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Supplementary Material

This note contains technical proofs.

S1 Technical proofs

We start with proving some preparatory propositions and lemmas.

Proposition 1. Assume Q∗ ∈ Hm
K . Let φ1(Z) = E(Q̂, ĝ) − EZ(Q̂, ĝ), φ2(Z) = EZ(Q∗,g∗) − E(Q∗,g∗) and

Λn(λ0, λ1,K) = E(Q∗,g∗) + λ0

m

∑m
k=1 ∥Q∗

τk
∥2HK

+ λ1
∑p

l=1 πl∥g∗l∥Hm
K
. Then the following inequality holds

E(Q̂, ĝ) + λ0
m

m∑
k=1

∥Q̂τk∥2HK
+ λ1

p∑
l=1

πl∥ĝl∥HK
≤ φ1(Z) + φ2(Z) + Λn(λ0, λ1,K).

Proof of Proposition 1: Since Q∗ ∈ Hm
k , g∗l ∈ Hm

K , for any l (Zhou, 2007). Direct calculation yields that

E(Q̂, ĝ) + J(Q̂, ĝ)

= E(Q̂, ĝ)− EZ(Q̂, ĝ) + EZ(Q̂, ĝ) +
λ0
m

m∑
k=1

∥Q̂τk∥2HK
+ λ1

p∑
l=1

πl∥ĝl∥Hm
K

≤ E(Q̂, ĝ)− EZ(Q̂, ĝ) + EZ(Q∗,g∗)− E(Q∗,g∗) + E(Q∗,g∗)

+
λ0
m

m∑
k=1

∥Q∗
τk
∥2HK

+ λ1

p∑
l=1

πl∥g∗l∥Hm
K

= φ1(Z) + φ2(Z) + Λn(λ0, λ1,K),

where the first inequality follows from the definition of (Q̂, ĝ). �
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Recall that

Frn = {(Q,g) ∈ Hm(p+1)
K :

λ0
m

m∑
k=1

∥Qτk∥2HK
≤ rn, λ1

p∑
l=1

πl∥gl
τ∥HK

≤ rn},

with rn defined as in Assumption 5 in the main text. Then denote

S(Z, rn) = sup
(Q,g)∈Frn

|E(Q,g)− EZ(Q,g)|.

Now we bound S(Z, rn) using the McDiarmid’s inequality.

Lemma 1. (McDiarmid’s Inequality) Let Z1, ..., Zn be independent random variables taking values in a set Z , and

assume that f : Zn → R satisfies

sup
z1,...,zn,z′

i∈Z
|f(z1, ..., zn)− f(z1, ..., z

′
i, ..., zn)| ≤ Ci,

for every i ∈ {1, 2, ..., n}. Then, for every t > 0,

P
(
|f(z1, ..., zn)− E (f(z1, ..., zn)) | ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1 C
2
i

)
.

The following Lemma 2 can be easily proved using the McDiarmid’s Inequality.

Lemma 2. Supposed Assumptions 1-3 in the main text are met. If |y| ≤Mn, then for any rn and ε > 0 , there holds

P (|S(Z, rn)− E(S(Z, rn))| ≥ ε) ≤ 2 exp

− nε2

8
(
Mn + κ

√
rn
λ0

+ cxκrn
c3λ1

)2

 . (S1.1)

In addition,

P (|EZ(Q∗,g∗)− E(Q∗,g∗)| ≥ ε) ≤ 2 exp

− nε2

8

(
Mn + 1

m

m∑
k=1

∥Q∗∥∞ + cx
m

m∑
k=1

p∑
l=1

∥g∗lτk∥∞
)2

 , (S1.2)

where cx = maxx∈Z ∥x ∥∞ and κ = supx∈Z
√
K(x,x).
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Proof of Lemma 2: Let (x′
i, y

′
i) be a sample point drawn from the distribution ρ(x, y) and independent of (xi, yi).

Denote by Z ′ the modified training sample which is the same as Z except that the i-th entry (xi, yi) is replaced by

(x′
i, y

′
i). By the triangle inequality

S(Z, rn)− S(Z ′, rn) = sup
(Q,g)∈Frn

|EZ(Q,g)− E(Q,g)| − sup
(Q,g)∈Frn

|EZ′(Q,g)− E(Q,g)|

≤ sup
(Q,g)∈Frn

|EZ(Q,g)− EZ′(Q,g)|.

Note that EZ(Q,g) can be decomposed as

EZ(Q,g) =
1

mn(n− 1)

m∑
k=1

 n∑
t̸=i,j ̸=i

hk(zt, zj) +
n∑

j=1

hk(zi, zj) +
n∑

t=1

hk(zt, zi)

 ,

where hk(zi, zj) = wijLτk(yi − Qτk(xj) − gτk(xi)
T (xi −xj)) with any fixed (Q,g) ∈ Hm(p+1)

K . Therefore, for

any (Q,g) ∈ Frn , EZ(Q,g)− EZ′(Q,g) can be simplified as

EZ(Q,g)− EZ′(Q,g) =
1

mn(n− 1)

m∑
k=1

( n∑
j=1,j ̸=i

hk(zi, zj)−

n∑
j=1,j ̸=i′

hk(z
′
i, zj) +

n∑
t=1,t ̸=i

hk(zt, zi)−
n∑

t=1,t ̸=i′

hk(zt, z
′
i)
)

≤ 4

n

(
Mn + κ

√
rn
λ0

+
cxκrn
c3λ1

)
.

The last inequality follows from the following derivation,

1

mn(n− 1)

m∑
k=1

n∑
j=1,j ̸=i

hk(zi, zj)

≤ 1

mn(n− 1)

m∑
k=1

n∑
j=1,j ̸=i

|yi −Qτk(xj)− gτ (xi)
T (xi − xj)|

≤ Mn

n
+

1

mn

m∑
k=1

∥Qτk∥∞ +
2cx
mn

m∑
k=1

p∑
l=1

∥glτk∥∞

=
Mn

n
+

1

mn

m∑
k=1

sup
x∈X

|⟨Qτk ,Kx⟩HK
|+ 2cx

mn

m∑
k=1

p∑
l=1

sup
x∈X

|⟨glτk ,Kx⟩HK
|

≤ 1

n

(
Mn + κ

√
rn
λ0

+
2cxκrn
c3λ1

)
,
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where the first inequality follows from Lτ (u) ≤ |u| and |w| ≤ 1, the second one follows from the triangle inequality,

the equality follows from the reproducing property, and the last one is based on Assumptions 1 and 3 in the main text,

the Cauchy-Schwartz inequality and the fact that (Q,g) ∈ Frn .

Interchanging the roles of Z and Z ′ yields that

|EZ(Q,g)− EZ′(Q,g)| ≤ 4

n

(
Mn + κ

√
rn
λ0

+
cxκrn
c3λ1

)
.

Then applying the McDiarmid’s inequality, we have the desired probability upper bound in (S1.1). Similarily, the

proof of (S1.2) can be obtained by directly applying the McDiarmid’s inequality. �

Lemma 3. If |y| ≤Mn, there exists a constant aκ,x such that

E[S(Z, rn)] ≤ aκ,x

(
Mn +

√
rn
λ0

+ rn
c3λ1

)
√
n

.

Proof of Lemma 3: Denote ξk(x, y,u) = w(x−u)Lτk

(
y −Qτk(u)− gT

τk
(x)(x−u)

)
, then

S(Z, rn) = sup
(Q,g)∈Frn

|EZ(Q,g)− E(Q,g)|

≤ sup
(Q,g)∈Frn

∣∣E(Q,g)− 1

mn

m∑
k=1

n∑
j=1

E
(
ξk(x, y,xj)

)∣∣+ ∣∣ 1

mn

m∑
k=1

n∑
j=1

E
(
ξk(x, y,xj)

)
− EZ(Q,g)

∣∣
≤ sup

(Q,g)∈Frn

E(x,y)

∣∣ 1
m
Eu

m∑
k=1

ξk(x, y,u)−
1

mn

n∑
j=1

m∑
k=1

ξk(x, y,xj)
∣∣

+ sup
(Q,g)∈Frn

1

mn

n∑
j=1

∣∣E(x,y)

( m∑
k=1

ξk(x, y,xj)
)
− 1

(n− 1)

n∑
i ̸=j

m∑
k=1

ξk(xi, yi,xj)
∣∣

≤ E(x,y) sup
(Q,g)∈Frn

1

m

∣∣Eu

( m∑
k=1

ξk(x, y,u)
)
− 1

n

n∑
j=1

m∑
k=1

ξk(x, y,xj)
∣∣

+ sup
(Q,g)∈Frn

1

mn

n∑
j=1

sup
u∈X

∣∣E(x,y)

( m∑
k=1

ξk(x, y,u)
)
− 1

(n− 1)

n∑
i ̸=j

m∑
k=1

ξk(xi, yi,u)
∣∣

def
= S1(Z) + S2(Z),

where the first inequality follows from the triangle inequality, and the second and third inequalities obtain from the

definition of expected error and Jensen’s inequality, respectively.

Then, we apply the Rademacher complexities to obtain the upper bounds of E(S1) and E(S2) separately. In fact,
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there holds

E[S1(Z)] = EZE(x,y)

(
sup

(Q,g)∈Frn

1

m

∣∣Eu

m∑
k=1

ξk(x, y,u)−
1

n

n∑
j=1

m∑
k=1

ξk(x, y,xj)
∣∣)

≤ 2

m
E(x,y)EZ,σ

(
sup

(Q,g)∈Frn

∣∣ 1
n

n∑
j=1

σj

m∑
k=1

ξk(x, y,xj)
∣∣)

≤ 4

m
E(x,y)EZ,σ

(
sup

(Q,g)∈Frn

∣∣ 1
n

n∑
j=1

σj

m∑
k=1

w(x−xj)
(
y −Qτk(xj)− gT

τk
(x)(x−xj)

) ∣∣)
≤ 4

m
E(x,y)EZ,σ

(
sup

(Q,g)∈Frn

∣∣ 1
n

n∑
j=1

σj

m∑
k=1

w(x−xj)
(
Qτk(xj) + gT

τk
(x)(x−xj)

) ∣∣)+
4Mn√
n

≤ aκ,x

(
Mn +

√
rn
λ0

+ rn
c3λ1

)
√
n

,

where σj’s are a sequence of Rademacher variables. Here, the first inequality follows from the Rademacher averages,

the second, the third and the last inequalities are based on the fact that the absolute function | · | : R → R is Lipschitz

and the basic properties of Rademacher complexity (Bartlett, 2002). Similarly, we have

E[S2(Z)] ≤ aκ,x

(
Mn +

√
rn
λ0

+ rn
c3λ1

)
√
n

.

Then the desired result follows immediately. �

Proposition 2. If |y| ≤Mn, there exists a constant a1, such that with probability at least 1− δ
2 ,

φt(Z) ≤ a1

√
1

n
log

4

δ

(
Mn +

√
rn
λ0

+
rn
c3λ1

)
, for any t = 1, 2.

Proof of Proposition 2: The above proposition can be obtained by using Lemma 2, Lemma 3, and the fact that

φ1(Z) ≤ S(Z, rn) for any rn defined above. �

Now we derive the upper bound of E(Q∗,g∗). Based on the Assumption 1 in the main text, we have

E(Q∗,g∗) ≤ sn +
1

m

m∑
k=1

∫ ∫
w(x−u)|Q∗

τk
(x)−Q∗

τk
(u)− g∗T

τk
(x)(x−u)|pX(u)du dρX

≤ sn +
1

m

m∑
k=1

∫ ∫
w(x−u)c1∥x−u ∥2pX(u)pX(x)du dx

≤ sn + σp+2
n c1c5

∫
e−tT ttT tdt,
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where t = x−u
σn

and sn = 1
m

∑m
k=1

∫ ∫
w(x−u)|y − Q∗

τk
(x)|dρXdρ(X,Y ). Here the first inequality follows from

the triangle inequality, and the last two follow from Assumption 1 in the main text.

Proposition 3. Suppose that the assumptions of Theorem 1 are met. If |y| ≤ Mn, there exists a2 > 0 such that for

any δ ∈ (0, 1), with probability at least 1− δ,

E(Q̂, ĝ) + J(Q̂, ĝ)− sn ≤ a2

√
log

4

δ

(
n−

1
2Mn +

√
Mn

λ0n
+

Mn√
nλ1

+ σp+2
n + λ0 + λ1

)
.

Proof of Proposition 3: Since

E(Q∗,g∗)− sn ≤ c1c5σ
p+2
n

∫
e− tT ttT t d t, (S1.3)

we have

Λn(λ0, λ1,K)− sn = E(Q∗,g∗)− sn +
λ0
m

m∑
k=1

∥Q∗
τk
∥2HK

+ λ1

p∑
l=1

πl∥g∗l∥Hm
K

≤ c1c5σ
p+2
n

∫
e− tT ttT t d t+

λ0
m

m∑
k=1

∥Q∗
τk
∥2HK

+ λ1

p0∑
l=1

πl∥g∗l∥Hm
K

≤ a3
(
σp+2
n + λ0 + λ1

)
,

where a3 is a constant large than max{c1c5
∫
e−tT ttT tdt, max1≤k≤m ∥Q∗

τk
∥2HK

, maxl≤p0 c4∥g∗l∥Hm
K
}. Together

with Proposition 2 and Lemma 3, there exists a constant a2 such that with probability at least 1− δ

E(Q̂, ĝ) + J(Q̂, ĝ)− sn ≤ φ1(Z) + φ2(Z) + Λn(λ0, λ1,K)

≤ a2

√
log

4

δ
(n−

1
2Mn +

√
rn
λ0n

+
rn√
nλ1

+ σp+2
n + λ0 + λ1).

Furthermore, based on the definition of (Q̂, ĝ), we have that

EZ(Q̂, ĝ) + J(Q̂, ĝ) ≤ EZ(0,0) + J(0,0) ≤ 1

mn(n− 1)

m∑
k=1

n∑
i,j=1

wij |yi| ≤Mn.

The desired upper bound can be obtained by setting rn =Mn in the above inequality. �
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Proof of Theorem 1: For given constant a4 > 0, denote

C = {E(Q̂, ĝ)− sn ≥ a4

√
log

4

δ
(n−

1
4 + n−

3
8λ

− 1
2

0 + n−
1
4λ−1

1 + σp+2
n + λ0 + λ1)}. (S1.4)

Then we split C into two different events

P (C) = P (C ∩ {|y| ≥ n
1
4 }) + P (C ∩ {|y| ≤ n

1
4 })

≤ P (|y| ≥ n
1
4 ) + P (C ∩ {|y| ≤ n

1
4 }).

For the first probability, P (|y| ≥ n
1
4 ) = P (|y|2 ≥ n

1
2 ) ≤ E(|y|2)

n
1
2

= O(n−
1
2 ). Then we turn to bound the second

probability. Within the set {|y| ≤ n
1
4 }, by Proposition 3, we have with probability at least 1− δ

E(Q̂, ĝ)− sn ≤ a3

√
log

4

δ
(n−

1
4 +

√
1

λ0n
3
4

+
n−

1
4

λ1
+ σp+2

n + λ0 + λ1),

where Mn is set as n
1
4 . This implies that P (C) ≤ δ.

Then with the choice of λ0 = n−
1
4 , λ1 = n−

θ
2(p+2+2θ) and σn = n−

θ
2(p+2+2θ) , there exists a constant a4, such

that with probability at least 1− δ,

E(Q̂, ĝ)− sn ≤ a4

√
log

4

δ
n−Θ,

with Θ = min{ p+2
4(p+2+2θ) ,

θ
2(p+2+2θ)}.Together with (S1.3), there exists a constant c6 such that with probability at

least 1− δ, |E(Q̂, ĝ)− E(Q∗,g∗)| ≤ c6

√
log 4

δn
−Θ. �

Proof of Theorem 2: First we show that
∑m

k=1 ∥ĝl
τk
∥1 = 0 for any l > p0. Note that

∑m
k=1 ∥α̂

l
k∥1 = 0 implies

that all α̂l
k are exactly zero and thus

∑m
k=1 ∥ĝl

τk
∥1 = 0 based on the representer theorem in the RKHS. Therefore, it

suffices to show that
∑m

k=1 ∥α̂
l
k∥1 = 0 for any l > p0.

Suppose
∑m

k=1 ∥α̂
l
k∥1 > 0 for some l > p0. As the check loss function is not differentiable at 0, the sub-

differential of (1) with respect to α̂l
k is

R̃(α̂l
k) =

[
B1(α̂

l
k) +A(α̂l

k), B2(α̂
l
k) +A(α̂l

k)
]
,

where A(α̂l
k) = λ1

πlKα̂
l
k√

m
∑m

k=1(α̂
l
k)

T K α̂l
k

, B1(α̂
l
k) = 1

mn(n−1)

∑n
i,j=1 wij(xjl − xil)Kxi(τk − 1) and B2(α̂

l
k) =

1
mn(n−1)

∑n
i,j=1 wij(xjl − xil)Kxiτk.
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On one hand, there exists a constant a5 such that

m∑
k=1

∥n− 1
2A(α̂l

k)∥2 = n−
1
2λ1

πl
∑m

k=1

√
(α̂l

k)
T K2 α̂l

k√
m

∑m
k=1(α̂

l
k)

T K α̂l
k

≥ m− 1
2n−

1
2λ1a5πlψminψ

− 1
2

max

∑m
k=1 ∥α̂

l
k∥2√∑m

k=1 ∥α̂
l
k∥22

≥ a5m
− 1

2n−
1
2λ1πlψminψ

− 1
2

max.

By Assumption 4 in the main text, n−
1
2λ1πlψminψ

− 1
2

max → ∞ as n diverges. Therefore, with an appropriately selected

m, we can assure that ∥n− 1
2A(α̂l

k)∥2 → ∞ for some k, and thus at least one component of A(α̂l
k) will diverge to

infinity.

On the other hand,

m∑
k=1

|B1(α̂
l
k)| =

m∑
k=1

∣∣∣ 1

mn(n− 1)

n∑
i,j=1

wij(xjl − xil)Kxi(τk − 1)
∣∣∣ ≤ 2cxKx,

m∑
k=1

|B2(α̂
l
k)| =

m∑
k=1

∣∣∣ 1

mn(n− 1)

n∑
i,j=1

wij(xjl − xil)Kxiτk

∣∣∣ ≤ 2cxKx,

where the above inequalities between vectors are component-wise. By Assumption 1 in the main text, all elements of

Kx are bounded and thus all components of B1(α̂
l
k) and B2(α̂

l
k) are also bounded. Combining the above results, it

is then obvious that 0 /∈ R̃(α̂l
k) for some k, which contradicts with the fact that α̂ is a minimizer of (3) in the main

text. Therefore,
∑m

k=1 ∥α̂
k
l ∥1 = 0 for all l > p0, implying

∑m
k=1 ∥ĝl

τk
∥1 = 0 for all l > p0 .

Next, we show that
∑m

k=1 ∥ĝl
τk
∥1 ̸= 0 for every l ≤ p0. Suppose

∑m
k=1 ∥ĝl

τk
∥1 = 0 for some l ≤ p0, then

m∑
k=1

∫
Xσn

(
g∗lτk(x)

)2
dρX(x) ≤

m∑
k=1

∫
Xσn

∥ĝτk(x)− g∗
τk
(x)∥21dρX(x) ≤

m∑
k=1

∥ĝτk − g∗
τk
∥21, (S1.5)

where X σn = {x ∈ X : d(x, ∂X ) > σn, p(x) > σn + c5σ
θ
n}.

On one hand, by Assumption 5 in the main text and Theorem 1, we have as n diverges,

m∑
k=1

∥ĝτk − g∗
τk
∥21 ≤ m

c8
inf

(Q,g)∈Frn

|E(Q̂, ĝ)− E(Q∗,g∗)| → 0,

with an appropriately selected m. On the other hand, by Assumption 6 in the main text, there exist t and τ0 ∈ (0, 1)
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such that
∫
X\Xt

(
g∗lτ0(x)

)2
dρX(x) > 0, and there exists τk0 such that

sup
x,l

|g∗l
τ0(x)− g∗l

τk0
(x)| ≤ c9|τ0 − τk0 |ζ → 0,

as m→ ∞. Therefore, as σn → 0

m∑
k=1

∫
Xσn

(
g∗lτk(x)

)2
dρX(x) ≥

∫
X\Xt

(
g∗lτk0

(x)− g∗lτ0(x)
)2
dρX(x)+∫

X\Xt

(
g∗lτ0(x)

)2
dρX(x) + 2

∫
X\Xt

(
g∗lτk0

(x)− g∗lτ0(x)
)
g∗lτ0(x)dρX(x) > 0.

Clearly, it contradicts to the inequality in (S1.5), and thus
∑m

k=1 ∥ĝl
τk
∥1 ̸= 0 for every l ≤ p0. Finally, combining the

above two results, we show that the proposed method can exactly recover the true active set with probability tending

to 1. �
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