n−1∑
j=1

E
[
eit(ξ̂j+1−ξ̂j)

] [ ϕη(−2t/
√
kn)

ϕη(t/
√
kn)ϕη(−t/

√
kn)

− 1

] ∣∣∣
≤

∣∣∣∣ 1n
[
(2− 2α1)α0(β)

∣∣∣ t√
kn

∣∣∣α1
]∣∣∣∣

= O
(
|t|α1(nkα1/2

n )−1
)
, (A.7)

|(J1− 3)| = O
(
|t|α1(nkα1/2

n )−1
)
. (A.8)

Then, combining (A.3), (A.6), (A.7), and (A.8), we have

|(J1)|≤nkn
∫
Op

(
|t|α1(nkα1/2

n )−1
)
dG(t)=Op

(
k1−α1/2
n

∫
|t|α1dG(t)

)
=op(1).

This validates the theorem.

The proof of Theorem 3. We follow the lines in the proof of Theorem 2, so
highlight only some key steps. First, we show that (J1) and (J2) defined in (A.1)

are op(1). Recall h(t) =
[
∇β log(ϕη(t/

√
kn))

]′
(β̂ − β). Owing to (A8)(ii), we

have∣∣∣∣∇β log(ϕη(
t√
kn

))

∣∣∣∣ = ∇βα0(β)

α0(β)
−∇βα1(β) log |

t√
kn

|+
∇βR(β, t/

√
kn)

R(β, t/
√
kn)

.

This together with (A6) implies

|h(t)| = Op

(
(− log |t|+ 2−1 log kn)n

−1/2
)
+Op

(
|t|−α3kα3/2

n n−1/2
)

= Op

(
n−1/2(log |t|+ log kn)

)
.

Therefore,

(J2) = nkn

∫
Op

(
(log |t|+ log kn)

2n−1
)
dG(t)

= Op

(
kn

∫
(log |t|)2dG(t) + kn(log kn)

2

)
= op(1).

To show that (J1) = op(1), we deduce the orders of the three terms in (A.3).
By (A8)(ii), we have∣∣∣∣ϕ2η( t√

kn
)ϕ2η(−

t√
kn

)

∣∣∣∣ = O
(
|t|−2α1(β)kα1(β)

n

)
.
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Using (A.4) and the fact that |ex − 1| ≤ |x| ∀x, we get

|(J1− 1)| =
∣∣∣∣ 1nO (

|t|2α1(β)k−α1(β)
n − 1

)∣∣∣∣
=

∣∣∣∣ 1nO (
e2α1(β) log |t|−α1(β) log kn − 1

)∣∣∣∣
= O

(
n−1 log |t|+ n−1 log kn

)
.

Similarly, owing to (A8)(ii), (A.7), and (A.8), |(J1−2)| = O
(
n−1 log |t|+ n−1 log kn

)
and |(J1− 3)| = O

(
n−1 log |t|+ n−1 log kn

)
. Therefore, we get

|(J1)| ≤ nkn

∫
Op

(
n−1 log |t|+ n−1 log kn

)
dG(t)

= Op

(
kn

∫
log |t|dG(t) + kn log kn

)
= op(1),

which proves the theorem.

The proof of Lemma 2. The second and fourth moments of the nominal return

rj are

n+1∑
j=1

E
(
r2j
)
=

n+1∑
j=1

E
(∫ jkn

(j−1)kn

σsdWs

)2
=

n∑
j=1

E
(∫ jkn

(j−1)kn

σ2sds
)

= E
(∫ nkn

0
σ2sds

)
,

E
( n+1∑

j=1

r4j

)
= k2n

n+1∑
j=1

E
( rj

k
1/2
n

)4
= k2n

n+1∑
j=1

E
(
ξ4j + 6ξ2j∆

2
nj +∆4

nj

)
= 3k2n

n+1∑
j=1

E
(
σ4tj−1

)
+ 6k2n

n+1∑
j=1

E
(
σ2tj−1

)
E(∆2

nj) + k2n

n+1∑
j=1

E(∆4
nj)

= 3knE

(∫ nkn

0
σ4sds

)
+O(nk3n).

The remainder of the proof follows essentially the same lines as does in the proof

of Lemma 2 of Lin and Guo (2015)
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Genon-Catalot, V., Jeantheau, T. and Larédo, C. (1998). Limit theorems for discretely observed

stochastic volatility models. Bernoulli 4, 283-303.
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