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Abstract: We study the high-dimensional asymptotic behavior of inferences based on

summary statistics that are widely used in genome-wide association studies (GWAS)

under model misspecification. The high dimensionality is in the sense that the

number of single-nucleotide polymorphisms (SNPs) under consideration may be

much larger than the sample size. The model misspecification is in the sense that the

number of causal SNPs may be much smaller than the total number of SNPs under

consideration. Specifically, we establish two parameters of genetic interest, namely,

the consistency and asymptotic normality of the estimators of the heritability and

genetic covariance. Our theoretical results are supported by the findings of empirical

studies involving simulated and real data.
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1. Introduction

Over the past 15 years, genome-wide association studies (GWAS) have iden-

tified tens of thousands of single-nucleotide polymorphisms (SNPs) associated

with complex human traits and diseases (Buniello et al. (2019)). In addition

to the success in finding risk loci, estimations of heritability and genetic co-

variance based on collected GWAS data also provide insights into the genetic

basis of complex traits/diseases (Tenesa and Haley (2013); van Rheenen et al.

(2019)). Heritability is the proportion of phenotypic variance due to genetic

effects, and genetic covariance is the covariance of genetic effects contributing

to two phenotypes. Methods based on the linear mixed model (LMM) and the

restricted maximum likelihood (REML) algorithm have been developed to esti-

mate these two quantities of significant genetic interest (Yang et al. (2010); Lee

et al. (2012)). Compared with traditional family-based approaches for estimating

these two quantities, these methods do not need to collect related samples and

can use large GWAS samples for estimation. Moreover, they do not require the
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studied phenotypes to be measured on the same individuals when estimating the

genetic covariance, which makes it possible to study a spectrum of human com-

plex traits/diseases simultaneously by using different cohorts. With regard to the

statistical properties of these estimates, the high-dimensional asymptotic theory

of the REML for heritability estimation has been recently established, even under

a misspecified LMM, which provides theoretical support for the robustness of the

REML estimator (Jiang et al. (2016)).

However, LMM-based methods require individual-level genotype and phe-

notype data, which are usually difficult to obtain, owing to policy and privacy

concerns. Increasingly accessible marginal association statistics from GWAS and

advances in analytical methods that rely only on these summary statistics have

circumvented challenges in data sharing and greatly accelerated research in com-

plex trait/disease genetics. Owing to its computational efficiency, the linkage

disequilibrium (LD) score regression (LDSC; Bulik-Sullivan et al. (2015a,b)) is

currently the most popular method for estimating heritability and genetic co-

variance using GWAS summary statistics. Based on this method, bioinformat-

ics servers have been built to improve the computation and visualization of the

heritability and genetic covariance of a wide range of phenotypes (Zheng et al.

(2017)).

In a typical GWAS data set, the total number of SNPs, p (e.g., 106 ∼ 107),

is often much larger than the sample size, n (e.g., 103 ∼ 106), that is, p � n.

In addition, more SNPs can be observed when more subjects are recruited in

GWAS, that is, p increases with n. In other words, GWAS data analyses are

high dimensional. Despite the polygenicity of many phenotypes, such as anthro-

pometric characteristics (Berndt et al. (2013)) and psychiatric disorders (Sullivan,

Daly and O’donovan (2012)), the SNPs that have biological effects on the phe-

notypes (causal SNPs) are still only a small portion of all the SNPs. However,

heritability and genetic covariance estimation methods based on summary statis-

tics, such as the LDSC, often assume that the effects of all SNPs are nonzero,

while the true underlying model might be sparse; that is, the assumed model

is misspecified in the LDSC. Although the LDSC has become a routine past of

post-GWAS analyses for estimating the heritability and genetic covariance, the

high-dimensional asymptotic behavior of the LDSC under a model misspecifica-

tion has not yet been rigorously justified. Therefore, there is a pressing need for a

theoretical justification for the LDSC. In this paper, we establish the consistency

and asymptotic normality of the heritability and genetic covariance estimators of

the LDSC in a regime of high-dimensional statistics, as both the sample size n

and the dimension of the random effects p tend to infinity. Our results indicate
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that the misspecified LDSC estimators converge to the desired true values of the

genetic quantities. We also provide their convergence rates (in probability) and

asymptotic variances. Our theoretical results are fully supported by our empirical

studies.

1.1. LDSC estimation under model misspecification

We first explain how to estimate heritability using an LDSC and GWAS sum-

mary statistics (Bulik-Sullivan et al. (2015a)). Based on the LMM, phenotypes

are modeled as

φ = Xβ + ε, (1.1)

where φ is an n × 1 vector of (quantitative) phenotypes, X is an n × p random

design matrix of genotypes normalized to mean zero and variance one, β is a

p× 1 vector of random effects following a N [0, (h2/p)Ip] distribution, in which Ip
denotes the p-dimensional identity matrix, and ε is an n×1 vector of errors that is

distributed as N [0, (1− h2)In]. Here, X, β, and ε are mutually independent. We

further assume that the genotypes of different subjects are independent of each

other. Before the normalization, the genotypes are coded as 0, 1, and 2, which

are the allelic dosages (number of minor alleles) of the variants. Denote fj as the

known minor allele frequency (MAF) of SNP j. According to the Hardy Weinberg

equilibrium (HWE), the probabilities of the genotype being 0, 1, and 2 for SNP j

are (1− fj)2, 2fj(1− fj), and f2
j , respectively. Thus, after the normalization, we

have −2fj/
√

2fj(1− fj), (1 − 2fj)/
√

2fj(1− fj), and (2 − 2fj)/
√

2fj(1− fj),
respectively, in X. It follows that E(XX ′) = pIn. Hence,

Var(φ) = Var(Xβ) + Var(ε) =
h2

p
E(XX ′) + (1− h2)In = In. (1.2)

Heritability is defined as the proportion of phenotypic variance attributed to

genetic factors. Based on this definition, the heritability of a phenotype is the

sum of the random effect variances, which is h2.

Owing to the existence of LD, genotypes of different SNPs are correlated,

especially for SNPs located nearby (Stephens et al. (2001)). We denote rjk as

the genotypic correlation between SNP j and SNP k, that is, rjk = E(XijXik),

which does not depend on i. The pairwise correlations between SNPs are stored

in an LD matrix R, that is, for any subject i, for 1 ≤ i ≤ n, cov(X[i]) = R, where

X[i] is the ith row of X. The correlations usually decay with an increase in the

pairwise distances, and hence the LD matrix is C-dependent, overall (discussed

in detail). The LD score of an SNP is defined as lj =
∑p

k=1 r
2
jk, where the sum
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is taken over all the variants, including SNP j itself (rjj = 1). As a special case,

when SNP j is independent of the other SNPs, we have lj = 1. In practice,

the LD matrix and LD scores can be obtained from a public external reference

panel constituting individual-level genotype data (e.g., the 1000 Genomes Project

Clarke et al. (2017)). Following the arguments in Bulik-Sullivan et al. (2015a), we

replace r2
jk in the definition of lj with an approximately unbiased estimator given

by r2
jk,adj = r̂2

jk − (1− r̂2
jk)/(N − 2), where N is the sample size of the reference

panel and r̂2
jk denotes the square of the sample Pearson correlation coefficient.

The design matrix X may be difficult to access, owing to privacy and security

issues. The advantage of the LDSC is that it needs only more accessible GWAS

summary statistics as input. In GWAS summary statistics, we have z-score for

each SNP that reflects the marginal association between the phenotype and the

SNP. Because the marginal heritability explained by one SNP is usually small, the

z-score of SNP j, zj , can be approximated by zj = X ′jφ/
√
n, where Xj denotes

the jth column of X. In an LDSC (Bulik-Sullivan et al. (2015b)), the heritability

can be estimated by solving the following linear regression:

E(z2
j ) = 1 + h2

(
n

p

)
lj , j = 1, . . . , p, (1.3)

where the intercept is fixed as one.

The model has been generalized to estimate the genetic covariance between

phenotypes (Bulik-Sullivan et al. (2015a)). Genetic covariance analysis can pro-

vide new insights into the shared genetics of many phenotypes, with numerous

downstream applications (van Rheenen et al. (2019), Zhang et al. (2021)), and

so has become a popular post-GWAS analysis tool. Let us assume that there are

two GWAS for two different phenotypes with sample sizes n1 and n2, respectively.

The two GWAS share the same set of p SNPs, but are not necessarily performed

within the same cohort. In practice, two different GWAS may share a subset of

subjects. Denote the number of shared subjects as no (the subscript o refers to

“overlap”), 0 ≤ no ≤ n1 ∧ n2 ≡ min(n1, n2). The phenotypes are modeled as

φ1 = Xβ + ε

φ2 = Y γ + δ, (1.4)

where φ1 and φ2 are n1 × 1 and n2 × 1 vectors, respectively, of phenotypes, X

and Y are n1 × p and n2 × p random design matrices, respectively, of genotypes

normalized to have mean zero and variance one with the same LD matrix, β and

γ are two p × 1 vectors of random effects jointly normally distributed so that
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E(β) = E(γ) = 0 and

Var

(
β

γ

)
=

1

p

(
h2

1Ip ρgIp
ρgIp h

2
2Ip

)
,

and ε and δ are n1 × 1 and n2 × 1 vectors, respectively, of random errors. The

marginal distributions of ε and δ are N [0, (1 − h2
1)In1

] and N [0, (1 − h2
2)In2

],

respectively. Here, (X,Y ), (β, γ), and (ε, δ) are independent. Without loss of

generality, we assume that the first no samples in each study are shared. In

addition, ε and δ are correlated because of the non-genetic correlation introduced

through the overlapping samples:

cov(εi, δj) =

{
ρe, 1 ≤ i = j ≤ no

0, otherwise
.

Similarly to (1.3), to estimate the genetic covariance, ρg, one can fit the following

linear regression model:

E(z1jz2j) =
ρno√
n1n2

+ ρg

(√
n1n2

p

)
lj , j = 1, . . . , p, (1.5)

where ρ = ρg + ρe. As a special case, if study 1 and study 2 are the same study,

which means that we have n1 = n2 = no, ρg = h2
1 = h2

2 = h2, and ρe = 1 − h2,

then model (1.5) reduces to model (1.3).

A basic assumption in the above LMMs is that all SNPs contribute to the

phenotypic variance. In reality, however, only a subset of the SNPs are causal

SNPs. Let S, T1, T2 ⊂ {1, 2, . . . , p} represent the indices of causal SNPs shared

in both traits, those presented only in trait 1, and those presented only in trait

2, respectively. In other words, S ∪ Tk are the indices of the causal SNPs for

trait k (where k = 1, 2). Note that S, T1, and T2 are mutually exclusive subsets.

Let βS and γS be the vectors of random effects corresponding to the SNPs in

S for both phenotypes. Similarly, βTk
and γTk

are defined as the random effect

vectors corresponding to the SNPs in Tk, for k = 1, 2. Let m = |S| (cardinality),

m1 = |T1|, and m2 = |T2|. Under the true model, the distribution of βj is

N [0, h2
1/(m+m1)] for j ∈ S ∪ T1, and βj = 0 for j /∈ S ∪ T1. Similarly, we have

γj ∼ N [0, h2
2/(m+m2)] when j ∈ S ∪ T2, and γj = 0 when j /∈ S ∪ T2. The true

LMMs can then be expressed as

φ1 = XSβS +XT1
βT1

+ ε

φ2 = YSγS + YT2
γT2

+ δ (1.6)
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[compare with (1.4)], where XA is a normalized genotype matrix for the SNPs in

set A (where A = S or T1), and YA is defined similarly (A = S or T2). The joint

distribution for the effects of the SNPs in S is given by(
βS
γS

)
∼ N

[(
0

0

)
,

(
h2
1

m+m1
Im

ρg
m Im

ρg
m Im

h2
2

m+m2
Im

)]
.

Here, h2
1, h2

2, and ρg are the heritability of phenotype 1, heritability of phenotype

2, and genetic covariance between phenotype 1 and 2, respectively, under the true

model. Detailed assumptions about the distributions of the genotype matrices

and the random effects under the true model are given in the following.

In practice, it is impossible to determine whether an SNP is causal for a

phenotype. Therefore, we have to follow the assumption of the LDSC that all

SNPs are causal in order to estimate the heritability and genetic covariance, which

actually leads to the misspecified model. The main goal of this study is to show

that the consistency and asymptotic normality properties of misspecified LDSC

estimators are valid when n, p, and m tend to infinity.

We conclude this section with a couple of numerical illustrations.

1.2. Numerical illustrations

In GWAS, SNPs are high-density bi-allelic genetic markers. Each SNP can be

considered as a binomial random variable with two trials, and the probability of

“success” is the minor allele frequency fj . In each sample, the SNP genotypes are

correlated, which is known as LD. To mimic the LD matrix of the human genome,

the LD matrix we use to simulate genotype data has a block structure, which is

a special case of the C-dependent relationship formally introduced later. In this

simulation, because the LD matrix is known, we directly calculate the LD scores

based on the true LD matrix. Please note that we usually rely on an external

reference panel to estimate LD scores in practice, owing to the unavailability of

the true LD matrix. Later, we discuss the effect of randomness in the estimation

of the LD scores. According to the genome partition software LDetect (Berisa

and Pickrell (2016)), there are ∼2,000 independent blocks for ∼5,000,000 SNPs

in the human genome of European ancestry. We randomly selected 200 blocks

(three blocks were later removed because of their small size), and scaled down

the number of SNPs in each block to make the total number of SNPs 20,000.

In the following illustrative examples, the number of SNPs in each block ranges

from 1 to 502, with a mean of 102. The SNP genotypes in different blocks are

independent. We further assume that the local LD matrix for each block follows
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an AR(1) structure, that is, if SNP j and SNP (j + d) are in the same block, the

genotypic correlation between these two SNPs is αd. We use the AR(1) correla-

tion structure to mimic the observation that LD decays with distance in a real

genome. The AR(1) model coefficient α for each block is independently sampled

from {0.1, . . . , 0.9} with equal probability. After generating the LD matrix, we fix

it in the remainder of the experiment. In our simulations, the SNPs in the same

block share the same MAF, which is sampled from the Uniform(0.05, 0.5) distri-

bution. CorBin is a highly efficient R-package for generating high-dimensional

binary/binomial data with a specified correlation structure, including exchange-

able, AR(1), and K-dependent structures (Jiang et al. (2020)). We use CorBin

to generate correlated genotype data for each individual.

Heritability. In this illustrative simulation for heritability estimation, we fix

p = 20,000 and the true value of heritability h2 = 0.6. Let bj = 1 if SNP j

is causal, the corresponding effect size of which follows N(0, h2/m); otherwise,

bj = 0 and the effect of SNP j is zero. The indicators b1, . . . , bp are independent

Bernoulli random variables such that P(bj = 1) = ω ∈ (0, 1). Note that m =∑p
j=1 bj . We use τ to represent the ratio of the sample size to the SNP number

(i.e., τ = n/p). We examine the behavior of the LDSC heritability estimator for

different ω and τ (Figure 1). In the first scenario, we fix τ = 0.1 and vary ω

from 0.005 to 1. In the second scenario, we fix ω = 0.05 and vary τ from 0.05 to

0.5. To avoid having no causal SNPs being generated when the expected causal

SNP proportion ω is small, we set (ω/2)p as a lower bound for m. The genotype

data, SNP effect sizes, and error terms are generated independently. We use an

LDSC in which all SNPs are implicitly assumed to be causal, to estimate the

heritability of the phenotype. The process is repeated 100 times for each setting

of ω and τ . As shown in Figure 1, there is almost no bias in the estimated h2,

regardless of the sample size or the underlying true model. This suggests that

the LDSC works well in terms of providing an unbiased estimator of heritability,

even in the case of a model misspecification.

Genetic covariance. We also conducted simulations for the genetic covariance

estimation (Figure 2). Here, we set p = 20,000, ρg = 0.15, and ρe = 0.1. We

assume that study 1 and study 2 are performed on the same cohort. Thus,

n1 = n2 = no and X = Y . We define τ = n1/p = n2/p. We use the Bernoulli

random variables b1j and b2j to indicate whether SNP j is a causal SNP for

phenotypes 1 and 2, respectively, such that P(b1j = 1) = ω1, P(b2j = 1) = ω2,

and P(b1jb2j = 1) = ω. We have m =
∑p

j=1 b1jb2j , m + m1 =
∑p

j=1 b1j , and

m + m2 =
∑p

j=1 b2j . As an illustration, we assume the causal SNPs for the two
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Figure 1. Heritability Estimation: C-dependent SNPs for p = 20,000; (a) τ = 0.1
(n = 2,000), and different ω; (b) ω = 0.05, and different τ .
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Figure 2. Genetic Covariance Estimation: C-dependent SNPs for p = 20,000; (a) τ = 0.1
(n = 2,000), ω1 = ω2 = 0, and different ω; (b) ω1 = ω2 = 0, ω = 0.05, and different τ .

phenotypes are the same set, that is, ω1 = ω2 = ω and m1 = m2 = 0. However,

the consistency from this illustrative experiment is also evident when ω1, ω2, and

ω are not equal. Here, we use (ω/2)p as a lower bound for m to avoid no causal

SNPs being generated. After independently generating the genotype data, SNP

effect sizes, and error terms, we use the LDSC to estimate the genetic covariance of

the phenotypes. All SNPs are misspecified as causal during the LDSC estimation.

The process is repeated 100 times for each setting of ω and τ . We first fix τ = 0.1

and vary ω from 0.005 to 1. We then fix ω = 0.05 and vary τ from 0.05 to 0.5.

Figure 2 shows that the LDSC estimator for genetic covariance remains unbiased

under the misspecified models and different scenarios and sample sizes.
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2. Asymptotic Theory

As noted in the previous section, there are two main quantities of genetic in-

terest, namely, heritability and genetic covariance. We first study the asymptotic

behavior of the LDSC heritability estimator under a suitable framework. Later,

we extend the framework to study the asymptotic behavior of the LDSC genetic

covariance estimator. We begin with some preparation.

2.1. Definition, key lemmas, and corollary

For any two subsets of indexes Br ⊂ {1, . . . , p}, for r = 1, 2, the distance

between B1 and B2 is defined as

d(B1,B2) = min
j1∈B1,j2∈B2

|j1 − j2|.

Definition 1. The columns of X, denoted by X1, . . . , Xp, are said to be C-

dependent, where C is a constant, which may not be known, if for any subsets

of {1, . . . , p}, J1, . . . , Jt, such that d(Jr, Js) > C, for 1 ≤ r 6= s ≤ t, [Xj ]j∈J1
,

. . . ,[Xj ]j∈Jt
are independent.

A standard example of C-dependency is the moving average process in time

series (e.g., Shumway and Stoffer (2017)), and a special case is that of inde-

pendent SNPs, which corresponds to C = 0; in other words, X1, . . . , Xp are

independent. In practice, even without such a cut-off C, if the correlation de-

cays reasonably fast as the distance between the SNPs increases, after a certain

distance, the correlation may be treated as approximately zero. Therefore, the

C-dependent notion is not unreasonable from a practical standpoint.We show

that as long as C is O(1), the asymptotic results do not depend on the actual

value of C.

The technical lemmas and their corollaries are given in the Supplementary

Material.

2.2. Heritability

We assume that the locations of the causal SNPs are characterized by a set

of independent Bernoulli random variables, b1, . . . , bp, such that P(bj = 1) = ω ∈
(0, 1]. Let S = {1 ≤ j ≤ p : bj = 1}, m = |S| (cardinality), XS = [Xj ]j∈S , and

βS = (βj)j∈S . Note that there is a nonzero probability that m = 0, in which

case, some of the quantities introduced below involving m in the denominators

are not well defined. However, we can (slightly) modify the definition of m

as m∗ = m∨{(ω/2)p}, without affecting the consistency or asymptotic normality
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we examine here. For example, let ζN denote a random variable involving m, and

let ζ̃N be the same quantity, but with m replaced by m∗. Then, we have, for any

Borel set B,

P(ζN ∈ B) = P

[
ζN ∈ B,m ≥

(
ω

2

)
p

]
+ P[ζN ∈ B,m <

(
ω

2

)
p

]
= P

[
ζ̃N ∈ B,m ≥

(
ω

2

)
p

]
+ P

[
ζN ∈ B,m <

(
ω

2

)
p

]
= P(ζ̃N ∈ B)− P

[
ζ̃N ∈ B,m <

(
ω

2

)
p

]
+ P

[
ζN ∈ B,m <

(
ω

2

)
p

]
= P(ζ̃N ∈ B) + o(1).

It can be shown that P(m∗ 6= m) = o(n−K), for any positive integerK. Therefore,

without loss of of generality, we can replace m by m∗; however, for notational

simplicity, we still denote it by m. We assume that the following hold:

(i) X and b = (bj)1≤j≤p are independent;

(ii) (X, b, β) is independent of ε;

(iii) βS |X, b ∼ N
[
0, (h2/m)Im

]
, and

(iV) ε ∼ N [0, (1− h2)In].

The true underlying model can be expressed as

φ = XSβS + ε =
∑
j∈S

βjXj + ε. (2.1)

Let W = (X, b). For any n-dimensional constant λ, we have

E(eλ
′φ|W ) = E{eλ′XSβSE(eλ

′ε|W,β)|W}
= e(1−h2)λ′λ/2E(eλ

′XSβS |W )

= eλ
′Σλ/2,

where Σ = (1− h2)In + (h2/m)XSX
′
S . It follows that φ|W ∼ N(0,Σ).

It can be shown that the heritability estimator of LDSC, ĥ2, can be expressed

as

ĥ2 =

∑p
j=1 uj(z

2
j − 1)∑p

j=1 u
2
j

, (2.2)
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where uj = (n/p)lj . Furthermore, we have z2
j = φ′(n−1XjX

′
j)φ. Thus, we have

ĥ2 = φ′Aφ− u·
u2
·
, (2.3)

where u· =
∑p

j=1 uj , u
2
· =

∑p
j=1 u

2
j , and A = (nu2

· )
−1
∑p

j=1 ujXjX
′
j .

We establish the consistency of the heritability estimator in the following

theorem. The proof is given in the Supplementary Material.

Theorem 1. Suppose that X1, . . . , Xp are C-dependent, and n/p −→ τ ∈ (0, 1].

Then, we have ĥ2 = h2 + oP(1).

We now consider the asymptotic normality of the heritability estimator.

First, define

rj1j2j3 = E(X1j1X
2
1j2X1j3), r1,j1j2j3j4 = E(X1j1X1j2X

2
1j3X

2
1j4),

r2,j1j2j3 = E(X2
1j1X

2
1j2X

2
1j3), r2,j1j2j3j4 = E(X2

1j1X
2
1j2X

2
1j3X

2
1j4),

vt =
∑p

j=1 ujr
2
tj , 1 ≤ t ≤ p, v2

· =
∑p

t=1 v
2
t , and (uv)· =

∑p
t=1 utvt.

Theorem 2. Suppose that, in addition to the conditions of Theorem 1, the

following limits exist: τ2 = lim(u2
· /p) > 0, λ = lim(u·/u

2
· ), φ = lim{(uv)·/u

2
· },

γ = lim

{
(u2
· )

2

nv2
·

}
> 0,

γ1 = lim p−1
p∑

j1,j2,j3,j4=1

uj1uj3rj1j2rj2j3rj3j4rj4j1 ,

γ2 = lim p−2
p∑

j1,j2,j3,j4=1

uj1uj3rj1j2j3rj3j4rj4j1 ,

γ3 = lim p−3
p∑

j1,j2,j3,j4=1

uj1uj3rj1j2r1,j1j2j3j4 ,

γ4 = lim p−3
p∑

j1,j2,j3,j4=1

uj1uj3rj1j2j3rj3j4j1 ,

γ5 = lim p−4
p∑

j1,j2,j3,j4=1

uj1uj3r2,j1j2j3j4 ,

γ6 = lim p−1
p∑

j1,j2,j3=1

uj1uj2rj1j2rj2j3rj3j1 ,

γ7 = lim p−2
p∑

j1,j2,j3=1

uj1uj2(rj1j2rj2j3j1 + rj2j3rj3j1j2 + rj3j1rj1j2j3),
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and γ8 = lim p−3
∑p

j1,j2,j3=1 uj1uj3r2,j1j2j3, as p→∞. Then, we have

√
n(ĥ2 − h2)

d−→ N(0, σ2), (2.4)

as p→∞, where the asymptotic variance has the following expression:

σ2 = 3h4τ

(
1− ω
ω

)(
τ

γ
− 1

)
+2

[
h4

{
γ1τ

3 + 6γ2τ
2 + (4γ3 + 2γ4)τ + γ5

τ2
2

+

(
1− ω
ω

)
τ(λ+ 1)2

}
+2h2(1− h2)

γ6τ
2 + γ7τ + γ8

τ2
2

+ (1− h2)2

(
φτ

τ2
+ λ2

)]
. (2.5)

An inspection of the limits defined in Theorem 2, in terms of the order of

the sum involved in the limit, suggests that they can all be reasonably expected.

The proof of Theorem 2 is given in the Supplementary Material.

A special case is when the SNPs are independent, that is, C = 0. In this

case, it can be verified that τ2 = τ2, λ = τ−1, γ = τ , φ = 1, and γs = τ2, if

1 ≤ s ≤ 8 and s 6= 7, and γ7 = 3τ2, where τ is given by Theorem 2. Thus, we

have the following result.

Corollary 1. In the case of independent SNPs, (2.4) holds under n/p −→ τ ∈
(0, 1], where

σ2 ≡ 2

[
1

τ
+ h4

{
τ

ω

(
1 +

1

τ

)2

+

(
2 +

1

τ

)2
}

+2h2(1− h2)

(
1 +

1

τ

)2

+
(1− h2)2

τ2

]
. (2.6)

Note that because ω, τ ∈ (0, 1], we have σ2 = O(1), and hence the convergence

rate of ĥ2 is n−1/2. Because m and n are of the same order, the convergence

rate can be expressed in terms of either n or m. In fact, because the asymptotic

depends on both ω and τ , the asymptotic variance depends on the (limit) ratio of

m/n, which makes sense.

2.3. Genetic covariance

Let brj , for 1 ≤ j ≤ p, r = 1, 2, be such that

(I) (b1j , b2j), for j = 1, . . . , p, are independent;

(II) brj ∼ Bernoulli(ωr), for j = 1, 2, where ω1, ω2 ∈ (0, 1];
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(III) ω = P(b1jb2j = 1) > 0.

Note that the definition allows a correlation between b1j and b2j for the same

j. Note that ω = ω1ω2 if b1j , and b2j are independent. Denote br = (brj)1≤j≤p,

r = 1, 2, and b = (b1, b2). Then, we have S = {1 ≤ j ≤ p : b1jb2j = 1}, and

m = |S|, and S∪Tr = {1 ≤ j ≤ p : brj = 1}, and mr = |S∪Tr|−|S| = |S∪Tr|−m.

Thus, |S ∪ Tr| = m + mr, for r = 1, 2. For any subset of indices J ⊂ {1, . . . , p},
let XJ = [Xj ]j∈J and YJ be defined similarly. Let β = (β′S , β

′
T1
, β′T2

, β′U )′, and

γ = (γ′S , γ
′
T1
, γ′T2

, γ′U )′. We assume that the following conditions hold:

(a) (X,Y ) and b are independent;

(b) (X,Y, β, γ, b) is independent of (ε, δ);

(c) (β, γ)|b ∼ N(0,Ω), where Ω is the covariance matrix described in Section 1;

(d) (ε, δ) ∼ the distribution specified in Section 1.

It is more convenient to define βj = 0, for j /∈ S ∪ T1, and γj = 0, for j /∈ S ∪ T2.

Let ξj = (ξ1j , ξ2j)
′ = (

√
m+m1b1jβj ,

√
m+m2b2jγj)

′, for 1 ≤ j ≤ p. Then,

given b, ξj , for 1 ≤ j ≤ p are independent vectors with ξj ∼ N(0,Σb), where

Σb =

[
h2

1 ρg

√
(1 + m1

m )(1 + m2

m )

ρg

√
(1 + m1

m )(1 + m2

m ) h2
2

]
,

j ∈ S; ξj = (ξ1j , 0)′ with ξ1j ∼ N(0, h2
1), j ∈ T1; ξj = (0, ξ2j)

′ with ξ2j ∼ N(0, h2
2),

j ∈ T2; and ξj = 0, j /∈ S ∪ T1 ∪ T2. Let ξb = (ξj)1≤j≤p, the column vector that

combines all ξj . Note that for βS , and γS to have the joint distribution specified

in Section 1, it is necessary that the following holds:

ρg

m
= |cov(βj , γj)| ≤

√
var(βj)var(γj) =

h1h2√
(m+m1)(m+m2)

,

j ∈ S, if S 6= ∅. It follows that the following inequality must be satisfied:(
1 +

m1

m

)(
1 +

m2

m

)
≤
(
h1h2

ρg

)2

. (2.7)

Therefore, we modify the definition of the covariance matrix of β and γ so that,

when (2.7) does not hold, the covariance matrix of βS and γS is 0 (matrix). As

a result, the covariance matrix of ξj is diag(h2
1, h

2
2), for 1 ≤ j ≤ p, when (2.7)

does not hold. It can be seen that (2.7) holds with probability tending to one,
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provided that
ω1ω2

ω2
<

(
h1h2

ρg

)2

. (2.8)

Therefore, asymptotically, (βS , γS) still has the distribution described in Section

1.

The LDSC estimator of the genetic covariance is defined differently under

independent SNPs than it is under correlated SNPs. We consider these cases

separately.

1. Independent SNPs. In this case, we assume no = 0 in order to ensure

identifiability. Then, the LDSC estimator of ρg is simplified to

ρ̂g =
1

n1n2

p∑
j=1

φ′1XjY
′
jφ2 = φ′Aφ, (2.9)

where φ = (φ′1, φ
′
2)′ and A = (2n1n2)−1

∑p
j=1 Ψj , with

Ψj =

(
0 XjY

′
j

YjX
′
j 0

)
. (2.10)

The following result is proved in the Supplementary Material.

Theorem 3. Suppose that the SNPs are independent, (2.8) holds with ω > 0,

and
nr
p
→ τr ∈ (0, 1], r = 1, 2. (2.11)

Then, we have ρ̂g = ρg + oP(1).

The next result relates to the asymptotic distribution of ρ̂g. The proof is

given in the Supplementary Material.

Theorem 4. Under the conditions of Theorem 1, we have
√
n·(ρ̂g − ρg)

d−→
N(0, σ2), where n· = n1 + n2 and

σ2 = (τ1 + τ2)

{
h2

1h
2
2

(
ω

ω1ω2
+
τ1 + τ2 + 1

τ1τ2

)
+ ρ2

g

(
1

ω
+

1

τ1
+

1

τ2

)}
+

(
1

τ1
+

1

τ2

){
h2

1(1− h2
2)τ1 + (1− h2

1)h2
2τ2 + 1− h2

1h
2
2

}
. (2.12)

2. C-dependent SNPs. In this case, the genetic covariance, ρg, is estimated

by fitting the following linear regression in the LDSC:

zj = β0 + β1uj + ej , j = 1, . . . , p, (2.13)
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where zj = z1jz2j , uj = (
√
n1n2/p)lj , and β1 = ρg. The LDSC estimators,

which are also the least squares (LS) estimators of the regression coefficients,

are given by

ρ̂g = β̂1 =

∑p
j=1(uj − ū)(zj − z̄)∑p

j=1(uj − ū)2
= φ′Aφ, (2.14)

β̂0 = z̄ − β̂1ū, (2.15)

where A = (2
√
n1n2dp)

−1
∑p

j=1(uj − ū)Ψj , dp =
∑p

j=1(uj − ū)2, Ψj is

given by (2.10), ū = p−1
∑p

k=1 uk, and z̄ = p−1
∑p

k=1 zk. Because our main

interest lies in estimating ρg, we focus on β̂1 = ρ̂g. Theorem 5 states the

consistency of the estimator.

Theorem 5. Suppose that the SNPs are C-dependent, ω > 0, (2.8), and (2.11)

hold, and dp/
√
p→∞. Then, we have ρ̂g = β̂1 = ρg + oP(1).

Note that, under (2.11), dp/
√
p → ∞ iff

∑p
j=1(lj − l̄)2/

√
p → ∞, where lj

is the LD score and l̄ = p−1
∑p

j=1 lj . The proof of Theorem 5 is given in the

Supplementary Material.

Next, we consider the asymptotic distribution of ρ̂g. The result is relatively

simpler in terms of the asymptotic variance under the assumption that

no = o(n1 ∧ n2). (2.16)

Thus, we consider this special case first. Define the following quantities: ρb =

cov(b1j , b2j) = ω − ω1ω2, ψ0 = dp/p, ψ1 = p−1
∑p

j,k=1(uj − ū)(uk − ū)r2
jk,

ψ2,s =
∑p

j,k=1(uj − ū)(uk− ū)rjkrksrsj , ψ3,s = p−1
∑p

j,k=1(uj − ū)(uk− ū)rjkrksj ;

ψ1(s, t) = E(h2
1,s,t), and ψ2(s, t) = E(h1,s,th2,s,t), where h1,s,t and h2,s,t are the

(s, t) elements of H1 = X ′XDY ′Y and H2 = Y ′Y DX ′X, respectively, and

D = diag(uj − ū, 1 ≤ j ≤ p).

Theorem 6. Suppose that the SNPs are C-dependent, ω > 0, and (2.8), (2.11),

and (2.16) hold. Further suppose that the following identities hold for all j, k,

and s:

E(X1jX
2
1kX1s) = E(Y1jY

2
1kY1s), E(X2

1jX
2
1kX

2
1s) = E(Y 2

1jY
2

1kY
2

1s).

Furthermore, suppose that the following limits exist as p→∞: φ0 = limψ0 > 0,

φ1 = limψ1, φr = lim(n·/p
2)
∑p

s=1 ψr,s, r = 2, 3, and
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ϑ1 = lim
n·n1n2

p4

p∑
t=1

{
p∑
s=1

(us − ū)r2
st

}2

,

λr = lim
n·

n1n2p4

p∑
s,t=1

ψr(s, t), µr = lim
n·

n1n2p4

p∑
s=1

ψr(s, s),

r = 1, 2. Then, we have
√
n·(ρ̂g − ρg)

d−→ N(0, σ2), where σ2 = σ2
1 + σ2

2 with

σ2
1 = ρ2

g

(
1

ω
− 1

)(
ϑ1

φ2
0

− τ1 − τ2

)
, (2.17)

σ2
2 =

1

φ2
0

{
h2

1h
2
2

(
λ1 − µ1 +

ωµ1

ω1ω2

)
+ h2

1(1− h2
2)(τ1φ2 + φ3) (2.18)

+(1− h2
1)h2

2(τ2φ2 + φ3) + (1− h2
1)(1− h2

2)(τ1 + τ2)φ1

+ρ2
g

(
λ2 − µ2 +

µ2

ω

)}
.

When b1j and b2j are uncorrelated, that is, ω = ω1ω2, the above asymptotic

variance, σ2, depends on ω−1, but not on ω1 and ω2. A similar observation is

made for (2.12). The proof of Theorem 6 is given in the Supplementary Material.

Finally, we extend Theorem 6 to not require (2.16). First, define the following

additional quantities: ψr(i, t) = E(h2
r,i,t), r = 3, 4, where h3,i,t and h4,i,t are the

(i, t) elements of H3 = XDY ′Y and H4 = Y DX ′X, respectively, and ψ5(i, t) =

E(h3,i,th4,i,t). Furthermore, define ψ6(i1, i2) = E(h2
5,i1,i2

), where h5,i1,i2 is the

(i1, i2) element of H5 = XDY ′. We now have the extension of Theorem 6.

Theorem 7. Suppose that the conditions of Theorem 6 without (2.16) hold. In

addition, suppose that the following limits exist:

λr = lim
n·

n1n2p3

nr−2∑
i=1

p∑
t=1

ψr(i, t), r = 3, 4,

λ5,o = lim
n·

n1n2p3

no∑
i=1

p∑
t=1

ψ5(i, t),

λ6 =
n·

n1n2p2

n1∑
i1=1

n2∑
i2=1

ψ6(i1, i2), λ6,o =
n·

n1n2p2

no∑
i1,i2=1

ψ6(i1, i2).

Then, the conclusion of Theorem 6 holds with σ2
2 replaced by the following:

σ2
2 =

1

φ2
0

[
h2

1h
2
2

(
λ1 − µ1 +

ωµ1

ω1ω2

)
+ ρ2

g

(
λ2 − µ2 +

µ2

ω2

)
+(1− h2

1)h2
2λ3 + h2

1(1− h2
2)λ4 + 2ρeρgλ5,o
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Table 1. Observed and Theoretical Standard Errors of the Heritability Estimator

τ = 0.1 ω = 0.05
ω observed theoretical τ observed theoretical

0.005 0.41 0.39 0.05 0.37 0.36
0.05 0.17 0.20 0.1 0.17 0.20
0.25 0.17 0.18 0.25 0.13 0.13
1 0.18 0.17 0.5 0.10 0.11

+(1− h2
1)(1− h2

2)λ6 +

{
ρe +

(h2
1 − h2

2)2

2

}
λ6,o

]
.

The proof of Theorem 7 is given in the Supplementary Material.

3. Simulation Studies

We carried out comprehensive simulations to numerically validate our theo-

retical results. In these experiments, we evaluated the consistency of the summary-

statistics-based heritability and genetic covariance estimators under a model mis-

specification. We also compared the empirical distributions of these estimators

with the asymptotic distributions derived from our theory. Unless explicitly

stated, the heritability and genetic covariance estimators refer to those described

in the previous sections.

3.1. Heritability

Figure 1 shows that the heritability estimator is nearly unbiased, even under

a model misspecification. Following the same settings introduced in Section 1.2,

we computed the observed standard deviation of the heritability estimator during

100 runs for each combination of the underlying model parameters (i.e., τ and

ω). Then, we computed the corresponding theoretical standard errors of the es-

timators under different model settings using the formula derived in Theorem 2.

All the limits presented in Theorem 2 are computed based on their correspond-

ing observed values. For example, τ2 is replaced by u2
· /p. As shown in Table

1, the values of the standard errors derived from our theory are very close to

the observed standard errors under different combinations of τ and ω. Further

evaluation results for the consistency and asymptotic normality of the heritabil-

ity estimator are included in the Supplementary Material. The consistency and

asymptotic normality of the heritability estimators under different settings look

good.
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Table 2. Observed and Theoretical Standard Errors of Genetic Covariance Estimator

τ = 0.1, no/n = 0.1 ω = 0.05, no/n = 0.1
ω observed theoretical τ observed theoretical

0.005 0.28 0.26 0.05 0.29 0.24
0.05 0.17 0.17 0.1 0.17 0.17
0.25 0.17 0.15 0.25 0.14 0.12
1 0.17 0.15 0.5 0.11 0.11

3.2. Genetic covariance

In the numerical examples presented in Section 1.2, we demonstrated the ap-

proximate unbiasedness of the genetic covariance estimator when the two studies

share the same set of subjects. However, in practice, there are often few, if any,

subjects shared between two GWAS, especially when they come from different

cohorts. Here, we set no/n = 0.1, where n = n1 = n2. All other settings are

the same as those described in Section 1.2. We calculated the observed stan-

dard deviation of the genetic covariance estimator based on 100 simulation runs

under each parameter setting. We then computed the theoretical standard er-

rors derived from Theorem 7. Similarly, the limits presented in the theorem

are determined by their corresponding observed values. The comparisons of the

observed and theoretical standard errors are compared in Table 2. The theo-

retical standard errors are close to the observed standard deviation, confirming

our results for Theorems 6 and 7. We further investigated the consistency and

asymptotic normality of the genetic covariance estimator. The empirical results

are presented in the Supplementary Material. The consistency and asymptotic

normality of the genetic covariance estimator look good under all settings. We

also conducted additional simulations to investigate the relationship between the

efficiency loss of the LDSC and model sparsity; the results are provided in the

Supplementary Material. We found that the sparser the true model is, the greater

is the efficiency loss. This makes intuitive sense, because the LD score regression

is developed based on a polygenetic assumption.

Next, we provide a real-data example that applies the LDSC to estimate the

heritability and genetic covariance among four lipid traits: high-density lipopro-

tein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, total choles-

terol (TC), and triglyceride (TG). In the example, we compare the results from

the LDSC with the REML estimates; see the Supplementary Material.
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4. Discussion

The LDSC has become a popular method for estimating heritability and

genetic correlation, owing to its efficiency and simplicity. We have examined the

consistency and asymptotic normality of the LDSC under a misspecified model.

Although the LDSC is based on a random-effects model, several methods have

been proposed that estimate heritability and genetic correlation based on a fixed-

effects model (Shi et al. (2017), Shi, Kichaev and Pasaniuc (2016), Wang and Li

(2021), Guo et al. (2019)). It has been shown that under the assumption of

a random-effects model, the estimator of the fixed-effects model converges to

the estimator of the LDSC, almost surely (Wang and Li (2021)). When the

assumption does not hold, neither model holds an advantage. One benefit of the

random-effects model is that it incorporates implicit and automatic regularization

of the regression coefficients, unlike in the case of a sparse fixed-effects model.

The latter requires a careful choice of the penalty/thresholding parameters in

orders to be effective. In addition, the random-effects model provides a systematic

mechanism for carrying out statistical inference. In essence, this is achieved using

the asymptotic distribution of the estimated heritability and genetic correlation.

Furthermore, methods based on the random-effects model are, in general, more

computationally efficient. The fixed-effects model involves calculating the inverse

of the LD matrix, which needs the additional assumption that the LD matrix is

block-diagonal. On the other hand, methods based on the fixed-effects model

require fewer assumptions on the genetic effects. Therefore, some researchers

believe it is more robust across a wide range of genetic architectures, such as

sparse causal SNPs (Wang and Li (2021)). However, we have proved that the

LDSC can also provide a consistent estimator under a model misspecification.

The LDAK model (Speed and Balding (2019)) assumes that the variances

of the SNP effects of the standardized SNPs are proportional to a set of known

parameters q1, q2, . . . , qp, where p is the number of SNPs. This model can be

viewed as a generalization of the LDSC. Indeed, when q1 = q2 = · · · = qp,

the LDAK model reduces to the LDSC. In practice, the value of qi for SNP i

is a function of the MAF of SNP i, fi. Our results can be extended to the

LDAK model. Under the model of the LDSC, we have E(z2
j ) = 1 + h2(n/p)lj ,

where j = 1, 2, . . . , p. Instead, in the LDAK, the regression problem changes

to E(z2
j ) = 1 + nh2(

∑p
k=1 r

2
jkqk)/

∑p
k=1 qk, where rjk is the correlation between

SNP j and SNP k. Under an appropriate assumption for q1, q2, . . . , qp, the term

(
∑p

k=1 r
2
jkqk)p/

∑p
k=1 qk is interchangeable with lj . However, for simplicity and

to conserve space, we leave this extension to future work.
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There are certain limitations in our theoretical assumptions. First, in prac-

tice, because the true LD matrix is unknown, we have to use an external reference

panel to estimate the LD score. If the external data source used to estimate the

LD scores is of higher order than n, which is the sample size of the GWAS, nei-

ther the consistency nor the asymptotic normality are affected. If the external

sample size is of the same order as n, the consistency is not affected, but the

asymptotic distribution will change. Second, we assume that the constant C in

the C-dependent assumption is of O(1). Actually, it is possible to allow C to

increase, slowly, with n, so that the asymptotic results do not change. However,

if the order of C exceeds a certain threshold, the asymptotic distribution, and

even the consistency result, may change.

Supplementary Material

The online Supplementary Material contains our proofs and additional em-

pirical results.
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Berndt, S. I., Gustafsson, S., Mägi, R., Ganna, A., Wheeler, E., Feitosa, M. F. et al. (2013).

Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides

insights into genetic architecture. Nature Genetics 45, 501–512.

Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N. et al.

(2015a). LD Score regression distinguishes confounding from polygenicity in genome-wide

association studies. Nature Genetics 47, 291–295.

Bulik-Sullivan, B., K., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P.-R. et al.

(2015b). An atlas of genetic correlations across human diseases and traits. Nature Genetics

47, 1236.



INFERENCE BASED ON GWAS SUMMARY STATISTICS 1575

Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C. et

al. (2019). The NHGRI-EBI GWAS Catalog of published genome-wide association studies,

targeted arrays and summary statistics 2019. Nucleic Acids Research 47, D1005–D1012.

Clarke, L., Fairley, S., Zheng-Bradley, X., Streeter, I., Perry, E., Lowy, E. et al. (2017). The

international Genome sample resource (IGSR): A worldwide collection of genome variation

incorporating the 1000 Genomes Project data. Nucleic Acids Research 45, D854–D859.

Guo, Z., Wang, W., Cai, T. T. and Li, H. (2019). Optimal estimation of genetic relatedness

in high-dimensional linear models. Journal of the American Statistical Association 114,

358–369.

Jiang, J., Li, C., Paul, D., Yang, C. and Zhao, H. (2016). On high-dimensional misspecified mixed

model analysis in genome-wide association study. The Annals of Statistics 44, 2127–2160.

Jiang, W., Song, S., Hou, L. and Zhao, H. (2021). A set of efficient methods to generate high-

dimensional binary data with specified correlation structures. The American Statistician

75, 310–322.

Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. and Wray, N. R. (2012). Estimation

of pleiotropy between complex diseases using SNP-derived genomic relationships and re-

stricted maximum likelihood, Bioinformatics 28, 2540–2542.

Shi, H., Kichaev, G. and Pasaniuc, B. (2016). Contrasting the genetic architecture of 30 complex

traits from summary association data. The American Journal of Human Genetics 99, 139–

153.

Shi, H., Mancuso, N., Spendlove, S. and Pasaniuc, B. (2017). Local genetic correlation gives

insights into the shared genetic architecture of complex traits. The American Journal of

Human Genetics 101, 737–751.

Shumway, R. H. and Stoffer, D. S. (2017). Time Series Analysis and Its Applications. 4th Edition.

Springer International Publishing AG, Cham.

Speed, D. and Balding, D.J. (2019). SumHer better estimates the SNP heritability of complex

traits from summary statistics. Nature Genetics 51, 277–284.

Stephens, J. C., Schneider, J. A., Tanguay, D. A., Choi, J., Acharya, T., Stanley, S. E. et al.

(2001). Haplotype variation and linkage disequilibrium in 313 human genes. Science 293,

489–493.

Sullivan, P. F., Daly, M. J. and O’donovan, M. (2012). Genetic architectures of psychiatric

disorders: the emerging picture and its implications. Nature Reviews Genetics 13, 537–

551.

Tenesa, A. and Haley, C. S. (2013). The heritability of human disease: Estimation, uses and

abuses. Nature Reviews Genetics 14, 139–149.

van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. and Wray, N. R. (2019). Genetic

correlations of polygenic disease traits: From theory to practice. Nature Reviews Genetics

20, 567–581.

Wang, J. and Li, H. (2021). Estimation of genetic correlation with summary association statis-

tics. Biometrika.

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R. et al. (2010).

Common SNPs explain a large proportion of the heritability for human height. Nature

Genetics 42, 565–569.

Zhang, Y., Cheng, Y., Jiang, W., Ye, Y., Lu, Q. and Zhao, H. (2021). Comparison of methods

for estimating genetic correlation between complex traits using GWAS summary statistics.

Briefings in Bioinformatics 22, 442.



1576 JIANG ET AL.

Zheng, J., Erzurumluoglu, A. M., Elsworth, B. L., Kemp, J. P., Howe, L., Haycock, P. C. et al.

(2017). LD Hub: A centralized database and web interface to perform LD score regression

that maximizes the potential of summary level GWAS data for SNP heritability and genetic

correlation analysis. Bioinformatics 33, 272–279.

Jiming Jiang

Department of Statistics, University of California, 399 Crocker Lane, Davis, CA 95616, USA.

E-mail: jimjiang@ucdavis.edu

Wei Jiang

Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT

06510, USA.

E-mail: w.jiang@yale.edu

Debashis Paul

Department of Statistics, University of California, 399 Crocker Lane, Davis, CA 95616, USA.

E-mail: debpaul@ucdavis.edu

Yiliang Zhang

Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT

06510, USA.

E-mail: yiliang.zhang@yale.edu

Hongyu Zhao

Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT

06510, USA.

E-mail: hongyu.zhao@yale.edu

(Received February 2021; accepted March 2022)

mailto:jimjiang@ucdavis.edu
mailto:w.jiang@yale.edu
mailto:debpaul@ucdavis.edu
mailto:yiliang.zhang@yale.edu
mailto:hongyu.zhao@yale.edu

	Introduction
	LDSC estimation under model misspecification
	Numerical illustrations

	Asymptotic Theory
	Definition, key lemmas, and corollary
	Heritability
	Genetic covariance

	Simulation Studies
	Heritability
	Genetic covariance

	Discussion

