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Abstract: By using kernel estimators of a multivariate density function and its

partial derivatives, and the estimators of the nuisance parameters, we construct

empirical Bayes (EB) estimators of parameters in a class of linear models. Under

suitable moment conditions on the prior distribution, the proposed EB estimators

are asymptotically optimal with rates arbitrarily close to O(n−1).
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1. Introduction

Since the empirical Bayes (EB) procedure was first proposed by Robbins
(1955, 1964), it has received considerable attention in the literature. Suppose
that in the pair (Y, α) of random vectors, Y is observable and parameter vector
α is unobservable. The conditional distribution of Y given α is specified by the
density fα on the observation space Y, and α has an unknown and unspecified
distribution on parameter space Θ. Based on an observation on Y , the problem is
to decide on α subject to a nonnegative loss function. If the prior distribution G
were known, we could estimate α by the Bayes estimator α̂G which achieves the
minimum Bayes risk R(G) with respect to (w.r.t.) G. But since G is not known,
the optimal estimator (o.e.) α̂G is not practically available. In the EB decision
problem, we assume that the above problem has occurred independently in the
past, say n times. Hence, we actually have n+1 independent pairs (Y (1), α(1)),
. . . , (Y (n), α(n)) and (Y, α). Our purpose is to use the information contained
in the historical observation (Y (1), . . . , Y (n)) and the present observation Y to
obtain an estimator α̂n = α̂n(Y (1), . . . , Y (n);Y ) for the present parameter vector
α, called the EB estimator, so that for large n it performs ”nearly” as good as
the unavailable o.e. α̂G in the following sense: the overall Bayes risk, say Rn, of
α̂n approximates the minimum Bayes risk R(G) attained by α̂G. If limn→∞Rn =
R(G), then the EB estimators are called asymptotically optimal (a.o.). If for
some q > 0, Rn − R(G) = O(n−q), we will say the EB estimators are a.o.
with convergence rates O(n−q). From the above arguments, it follows that the
EB approach to the statistical decision problem is applicable when the same
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decision problem has presented itself repeatedly and independently with a fixed
but unknown prior distribution of parameters.

For EB decision problems in a linear model, Singh (1985) considered the
EB estimation problem of regression coefficients in a linear regression model
under known error-variance. Wei (1990) studied the EB test problem for the
same model. Zhang and Wei (1994), Wei and Zhang (1995) extended Singh’s
work to the case of unknown error-variance; they discussed asymptotic optimal-
ity and convergence rates for the EB estimators of regression coefficients and
error-variance in the above model. Recently, Wei (1995) considered asymptotic
optimality of the EB estimators in a one-way analysis of variance (ANOVA)
model. In this paper we study the convergence rates of EB estimators for a class
of linear models.

In section 2 of this paper we derive the Bayes estimator of parameters, and
in section 3 we construct the EB estimator of parameters and state the main
result about convergence rates. We consider applications for the class of linear
models in section 4. Finally, some necessary lemmas and the technical proof of
one theorem are presented in the Appendices.

2. The Bayes Estimator of a Parameter Vector

Consider a class of linear models as follows:

Ym×1 = Zm×qθq×1 +Xm×aαa×1 + em×1, (2.1)

where XτX is assumed to be non-singular, α = (α1, . . . , αa)τ is the estimated
parameter vector, θ = (θ1, . . . , θq)τ are nuisance parameters, Y = (Y1, . . . , Ym)τ is
the observation vector, and e = (e1, . . . , em)τ is an unobservable random vector,
the conditional distribution of e given α is N(0, σ2Im) with σ2 unknown. In
this paper, we assume that σ2 is bounded away from both zero and infinity, i.e.,
0 < γ0 ≤ σ2 ≤M0 <∞, where γ0 and M0 are constants.

It is easy to see that linear regression model, the ANOVA and analysis of
covariance (ANOCOVA) models are special cases of model (2.1).

Let the loss function be given by

L(d, α) = ‖d− α‖2, (2.2)

where d = (d1, . . . , da)τ ∈ D, the decision space; α ∈ Θ, the parametric space;
and ‖t‖2 = tτ t =

∑a
i=1 t

2
i .

Suppose that the prior distribution G of α is a member of the following
family

Fδ = {G(α) :
∫
Θ
‖α‖δdG(α) <∞}, (2.3)
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where δ ≥ 2. Then the conditional density of Y given α is

f(y|α) = (2πσ2)−
m
2 exp

{
− 1

2σ2
‖y − Zθ −Xα‖2

}
, (2.4)

and the marginal density of Y is

f(y) =
∫
Θ
f(y|α)dG(α). (2.5)

By formular (2.5) and Lemma A.1 in Appendix A, we have

σ2 ∂f(y)
∂y

= −
∫
Θ
[y − Zθ −Xα]f(y|α)dG(α)

= −[y − Zθ]f(y) +X

∫
Θ
αf(y|α)dG(α), (2.6)

where

∂f(y)
∂y

= (f ′(1)(y), . . . , f
′
(m)(y))

τ , f ′(i)(y) =
∂f(y)
∂yi

, i = 1, . . . ,m. (2.7)

Since XτX is an invertible matrix, from (2.6) we have∫
Θ
αf(y|α)dG(α) = (XτX)−1Xτ

[
(y − Zθ)f(y) + σ2 ∂f(y)

∂y

]
. (2.8)

Hence, we get the Bayes estimator of α under the loss function (2.2) as
follows

φG(y) = E(α|y) =
∫
Θ
αf(y|α)dG(α)/f(y)

= (XτX)−1Xτ [y − Zθ + σ2ψ(y)], (2.9)

where

ψ(y) =
∂f(y)
∂y

/f(y) = (ψ(1)(y), . . . , ψ(m)(y))
τ ,

ψ(i)(y) = f ′(i)(y)/f(y), i = 1, . . . ,m. (2.10)

The minimum Bayes risk of φG(y) w.r.t. G is

R(G) = R(φG, G) = E(Y,α)‖φG(Y ) − α‖2, (2.11)

where E(Y,α) denotes the expectation w.r.t. the joint distribution of random vec-
tor Y and α.

We know that R(G) = infα∗ R(α∗, G), where the inf is taken over the set
of all possible estimators α∗ for which R(α∗, G) is finite. The estimator which
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achieves the minimum Bayes risk R(G) is the Bayes estimator α̂ = φG given by
(2.9). Thus R(α̂,G) = R(G). Notice that R(G) can be exactly attained only if
the prior distribution G is known and α is estimated by α̂. Unfortunately, G is
unknown and hence α̂ is unavailable to us. This leads to the EB approach to
exhibit estimators whose risks are close to R(G).

3. The EB Estimation and the Main Result

In the EB framework, we make the following assumptions: Let (Y (1), α(1)), . . . ,
(Y (n), α(n)) be independent pairs from a historical record and (Y (n+1), α(n+1))
= (Y, α) from the present experiment, with

Y (l) = Zθ +Xα(l) + e(l), l = 1, . . . , n+ 1, (3.1)

where the vectors Y (l), α(l), e(l), l = 1, . . . , n + 1 are i.i.d. as described in (2.1).
Usually Y (1), . . . , Y (n) are said to be the past (or historical) samples and Y is
called the present sample.

In order to obtain the EB estimator of α, we use the class of kernel functions
similar to Singh (1981) and Lu (1982) to construct the kernel estimator of the
multivariate density f(y) and its derivatives as follows:

Let Pi(x), x ∈ R1, i = 0, 1, . . . , k− 1 be a class of Borel-measurable bounded
functions vanishing outside (0,1) such that for each 0 ≤ i ≤ k − 1

1
l!

∫ 1

0
xlPi(x)dx =

{
1, l = i,

0, l �= i, l = 0, 1, . . . , k − 1,
(3.2)

where k ≥ 2 is an integer.
Let Kr(u) =

∏m
i=1 Pri(ui). It is easy to show that

1
l1! . . . lm!

∫
Rm

Kr(u)(
m∏
i=1

ulii )du =

{
1, if li = ri, i = 1, . . . ,m,
0, otherwise,

(3.3)

where u = (u1, . . . , um)τ ∈ Rm, r =
∑m
i=1 ri, 0 ≤ r ≤ k − 1, ri ≥ 0, li ≥ 0,

i = 1, . . . ,m and 0 ≤ ∑m
i=1 li ≤ k − 1.

The kernel estimator of f (r)(y) (see (A.1) in the Appendix A) is defined as
follows

f (r)
n (y) =

1
nhm+r

n∑
l=1

Kr

(Y (l) − y

h

)
, r = 0, 1, . . . , k − 1, (3.4)

where h > 0 and h → 0 as n → ∞. When r = 0 in (3.4) we get the following
kernel estimator of f (0)(y) = f(y)

fn(y) = f (0)
n (y) =

1
nhm

n∑
l=1

[ m∏
t=1

P0

(Y (l)
t − yt
h

)]
. (3.5)
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When r = 1 in (3.4) we obtain the kernel estimator of f ′(i)(y) as follows

f ′n(i)(y) =
1

nhm+1

n∑
l=1

{[ m∏
t=1
t�=i

P0

(Y (l)
t − yt
h

)]
P1

(Y (l)
i − yi
h

)}
. (3.6)

(i = 1, . . . ,m)

Let

ψn(i)(y) =
[f ′n(i)(y)

fn(y)

]
nν
, i = 1, . . . ,m, [d]L =

{
d, if |d| ≤ L,

0, if |d| > L,
(3.7)

where 0 < ν < 1 to be determined, and the estimator of ψ(y) is defined by

ψn(y) = (ψn(1)(y), . . . , ψn(m)(y))
τ . (3.8)

The nuisance parameters σ2 and θ involved in (2.1) are estimated by the
past samples as follows

σ̂2 =


σ̂2
n, if γ0 ≤ σ̂2

n ≤M0,

M0, if σ̂2
n > M0,

γ0, if σ̂2
n < γ0,

(3.9)

where γ0 and M0 are given in (2.1),

σ̂2
n =

1
n

n∑
l=1

σ̂2
(l), σ̂2

(l) =
1
s
Y (l)τHY (l), (3.9a)

θ̂ =
1
n

n∑
l=1

θ̂(l), θ̂(l) = DY (l), (3.10)

and where H and D are constant matrixes such that σ̂2
(l) and θ̂(l) are unbiased

estimators of the nuisance parameters σ2 and θ. Furthermore, assume that H
is an idempotent matrix with rank R(H) = s such that sσ̂2

(l)/σ
2 is distributed

according to χ2 with s degrees of freedom; denote this by sσ̂2
(l)/σ

2 ∼ χ2
s.

Then, the EB estimator of α can be formulated as

φn = φn(y) = (XτX)−1Xτ [y − Zθ̂ + σ̂2ψn(y)]. (3.11)

Throughout this paper, let E and E∗ be the expectation w.r.t. the joint
distribution of (Y (1), . . . , Y (n)) and (Y (1), . . . , Y (n), (Y, α)) respectively. Then,
the “overall” Bayes risk of φn is

Rn = Rn(φn, G) = E∗‖φn − α‖2. (3.12)
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By definition, if for some q > 0, Rn −R(G) = O(n−q) then the convergence
rates of φn are said to be of the order O(n−q).

The main result about the convergence rates of EB estimators for the model
(2.1) is given in the following theorem.

Theorem 3.1. Let φG(y) be defined by (2.9) and φn(y) be as given by (3.11)
with h = n−ν and ν = 1/(2k + m). If for δ = [(m + ξ)λ/(η − λ)] ∨ (2λk) with
1/2 < λ < η < 1 and an arbitrarily small number ξ > 0 such that G(α) ∈ Fδ,
i.e., ∫

Θ
‖α‖δdG(α) <∞, (3.13)

then
Rn −R(G) = O

(
n−

2(λk−1)
2k+m

)
,

where k ≥ 2 is a given natural number and m is the dimension of the vector Y.

In the above theorem, it is easy to see that if k is large enough and λ is
chosen arbitrarily close to 1, then the convergence rates can be arbitrarily close
to O(n−1). The proof of Theorem 3.1 is given in Appendix B.

Remark 3.1. If the error-variance σ2 is known in model (2.1), it is a special case
in which the upper bound M0 and the lower bound γ0 of σ2 are equal. Therefore
the estimator σ̂2 in (3.9) becomes constant, and the J2 appearing in Appendix
B turns out to be zero. In this case, the conclusion about convergence rates is
still true, and the proof is a little easier than that given in Appendix B.

4. Applications

In this section, we consider EB estimation problems for several general linear
models, which are particular applications of model (2.1).

4.1. The linear regression model

In model (2.1), let Z = 0 and suppose that the elements of the matrix X

are values taken on by observations on continuous variables; then model (2.1)
becomes the following linear regression model:

Ym×1 = Xm×aαa×1 + em×1, (4.1)

where the components of α are regression coefficients.
The Bayes estimator and the EB estimator of α given by (2.9) and (3.11)

become

φG(y) = (XτX)−1Xτ [y + σ2ψ(y)], (4.2)

φn(y) = (XτX)−1Xτ [y + σ̂2ψn(y)], (4.3)
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where X is described as in model (4.1), ψ(y) and ψn(y) are expressed by (2.10)
and (3.8), σ̂2 is given by (3.9) in which σ̂2

(l) is defined by (3.9a) with H =
Im −X(XτX)−1Xτ and s = m− a, i.e.,

σ̂2
(l) = Y (l)τ [Im −X(XτX)−1Xτ ]Y (l)/(m− a). (4.4)

It is obvious that σ̂2
(l) (l = 1, . . . , n) are i.i.d. and (m− a)σ̂2

(l)/σ
2 ∼ χ2

m−a.
By Theorem 3.1, we get the convergence rates of EB estimators for the linear

regression model as follows.

Subtheorem 4.1. Let φG(y) be defined by (4.2), and φn(y) be as given by (4.3)
with h = n−1/(2k+m). If condition (3.13) is satisfied, then

Rn −R(G) = O
(
n−

2(λk−1)
2k+m

)
,

where k ≥ 2 is a given natural number and m is the dimension of the vector Y.

Remark 4.1. If the error-variance σ2 is known in model (4.1), that means the
upper bound M0 and the lower bound γ0 of σ2 are equal; then the estimator σ̂2

in (3.9) becomes constant. In this special case, the conclusion of Subtheorem 4.1
is similar to the main result of Singh (1985) (see Theorem 6.1 of Singh (1985)).

4.2. The one-way ANOVA model

In model (2.1), suppose that m = ab, q = 1 and θ = µ. Let Y = (Y1, . . . , Ym)τ

= (Y11, . . . , Y1b; · · · ;Ya1, . . . , Yab)τ and e = (e1, . . . , em)τ = (e11, . . . , e1b; · · · ; ea1,
. . . , eab)τ . Then, model (2.1) becomes the following balanced one-way ANOVA
model:

Ym×1 = Zm×1µ1×1 +Xα+ em×1 = (la ⊗ lb)µ+ (Ia ⊗ lb)α+ e, (4.5)

where Z = la⊗lb and X = Ia⊗lb, the parameter µ stands for the global mean and
α = (α1, . . . , αa)τ satisfying the constraint

∑a
i=1 αi = 0 denotes the treatment

effect of a factor, say A, the vector lp = (1, . . . , 1)τ stands for a p-dimensional
vector with all its components being one, Ip is an identity matrix and the symbol
⊗ denotes the kronecker product.

The Bayes estimator and EB estimator of α given by (2.9) and (3.11) become,
respectively;

φG(y) = (XτX)−1Xτ [y − Zµ− σ2ψ(y)] (4.6)

φn(y) = (XτX)−1Xτ [y − Zµ̂− σ̂2ψn(y)], (4.7)

where Z and X are given in model (4.5), ψ(y) and ψn(y) are expressed by (2.10)
and (3.8), µ̂ = θ̂ and µ̂(l) = θ̂(l) are defined by (3.10) in which D = (la⊗ lb)τ/(ab),
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i.e.,

µ̂ =
1
n

n∑
l=1

µ̂(l), µ̂(l) = Y
(l)
.. =

1
ab

a∑
i=1

b∑
j=1

Y
(l)
ij , (4.8)

and σ̂2 is given by (3.9) in which σ̂2
(l) is defined by (3.9a) with s = a(b− 1) and

H = Ia ⊗ Ib − (Ia ⊗ Jb)/b, Jb = lb ⊗ lτb , i.e.,

σ̂2
(l) =

1
a(b− 1)

a∑
i=1

b∑
j=1

(Y (l)
ij − Y

(l)
i. )2, Y

(l)
i. =

1
b

b∑
j=1

Y
(l)
ij , i = 1, . . . , a. (4.9)

It is obvious that σ̂2
(l) (l=1,. . . ,n) are i.i.d. and a(b− 1)σ̂2

(l)/σ
2 ∼ χ2

a(b−1).
By Theorem 3.1, we obtain the following convergence rates of EB estimators

for the one-way ANOVA model.

Subtheorem 4.2. Let φG(y) be defined by (4.6), and φn(y) be as given by (4.7)
with h = n−1/(2k+m). If condition (3.13) is satisfied, then

Rn −R(G) = O
(
n−

2(λk−1)
2k+m

)
,

where k ≥ 2 is a given natural number and m is the dimension of the vector Y.

4.3. The two-way ANOVA model

In model (2.1), let q = b + 1, Z = (la ⊗ lb la ⊗ Ib) and θ = (µ, βτ )τ , with
the other assumptions the same as described in section 4.2; then, model (2.1)
becomes the following two-way ANOVA model:

Ym×1 = Zm×(b+1) θ(b+1)×1 +Xm×a αa×1 + em×1

= (la ⊗ lb)µ+ (Ia ⊗ lb)α+ (la ⊗ Ib)β + e (4.10)
= (la ⊗ 1b)µ+ [Ia ⊗ lb la ⊗ Ib]γ + e, (4.10a)

where γ = (ατ , βτ )τ , the vectors α = (α1, . . . , αa)τ and β = (β1, . . . , βb)τ satis-
fying the constraint

∑a
i=1 αi = 0 and

∑b
j=1 βj = 0 are the treatment effects of

factors A and B respectively.
The Bayes estimator and EB estimator of α given by (2.9) and (3.11) become,

respectively,

φG(y) = (XτX)−1Xτ [y − Zθ + σ2ψ(y)]

= (XτX)−1Xτ [y − (la ⊗ lb)µ− (la ⊗ Ib)β + σ2ψ(y)], (4.11)

φn(y) = (XτX)−1Xτ [y − Zθ̂ + σ̂2ψn(y)]

= (XτX)−1Xτ [y − (la ⊗ lb)µ̂− (la ⊗ Ib)β̂ + σ̂2ψn(y)], (4.12)

where Z and X are given in (4.10), ψ(y) and ψn(y) are expressed by (2.10) and
(3.8), (µ̂, β̂τ )τ = θ̂ and (µ̂(l), β̂

τ
(l))

τ = θ̂(l) are defined by (3.10) in which D =
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[(la ⊗ lb)/(ab), (la ⊗ Ib)/a− (la ⊗ lb)lbτ/(ab)]τ , i.e., µ̂ and µ̂(l) are given by (4.8)
and

β̂ =
1
n

n∑
l=1

β̂(l), β̂(l) =
[1
a
(la ⊗ Ib)τ − 1

ab
lb(la ⊗ lb)τ

]
Y (l), (4.13)

and σ̂2 is given by (3.9) in which σ̂2
(l) is defined by (3.9a) with s = (a− 1)(b− 1)

and H = Ia ⊗ Ib − (Ia ⊗ Jb)/b − (Ja ⊗ Ib)/a+ (Ja ⊗ Jb)/(ab), Jp = lp ⊗ lτp, i.e.,

σ̂2
(l) =

1
(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(Y (l)
ij − Y

(l)
i. − Y

(l)
.j + Y

(l)
.. )2, (4.14)

with Y
(l)
.. and Y

(l)
i. as given in (4.8) and (4.9), and Y

(l)
.j =

∑a
i=1 Y

(l)
ij /a. It is

obvious that σ̂2
(l) (l = 1, . . . , n) are i.i.d. and (a− 1)(b− 1)σ̂2

(l)/σ
2 ∼ χ2

(a−1)(b−1).
By Theorem 3.1, we get the convergence rates of EB estimators for the two-

way ANOVA model as follows.

Subtheorem 4.3. Let φG(y) be defined by (4.11), and φn(y) be as given in (4.12)
with h = n−1/(2k+m). If condition (3.13) is satisfied, then

Rn −R(G) = O
(
n−

2(λk−1)
2k+m

)
,

where k ≥ 2 is a given natural number and m is the dimension of the vector Y.

Remark 4.2. In model (4.10), if we want to get the EB estimator for parameter
vector β, when α is considered as nuisance parameters since α = (α1, . . . , αa)τ is
a vector, then we can exchange the estimated status of α for β in section 4.3; this
case is also a special form of model (2.1). Therefore, similar to section 4.3 we can
construct the EB estimator of β and obtain the conclusion about convergence
rates like Subtheorem 4.3.

Remark 4.3. In the two-way ANOVA model (4.10a), if we want to get the EB
estimator for parameter vector γ = (ατ , βτ )τ , it is easy to see that this is still a
special case of model (2.1). In model (4.5), replacing α and X = Ia ⊗ lb, with γ

and X = [Ia⊗ lb, la⊗ Ib]; then similar to section 4.2 we can get the EB estimator
of γ and obtain the result about convergence rates like Subtheorem 4.2.

4.4. The ANOCOVA model

In model (2.1), assume that the elements of X are integers, usually 0 or 1,
and the elements of Z are values take on by observations on continuous variables
(also called concomitant variables). Let θ = β, then model (2.1) becomes the
following ANOCOVA model:

Ym×1 = Xm×aαa×1 + Zm×qβq×1 + em×1, (4.15)
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where the components of β are the regression coefficients, and the components
of α denote the effects in the corresponding ANOVA problem derived from the
ANOCOVA model. Suppose that R(Z) = q and

µ(X) ∩ µ(Z) = {0}, (4.16)

where µ(B) stands for a generating linear subspace by the columns of matrix B.
The Bayes estimator and the EB estimator of α given by (2.9) and (3.11)

become, respectively

φG(y) = (XτX)−1Xτ [y − Zβ + σ2ψ(y)], (4.17)

φn(y) = (XτX)−1Xτ [y − Zβ̂ + σ̂2ψn(y)], (4.18)

where X and Z are described as in (4.15), ψ(y) and ψn(y) are expressed by
(2.10) and (3.8), β̂ = θ̂ and β̂(l) = θ̂(l) are defined by (3.10) in which D =
(ZτNZ)−1ZτN, i.e.,

β̂ =
1
n

n∑
l=1

β̂(l), β̂(l) = (ZτNZ)−1ZτNY (l), (4.19)

and σ̂2 is given by (3.9) in which σ̂2
(l) is defined by (3.9a) with s = m− a− q and

H = N −NZ(ZτNZ)−1ZτN, i.e.,

σ̂2
(l) =

1
m− a− q

[
Y (l)τNY (l) − (ZτNY (l))τ (ZτNZ)−1(ZτNY (l))

]
(4.20)

with N = I − X(XτX)−1Xτ . Under assumption (4.16) we know that ZτNZ
is an invertible matrix. It is easy to see that σ̂2

(l) (l = 1, . . . , n) are i.i.d. and
(m− a− q)σ̂2

(l)/σ
2 ∼ χ2

m−a−q.
By Theorem 3.1, we obtain the following convergence rates of EB estimators

for the ANOCOVA model.

Subtheorem 4.4. Let φG(y) be defined by (4.17), and φn(y) be as given in
(4.18) with h = n−1/(2k+m). If condition (3.13) is satisfied, then

Rn −R(G) = O
(
n−

2(λk−1)
2k+m

)
,

where k ≥ 2 is a given natural number and m is the dimension of the vector Y.
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Appendix A: The Lemmas

In order to get the Bayes estimator of α in section 2 and to prove Theorem
3.1, we need the following lemmas.

In the Appendices, suppose that c, c0, c1, . . . always stand for positive con-
stants and they may denote different values even within the same expression.

Lemma A.1. Let f(y|α) and f(y) be given by (2.4) and (2.5) respectively. Then
f(y) has continuous rth order mixed partial derivatives

f (r)(y) = f (r)(r1, . . . , rm; y) =
∂rf(y)

∂yr11 . . . ∂yrmm
, (A.1)

(r =
m∑
i=1

ri, ri ≥ 0, i = 1, . . . ,m, 0 ≤ r ≤ k)

which satisfies

f (r)(y) =
∫
Θ
f (r)(y|α)dG(α), (A.2)

where k ≥ 1 is natural number.

Proof. It is obvious that f (r)(y|α) exists, is continuous, and can be written in
the form of exponential family. By Chen (1981), Theorem 1.2.1, f (r)(y) exists,
is continuous, and has the expression (A.2). This lemma is proved.

Lemma A.2. Suppose that R(G) <∞. Let φn be an arbitrary a-vector statistic,
then

Rn −R(G) = E∗‖φn − φG‖2.

Proof. See Lemma 4.1 of Singh (1985).

Lemma A.3. Let X, X ′ be random variables, x, x′ be real numbers, and L > 0
is a constant; then for 0 < r ≤ 2 we have

E
∣∣∣[X ′

X
− x′

x

]
L

∣∣∣r ≤ 2|x|−r
{
E|X ′ − x′|r +

(
L+

∣∣∣x′
x

∣∣∣)rE|X − x|r
}
.

Proof. See Lemma 3 of Zhao (1981); it is similar to Lemma 4.1 of Singh (1979).

Lemma A.4. Let φG(y) and ψ(y) be defined by (2.9) and (2.10) respectively. If∫
Θ ‖α‖δdG(α) <∞ for δ ≥ 1, then
(i) E∗‖φG(Y )‖δ <∞,

(ii) E∗‖ψ(Y )‖δ <∞.
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Proof. By Jensen’s inequality, we get

E∗‖φG(Y )‖δ =
∫
Rm

‖E(α|y)‖δf(y)dy ≤
∫
Rm

E(‖α‖δ |y)f(y)dy

=
∫
Rm

∫
Θ
‖α‖δf(y|α)dG(α)dy =

∫
Θ
‖α‖δdG(α) <∞.

From (2.6) we know that ψ(y) = ∂f(y)
∂y /f(y) = −(y−Zθ)/σ2 +E(Xα|y)/σ2,

and noting that σ2 ≥ γ0 > 0, we have

E∗‖ψ(Y )‖δ ≤ γ−δ0 E∗‖E(Xα|y) − (Y − Zθ)‖δ
≤ c1E∗‖E(Xα|y)‖δ + c2E∗‖Y − Zθ‖δ = c1P1 + c2P2.

Let λ = max[root(XτX)], then ‖Xα‖2 ≤ λ‖α‖2. By Jensen’s inequality we get

P1 = E∗‖E(Xα|y)‖δ ≤ E∗[E(‖Xα‖δ |y)]
≤ λδ/2

∫
Rm

∫
Θ
‖α‖δf(y|α)dG(α)dy = λδ/2

∫
Θ
‖α‖δdG(α) <∞,

and

P2 = E∗‖Y − Zθ‖δ

≤ c21

∫
Rm

∫
Θ
‖y − Zθ −Xα‖δf(y|α)dG(α)dy

+ c22

∫
Rm

∫
Θ
‖Xα‖δf(y|α)dG(α)dy = c21P21 + c22P22.

By the fact that E‖Y −η‖δ <∞ if Y ∼ N(η,
∑

), we know that P21 <∞. Similar
to the proof of P1, we have P22 <∞, hence P2 <∞. This lemma is proved.

Lemma A.5. Let f (r)(y) be given by (A.1) and f
(r)
n (y) be as defined by (3.4)

with h = n−1/(2k+m), r = 0, 1; then for 0 < λ ≤ 1 we have

E|f (r)
n (y) − f (r)(y)|2λ ≤ cn−

2λ(k−r)
2k+m

[
f2λ(y)A2λ(y) + fλ(y)Bλ(y)

]
,

where

A(y) = E(α|Y )

{ k∑
l=1

[
‖v‖l + (mh)l

]
exp(mh‖v‖/σ2) | y

}
, (A.3)

B(y) = E(α|Y )[exp(mh‖v‖/σ2)|y], (A.4)

v = y − Zθ − Xα, k ≥ 2 is a given natural number and E(α|Y ) denotes the
conditional expectation of α given Y.

Proof. Similar to the proof of Theorem 5.1 of Singh (1985).
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Lemma A.6. Let f(y) be given by (2.5), and ξ is an arbitrarily small positive
number. If for δ = [(m+ξ)λ/(1−λ)]∨1 with 0 < λ < 1 such that

∫
Θ ‖α‖δdG(α) <

∞, then ∫
Rm

(f(y))1−λdy <∞.

Proof. For 0 < λ < 1 we have∫
Rm

(f(y))1−λdy

=
∫
D

(f(y))1−λ dy +
∫
Dc

‖y − Zθ‖−(m+ξ)λ[‖y − Zθ‖(m+ξ)λ(f(y))1−λ]dy

= J1 + J2,

where D = {y : ‖y − Zθ‖ ≤ m} and Dc = Rm −D.

It is obvious that J1 =
∫
D(f(y))1−λdy <∞. By Holder’s inequality, we have

J2 ≤
( ∫

Dc
‖y − Zθ‖−(m+ξ)dy

)λ( ∫
Dc

‖y − Zθ‖ (m+ξ)λ
1−λ f(y)dy

)1−λ

= Jλ21J
1−λ
22 .

It is obvious that J21 <∞, and

J22 ≤ E∗‖Y − Zθ‖ (m+ξ)λ
1−λ ≤ E∗‖Y − Zθ‖δ.

Similar to the proof of P2 <∞ in Lemma A.4, we know that J22 <∞. Therefore
J2 = Jλ21J

1−λ
22 <∞. This lemma is proved.

Lemma A.7. Let A(y) and B(y) be given in Lemma A.5, and ξ is an arbitrarily
small positive number. If for δ = [(m+ ξ)λ/(η− λ)]∨ 1 with 0 < λ < η < 1 such
that ∫

Θ
‖α‖δdG(α) <∞, (A.5)

then ∫
Rm

[A2λ(y)f(y) +Bλ(y)(f(y))1−λ]dy <∞.

Proof. From formula (A.3), we know that

J0 =
∫
Rm

A2λ(y)f(y)dy = E∗[A2λ(Y )]

= E∗
{
E(α|Y )

[ k∑
l=1

(‖v‖l + (mh)l) exp(mh‖v‖/σ2)|y
]}2λ

, (A.6)
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where v = y − Zθ −Xα, defined as in Lemma A.5.
If 2λ ≥ 1, then by (A.6) and Jensen’s inequality for convex functions we have

J0 ≤ cE∗
{
E(α|Y )

[ k∑
l=1

[‖v‖2λl + (mh)2λl] exp(2λmh‖v‖/σ2)|y
]}

= c
k∑
l=1

∫
Θ

∫
Rm

[‖v‖2λl + (mh)2λl] exp{2λmh‖v‖/σ2}f(y|α)dG(α)dy. (A.7)

If 0 < 2λ < 1, then by (A.6) and Jensen’s inequality for concave functions
we get

J0 = E∗[A2λ(Y )] ≤
{
E∗[A(Y )]

}2λ
= J2λ,

where

J =
k∑
l=1

∫
Θ

∫
Rm

[‖v‖l + (mh)l] exp{mh‖v‖/σ2}f(y|α)dG(α)dy. (A.8)

It is easy to see that∫
Θ

∫
Rm

‖v‖r exp{cmh‖v‖/σ2}f(y|α)dG(α)dy <∞, (A.9)∫
Θ

∫
Rm

(mh)r exp{cmh‖v‖/σ2}f(y|α)dG(α)dy <∞, (A.10)

where r ≥ 0. From (A.6) to (A.10) we have∫
Rm

A2λ(y)f(y)dy <∞. (A.11)

By Holder’s inequality we get∫
Rm

Bλ(y)(f(y))1−λdy =
∫
Rm

[Bλ(y)(f(y))1−η ](f(y))η−λdy

≤
[ ∫

Rm

(B(y))
λ

1−η f(y)dy
]1−η[ ∫

Rm

(f(y))1−
λ
η dy

]η
= Q1−η

1 Qη2,

where 0 < λ < η < 1. Similar to the proof of (A.11) we get

Q1 =
∫
Rm

(B(y))
λ

1−η f(y)dy <∞. (A.12)

Since 0 < λ/η < 1, by (A.5) and Lemma A.6 we have

Q2 =
∫
Rm

(f(y))1−
λ
η dy <∞. (A.13)
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Therefore ∫
Rm

Bλ(y)(f(y))1−λdy ≤ Q1−η
1 Qη2 <∞. (A.14)

By (A.11) and (A.14), this lemma is proved.

Appendix B: Proof of Theorem 3.1

Let λ0 = max[root(X(XτX)−2Xτ )]. By Lemma A.4, it is obvious that
R(G) <∞, therefore from formulas (2.9), (3.11) and Lemma 4.2 we have

Rn −R(G) = E∗‖φn(Y ) − φG(Y )‖2

= E∗‖(XτX)−1Xτ [(σ̂2ψn(Y ) − σ2ψ(Y )) − Z(θ̂ − θ)]‖2

≤ 4[E∗‖(XτX)−1XτZ(θ̂ − θ)‖2 + λ0E∗‖(σ̂2 − σ2)ψ(Y )‖2

+λ0E∗‖σ̂2(ψn(Y ) − ψ(Y ))‖2] = 4[J1 + J2 + J3]. (B.1)

Let λ1 = max[root(ZτX(XτX)−2XτZ)] and λ1 = max[root(XτDτDX)].
Since θ̂(l) = DY (l) (l = 1, . . . , n), given by (3.10), are i.i.d. and unbiased by
condition (3.13) and the fact that σ2 ≤M0 we have

J1 = E∗‖(XτX)−1XτZ(θ̂ − θ)‖2 ≤ λ1E∗‖θ̂ − θ‖2 =
λ1

n
E∗‖θ̂(1) − θ‖2

=
λ1

n
tr[DCov (Y (1))Dτ ] =

λ1

n
tr[DτD(σ2Im +X Cov (α)Xτ )]

≤ cn−1(M0tr(DτD) + λ1E∗‖α‖2) ≤ c1n
−1, (B.2)

where tr(A) denotes trace of the matrix A.
From (3.9) we know that (σ̂2−σ2)2 ≤ (σ̂2

n−σ2)2, E(σ̂2
n)= σ2 and Var (σ̂2

(1)) =
2σ4/s; therefore by Lemma A.4 and the fact that σ2 ≤M0, we get

J2 = λ0E∗‖(σ̂2 − σ2)ψ(Y )‖2 ≤ λ0E(Y,α)[‖ψ(Y )‖2E(σ̂2
n − σ2)2]

= λ0E(Y,α)[‖ψ(Y )‖2Var (σ̂2
n)] ≤

λ0

n
E(Y,α)[‖ψ(Y )‖2Var (σ̂2

(1))]

=
2λ0

ns
σ4E∗‖ψ(Y )‖2 ≤ 2λ0

ns
M2

0E∗‖ψ(Y )‖2 ≤ c2n
−1. (B.3)

Noting that σ̂2 ≤M0 in the formula (3.9), we have

J3 = λ0E∗‖σ̂2(ψn(Y ) − ψ(Y ))‖2 ≤ λ0M
2
0E∗‖ψn(Y ) − ψ(Y )‖2

≤ c0

m∑
i=1

E∗
(
ψn(i)(Y ) − ψ(i)(Y )

)2
= c0

m∑
i=1

Qi. (B.4)

First consider Q1 = E∗(ψn(1)(Y )−ψ(1)(Y ))2 = E(Y,α)[E(ψn(1)(y)−ψ(1)(y))2].
Suppose that An(1) = {y : y ∈ Rm, |ψ(1)(y)| ≤ nν/2}, Bn(1) = Rm − An(1). If
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y ∈ An(1) then |ψn(1) − ψ(1)| ≤ 3nν/2; therefore by Lemma A.3 and Lemma A.5
we obtain

E(ψn(1)(y) − ψ(1)(y))
2

≤
(3
2
nν

)2−2λ
E

∣∣∣[f ′n(1)(y)

fn(y)
−
f ′(1)(y)

f(y)

]
3
2
nν

∣∣∣2λ
≤ cn2ν(1−λ)

(
f(y)

)−2λ{
E|f ′n(1)(y) − f ′(1)(y)|2λ + (2nν)2λE|fn(y) − f(y)|2λ

}
≤ cn−( 2λk

2k+m
−2ν)[A2λ(y) +Bλ(y)f−λ(y)]. (B.5)

By Lemma A.7 we have∫
An(1)

E(ψn(1)(y) − ψ(1)(y))
2f(y)dy

≤ cn−( 2λk
2k+m

−2ν)
[ ∫

Rm

A2λ(y)f(y)dy +
∫
Rm

Bλ(y)(f(y))1−λdy
]

≤ cn−( 2λk
2k+m

−2ν). (B.6)

If y ∈ Bn(1) then |ψ(1)(y)| > nν/2, therefore we get (ψn(1)(y) − ψ(1)(y))2 ≤
2n2ν + 2ψ2

(1)(y) ≤ 10ψ2
(1)(y); thus by Holder’s inequality, Markov’s inequalities

and Lemma A.4 we have∫
Bn(1)

E(ψn(1)(y) − ψ(1)(y))
2f(y)dy

≤ 10E∗
{
ψ2

(1)(Y )I[|ψ(1)(Y )|> 1
2
nν ]

}
≤ 10

{
E∗|ψ(1)(Y )|δ

}2/δ{
2δn−νδE∗|ψ(1)(Y )|δ

}(δ−2)/δ

≤ 10
{
E∗‖ψ(Y )‖δ

}2/δ{
2δn−νδE∗‖ψ(Y )‖δ

}(δ−2)/δ

≤ cn−ν(δ−2). (B.7)

Let δ = 2λk with 1/2 < λ < 1 and k ≥ 2; hence δ > 2. Put ν(2λk − 2) =
2λk/(2k+m)−2ν; then we obtain ν = 1/(2k+m). Therefore by (B.6) and (B.7)
we have

Q1 = E∗(ψn(1)(Y ) − ψ(1)(Y ))2

=
∫
An(1)

E(ψn(1)(y) − ψ(1)(y))
2f(y)dy +

∫
Bn(1)

E(ψn(1)(y) − ψ(1)(y))
2f(y)dy

≤ cn−
2(λk−1)
2k+m . (B.8)

Secondly, similar to the proof of Q1 we have

Qi ≤ cn−
2(λk−1)
2k+m i = 2, . . . ,m. (B.9)
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Substituting (B.8) and (B.9) into (B.4) we get

J3 ≤ c0

m∑
i=1

Qi ≤ c3n
− 2(λk−1)

2k+m . (B.10)

Substituting (B.2), (B.3) and (B.10) into (B.1) we obtain

Rn −R(G) ≤ 4
[
c1n

−1 + c2n
−1 + c3n

− 2(λk−1)
2k+m

]
≤ cn−

2(λk−1)
2k+m .

This means Rn −R(G) = O(n−2(λk−1)/(2k+m)). The theorem is proved.

References

Chen, Xiru (1981). An Introduction to Mathematical Statistics. Science Press, Beijing.

Lu, K. L. (1982). Kernel estimators of mixed partial derivatives of a multivariate density and

their convergence rate. J. Systems Sci. Math. Sci. 2, 220-226.

Robbins, H. (1955). An empirical Bayes approach to statistics, Proc. Third Berkeley Symp.

Math. Statist. Prob. 1, 157-163, Univ. California Press.

Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. Ann. Math.

Statist. 35, 1-20.

Singh, R. S. (1979). Empirical Bayes estimation in Lebesgue-exponential family with rates near

the best rate. Ann. Statist. 7, 890-902.

Singh, R. S. (1981). Speed of convergence in nonparametric estimation of a multivariate µ

density and its mixed partial derivatives. J. Statist. Plann. Inference 5, 287-298.

Singh, R. S. (1985). Empirical Bayes estimation in a multiple linear regression model. Ann.

Inst. Statist. Math. 37, 71-86.

Wei, L. S. (1990). Empirical Bayes test of regression coefficient in a multiple linear regression

model. Acta Math. Appl. Sinica 6, 251-262.

Wei, L. S. and Zhang, S. P. (1995). The convergence rates of empirical Bayes estimation in a

multiple linear regression model. Ann. Inst. Statist. Math. 47, 81-97.

Wei, L. S. (1995). The asymptotically optimal empirical Bayes estimation in one way ANOVA

model. To appear.

Zhang, S. P. and Wei, L. S. (1994). The asymptotically optimal empirical Bayes estimation in

a multiple linear regression model. Appl. Math. -A Journal of Chinese Universities 9,

245-258.

Zhao, L. C. (1981). Empirical Bayes estimation with convergence rates about a class of discrete

distribution families. J. Math. Res. Exposition 1, 59-69.

Department of Statistics and Finance, University of Science and Technology of China, Hefei,

Anhui 230026.

E-mail: lwei@math.ustc.edu.cn

(Received January 1996; accepted March 1997)


