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Abstract: This article extends recent developments in penalized likelihood probability

density estimation to the estimation of conditional densities on generic domains. Posi-

tivity and unity constraints for a probability density are enforced through a one-to-one

logistic conditional density transform made possible by term trimming in an ANOVA

decomposition of multivariate functions. The construction of models via tensor prod-

uct splines is demonstrated through examples. The computation of estimates with

automatic multiple smoothing parameters is also discussed. Data examples are pre-

sented to illustrate possible applications of the technique. For theoretical justi�cation

of the method, an asymptotic theory is sketched in the appendix.
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1. Introduction

Let (Xi; Yi), i = 1; � � � ; n, be independent observations from a probability

density f(x; y) on a product domain X � Y. Of interest is the estimation of the

conditional density f(yjx) = f(x; y)=
R
Y f(x; y) of Y given X, without assuming

rigid constraints in the form of parametric models for f(x; y) or f(yjx). To

achieve noise reduction in estimation, however, certain soft constraints on f(x; y)

or f(yjx) are necessary. The method under study is the penalized likelihood

method pioneered by Good and Gaskins (1971). The formulation follows that of

Gu and Qiu (1993), which evolved from the work of Leonard (1978) and Silverman

(1982).

The penalized likelihood method estimates a function of interest, say g, by

the minimizer of a score of the form

L(gjdata) + �J(g); (1:1)

where L(gjdata), usually a minus log likelihood, measures the goodness-of-�t of g

to the data, J(g) (� 0) measures the roughness of g, and the so-called smoothing

parameter � (> 0) controls the tradeo� between goodness-of-�t and smoothness.

The minimizer of (1.1) is e�ectively the maximum likelihood estimate subject to
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a (soft) constraint J(g) � � for some � � 0. For the constraint to be e�ective for

noise reduction, the null space of J(g) should have a �nite dimension.

Two intrinsic constraints a probability density has to satisfy are that it is

nonnegative (positivity) and that it integrates to one (unity). Assuming f(x; y) >

0 on its domain, the logistic density transform f = eg=
R
eg (cf. Leonard (1978))

takes care of both constraints, but the many-to-one feature of the transform in the

usual function spaces is often inconvenient for theoretical analysis and numerical

computation. For the estimation of the joint density f(x; y), Gu and Qiu (1993)

propose a simple surgery on the usual function spaces to make the transform

one-to-one. For the estimation of the conditional density f(yjx), further surgery

is needed. The idea can most conveniently be explained in the context of analysis

of variance (ANOVA) decomposition of multivariate functions.

An ANOVA decomposition for a bivariate function is expressed as g(x; y) =

g; + gx(x) + gy(y) + gx;y(x; y), where g; is a constant, gx and gy are functions of

one variable called the main e�ects, and gx;y is called the interaction. For the

decomposition to be uniquely de�ned, certain side conditions have to be enforced

on gx, gy, and gx;y; for example, one may set
R
X gx =

R
Y gy =

R
X gx;y =

R
Y gx;y = 0.

Some general discussion of ANOVA decomposition of multivariate functions can

be found in, e.g., Gu and Wahba (1993). With a uniquely de�ned ANOVA

decomposition of g(x; y), forcing g; = 0 makes f(x; y)$ eg=
R
X�Y e

g one-to-one,

which is the surgery suggested by Gu and Qiu (1993) for the joint density. In a

similar manner, one may set g; + gx = 0 to make a logistic conditional density

transform f(yjx)$ eg(x;y)=
R
Y
eg(x;y) one-to-one.

With a one-to-one logistic conditional density transform, one may special-

ize (1.1) for the estimation of f(yjx) as follows. Writing H = fg : g(x; y) =

gy(y)+gx;y(x; y)g where gy and gx;y satisfy side conditions required in an ANOVA

decomposition, one may estimate f(yjx) by eg(x;y)=
R
Y
eg(x;y) where g minimizes

�
1

n

nX
i=1

fg(Xi; Yi)� log

Z
Y

eg(Xi;y)
g+

�

2
J(g) (1:2)

in H, where the division of � by 2 saves notation in later analysis. This proce-

dure can be implemented via tensor product splines; details are to be found in

Section 2.

A large body of literature on nonparametric conditional density estimation

exists under the name of regression, of which most assume parametric models for

f(yjx) on the y axis. Of those that do not assume any parametric form, most

still operate on certain parameters of f(yjx) such as the conditional mean or the

conditional percentiles. Similar to a recent work by Stone (1991) who uses tensor

product regression splines in Euclidean spaces, we use tensor product smooth-

ing splines to estimate the whole conditional density, from which distributional
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parameters can be readily derived. A point worth noting is that the domains X

and Y in (1.2) are generic, so the method is applicable to problems on arbitrary

domains. For example, with a discrete Y one may employ the method to conduct

nonparametric multinomial regression.

The remainder of the article is organized as follows. Section 2 formally sets

up the problem, conducts preliminary analysis, and presents examples. Section 3

discusses computational issues such as computable semiparametric approxima-

tions of the estimates and the automatic selection of smoothing parameters. Sec-

tion 4 illustrates some applications of the method, including one with known

discontinuity and one with a discrete Y. Section 5 concludes the article with

a few remarks. A generic asymptotic theory is sketched in the Appendix, with

technical details similar to those in Gu and Qiu (1993) omitted.

2. Penalized Likelihood Estimation

We �rst tighten up the formulation of (1.2). For (1.2) to be well de�ned at

g = 0, one has to assume a bounded Y, which presumably covers the observed

Yi; with unbounded or unknown natural support for Y , the estimation shall be

interpreted as that of the conditional distribution of Y j(Y 2 Y). The penalty

functional J(g) in penalized likelihood estimation is usually taken as a quadratic

form with a null space of dimension smaller than the sample size n. For (1.2)

to be sensible for the estimation of f(yjx), J(g) should annihilate functions of

x alone because g(x; y) and g(x; y) + h(x) for any h(x) leads to identical f(yjx)

by the logistic conditional density transform. One may try to minimize (1.2)

over all functions satisfying J(g) < 1, but functions that di�er by a function

of the variable x alone are equivalent to each other, and for theoretical and

computational convenience we shall allow one and only one member of each

equivalent class in the estimation. This can be done by forcing Ayg(x; y) = 0,

where Ay is an \averaging operator" acting on the variable y which preserves

functions of x alone; among examples of Ay are Ayg =
R
Y g=

R
Y 1 and Ayg =

g(x; y0), y0 2 Y. Let H = fg : Ayg = 0; J(g) < 1g and J? = fg : Ayg =

0; J(g) = 0g. J(g) forms a natural square (semi) norm in H, and supplemented

by a norm in J?, makes H a Hilbert space.

Write t = (x; y) and T = X � Y. Evaluation appears in the likelihood part

of (1.2), and we shall only consider H in which evaluation is continuous. Such a

Hilbert space is called a reproducing kernel Hilbert space (RKHS) possessing a

reproducing kernel (RK) R(�; �), a nonnegative de�nite bivariate function on T ,

such that R(t; �) = R(�; t) 2 H, 8t 2 T , and hR(t; �); g(�)i = g(t) (the reproducing

property), 8g 2 H, where h�; �i is the inner product in H. As a matter of fact,

starting from any nonnegative de�nite function R(�; �) on the domain, one can
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construct a RKHS H = spanfR(t; �);8t 2 T g with an inner product satisfying

hR(t; �); R(s; �)i = R(t; s), which has R(�; �) as its RK. The inner product (hence

the norm) and the RK determine each other uniquely. Details can be found in

Aronszajn (1950); see also Wahba (1990), Chapter 1.

With J as a square seminorm, H can be decomposed as H = HJ�J?, where

HJ = fg : g 2 H; 0 < J(g) < 1g is a RKHS with a square norm J(g) and

an associated RK RJ . The null space norm does not appear in (1.2), so the

estimate is determined by the data (Xi; Yi) and the model implied by a basis

of J?, the RK RJ , and the smoothing parameter �. To obtain an RKHS H on

the product domain X � Y which satis�es the aforementioned requirements for

conditional density estimation, we shall construct a tensor product RKHS with

an ANOVA decomposition built in, and then trim the function space components

which represent the constant and the x main e�ect. Instead of specifying J(g)

directly, the method operates on the construction of RK's on the marginal and

product domains, and the corresponding J(g) only falls out after the fact if an

explicit expression is at all available. Details will be spelled out in a few examples,

to follow after the existence theorem below.

Theorem 2.1. Assume that the RK of H is bounded on Y for any �xed x 2 X .

If the minimizer ĝ of (1:2) exists in J?, then it uniquely exists in H.

Proof. By Theorem 4.1 of Gu and Qiu(1993), it su�ces to show that log
R
Y
eg(x;y)

is continuous and strictly convex in H for any given x. Continuity follows from

the continuity of evaluation, and the boundedness of the RK and Riemann sum

approximation of
R
Y if necessary. Convexity follows via H�older's inequality, since

log
R
Y
e�g+�h � � log

R
Y
eg+� log

R
Y
eh for �; � > 0, �+� = 1, where the equality

holds only when eg / eh on fxg�Y, which amounts to g = h in H with Ayg = 0.

The rest of the section focuses on examples.

Example 2.1. Tensor product linear splines on [0; 1]2. We start with the con-

struction of an RKHS on [0; 1]. A possible roughness functional for one dimen-

sional smoothing on [0; 1] is
R 1
0 _g2, which is a square semi norm in fg :

R 1
0 _g2 <1g

with a null space f1g. Imposing a side condition, say
R 1
0 g = 0 or g(0) = 0,

R 1
0 _g2

can be made a square norm in the reduced space and an RK can be derived. Two

commonly used con�gurations follow. In fg :
R 1
0 _g2 < 1;

R 1
0 g = 0g, the RK as-

sociated with the square norm
R 1
0 _g2 is Rl1(x1; x2) = k1(x1)k1(x2) + k2(jx1�x2j),

where k� = B�=�! and B� is the �th Bernoulli polynomial (cf. Craven and Wahba

(1979)). In fg :
R 1
0 _g2 < 1; g(0) = 0g, the RK is Rl2(x1; x2) = min(x1; x2). It

can be veri�ed that
R 1
0 Rl1(x1; x2)dx2 = 0 and Rl2(x1; 0) = 0. R0(x1; x2) = 1

is an RK for f1g. R0 + Rl1 and R0 + Rl2 generate RKHS's with square norms

(
R 1
0 g)

2+
R 1
0 _g2 and g2(0)+

R 1
0 _g2, respectively, and they represent one-way ANOVA
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with di�erent side conditions. J(g) =
R 1
0 _g2 in one dimensional smoothing yields

linear splines.

With nonnegative de�nite functions Rx and Ry on X and Y, respectively,

R((x1; y1); (x2; y2)) = Rx(x1; x2)R
y(y1; y2) is nonnegative de�nite on X � Y (cf.

Aronszajn (1950)). This fact serves as a convenient device for the construction of

RKHS's on product domains. From the marginalsR0+Rl1 or R0+Rl2, one readily

obtains RKHS's on [0; 1]2 with ANOVA decompositions built-in. For example,

Rx
0R

y
0 +Rx

l1R
y
0 +Rx

0R
y
l1+Rx

l1R
y
l1 generates g;+ gx+ gy+ gx;y with side conditionsR 1

0 gx =
R 1
0 gy =

R 1
0 gx;ydx =

R 1
0 gx;ydy = 0, and replacing Rl1 by Rl2 generates the

same expression but with side conditions gx(0) = gy(0) = gx;y(0; y) = gx;y(x; 0) =

0. Cutting o� g; and gx, one obtains an H for the purpose of (1.2).

Speci�cally, an RK RJ = �1R
y
l1 + �2R

x
l1R

y
l1 generates an RKHS H = fg :R 1

0 gdy = 0; J(g) < 1g, where J(g) = ��1
1

R 1
0 (
R 1
0 (@g=@y)dx)

2dy + ��1
2

R 1
0

R 1
0

(@2g=@x@y)2dxdy, and replacing Ry
l1 by Ry

l2 only changes the side condition

in H but not J(g). Similarly, RJ = �1R
y
l2 + �2R

x
l2R

y
l2 generates an RKHS

H = fg : g(x; 0) = 0; J(g) < 1g, where J(g) = ��1
1

R 1
0 (@g=@y)

2(0; y)dy +

��1
2

R 1
0

R 1
0 (@

2g=@x@y)2dxdy, and replacing R
y
l2 by R

y
l1 only changes the side con-

dition in H but not J(g). Extra smoothing parameters �� (> 0) to be selected

by the data are attached to terms of RJ because the scalings of individual terms

are not comparable. There are no clearly separable �nite dimensional parts in

gy and gx;y and one may set J? = f0g. Note that the two J(g)'s imply slightly

di�erent notions of smoothness due to the di�erent side conditions on the x axis

which a�ect the break-up of gy+gx;y. The derivations of J(g) are straightforward

but tedious and are therefore omitted. The minimizer ĝ of (1.2) always uniquely

exists in this setup.

Example 2.2. Tensor product cubic splines on [0; 1]2. We again start with a

construction on [0; 1]. The most commonly used roughness functional for one

dimensional smoothing is
R 1
0 �g2, which is a square semi norm in fg :

R 1
0 �g2 <1g

with a null space of linear polynomials f1; xg. Imposing a pair of side conditions,

say
R 1
0 g =

R 1
0 _g = 0 or g(0) = _g(0) = 0,

R 1
0 �g2 can be made a square norm in the

reduced space and an RK can be derived. Two commonly used con�gurations

follow. In fg :
R 1
0 �g2 < 1;

R 1
0 g =

R 1
0 _g = 0g, the RK associated with the square

norm
R 1
0 �g2 is Rc1(x1; x2) = k2(x1)k2(x2) � k4(jx1 � x2j) with k� = B�=�! scaled

Bernoulli polynomials (cf. Craven and Wahba (1979)); accompanying RK's R0 =

1 and R�1(x1; x2) = (x1 � :5)(x2 � :5) generate f1g and f(x � :5)g with square

norms (
R 1
0 g)

2 and (
R 1
0 _g)2, respectively, and the tensor sum of the three subspaces

forms an RKHS. In fg :
R 1
0 �g2 < 1; g(0) = _g(0) = 0g the RK is Rc2(x1; x2) =R 1

0 (x1 � u)+(x2 � u)+du where (�)+ = max(0; �); accompanying RK's R0 = 1 and

R�1(x1; x2) = x1x2 generate f1g and fxg with square norms g2(0) and _g2(0),
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respectively, and the tensor sum of the three subspaces forms another RKHS

with a di�erent norm. R0 + (R�1 + Rc1) and R0 + (R�2 + Rc2) represent one-

way ANOVA with di�erent side conditions. J(g) =
R 1
0 �g2 in one dimensional

smoothing yields cubic splines.

Using marginals R0 + (R�1 + Rc1) or R0 + (R�2 + Rc2), one can paste

up RKHS's on [0; 1]2 with up to nine tensor sum subspaces. For example,

�0;0R
x
0R

y
0 + (��;0R

x
�1R

y
0 + �c;0R

x
c1R

y
0) + (�0;�R

x
0R

y
�1 + �0;cR

x
0R

y
c1) + (��;�R

x
�1R

y
�1 +

��;cR
x
�1R

y
c1+ �c;�R

x
c1R

y
�1+ �c;cR

x
c1R

y
c1) generates g;+ gx+ gy + gx;y with side con-

ditions
R 1
0 gx =

R 1
0 gy =

R 1
0 gx;ydx =

R 1
0 gx;ydy = 0, where �� � 0, � 2 f0; �; cg2 are

extra smoothing parameters; replacing R�1 + Rc1 by R�2 + Rc2 yields di�erent

side conditions gx(0) = gy(0) = gx;y(0; y) = gx;y(x; 0) = 0. Setting a �� to 0

eliminates the corresponding subspace. The square norm in a pasted RKHS with

an RK
P

� ��R� is
P

� �
�1
� J�, where J� is the square norm in the space generated

by R�.

For the purpose of (1.2), one should set �0;0 = ��;0 = �c;0 = 0 and use a

penalty of the form J(g) =
P

�2f0;�;cg�f�;cg �
�1
� J�. Following common practice,

one may put the polynomials into J? by setting �0;� = ��;� = 1 in J(g), and

in turn R0;� and R�;� will not appear in the expression of the RK RJ which

generates HJ . Di�erent con�gurations on the x axis still imply di�erent notions

of smoothness. Furthermore, di�erent con�gurations on the y margin, which

now di�er not only in the ANOVA side conditions but also in other aspects, also

imply di�erent notions of smoothness. We omit explicit expressions of J�, some

of which may be found, e.g., in Gu (1993c) under slightly di�erent notation.

Under the setup with a null space J? = f(y� :5); (x� :5)(y� :5)g, the minimizer

ĝ of (1.2) uniquely exists whenever the maximum likelihood estimate of the form

g(x; y) = �1(y � :5) + �2(x� :5)(y � :5) exists.

Note that the marginal con�gurations are independent of each other. For

example, one may well use a cubic spline on one margin and a linear spline on

the other.

Example 2.3. Tensor product splines on X �f1; � � � ;Kg. Both domains X and

Y are generic in (1.2). In particular, the response domain Y can be taken as a

discrete set, say f1; � � � ;Kg, and the method can be used to conduct regression

with multinomial responses. For the method to apply, one needs to construct an

RKHS on the marginal domain f1; � � � ;Kg with an ANOVA decomposition built

in, to cut o� the constant, and to take the tensor product of what is left with an

RKHS on the covariate domain X .

An function on f1; � � � ;Kg is simply a K-vector and an RK a K�K nonneg-

ative de�nite matrix, with evaluation understood as coordinate extraction. The

integral
R
Y may be taken as summation over the domain. Smoothing on a discrete
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domain is better known as shrinking, and the choice of the roughness functional

speci�es what is to be shrunk in estimation. For example, the \variance" penalty

J(g) = g
T (I � 11

T=K)g shrinks g towards f1g, where we use boldface letters for

the K-vectors. The RK corresponding to the square norm g
T (I � 11

T =K)g in

f1g
? is Rv = (I � 11

T=K), whose columns generates vectors satisfying the side

condition 1
T
g = 0. Actually, it can be shown that the RK corresponding to a

quadratic square norm g
TAg in the column space of A is A+, the Moore-Penrose

inverse of A.

Following the same procedure as used in previous examples, one can eas-

ily construct a tensor product RKHS on X � f1; � � � ;Kg by taking the product

of Rv with RK's on X . For example, with X = [0; 1], one may use for (2.1)

RJ = ��R
x
�1R

y
v+�cR

x
c1R

y
v , where for clarity we note that R

y
v(y1; y2) is the (y1; y2)th

entry of the matrix (I � 11
T=K), and J? = fRv(y; j)g

K�1
j=1 = fbj(y)g

K�1
j=1 , where

Rv(y; j) = bj(y) is the jth column of (I � 11
T =K). Such an RJ generates an

RKHS HJ = fg(x; y) : g(x; y) = �y(x� :5)+h(x; y);
PK

y=1 �y = 0;
PK

y=1 h(x; y) =

0;
R 1
0
�h2xx(x; y)dx < 1;

R 1
0 h(x; y)dx =

R 1
0
_hx(x; y)dx = 0g with a square norm

J(g) = ��1
�

PK
y=1(

R 1
0 _gx(x; y)dx)

2 +��1
c

R 1
0

PK
y=1 �g

2
xx(x; y)dx = ��1

�

PK
y=1 �

2
y + ��1

cR 1
0

PK
y=1

�h2xx(x; y)dx. By keeping �� < 1, one shrinks �y towards 0. When

restricted to J? = fbj(y)g
K�1
j=1 , the coe�cients of bj(y) simply reparameterize

P (yjx) = P (Y = yjX = x) = py,
PK

y=1 py = 1, so the minimizer ĝ of (1.2)

uniquely exists as long as all K categories of the response are observed. If K

is small, one may also choose to set �� = 1 to include f(x � :5)bj(y)g
K�1
j=1 into

J?, in which case the minimizer of (1.2) uniquely exists whenever the maxi-

mum likelihood estimate exists for a linear logistic model of the form (after a

reparameterization)

P (yjx) =
e�y+�yx

1 +
PK�1

z=1 e�z+�zx
; y = 1; : : : ;K � 1;

P (Kjx) =
1

1 +
PK�1

z=1 e�z+�zx
;

(2:1)

where �y, �y, y = 1; � � � ;K � 1 are 2(K � 1) free parameters.

For K = 2, take RJ = Rx
c1R

y
v and J? = fb1(y); (x � :5)b1(y)g, where

Rv(1; 1) = b1(1) = Rv(2; 2) = 1=2 and Rv(2; 1) = b1(2) = Rv(1; 2) = �1=2.

It can be veri�ed that the RK RJ generates an RKHS HJ = fg(x; y) : g(x; 1) =

�g(x; 2);
R 1

0 �g2xx(x; 1)dx < 1;
R 1
0 g(x; 1)dx =

R 1
0 _gx(x; 1)dx = 0g with a square

norm J(g) =
R 1
0 (�gxx(x; 1) � �gxx(x; 2))

2dx=2 = 2
R 1
0 �g2xx(x; 1)dx. J? = fg(x; y) :

g(x; 1) = �g(x; 2) = �+�xg. Now from P (yjx) = eg(x;y)=(eg(x;1)+eg(x;2)), y = 1; 2

and g(x; 1) = �g(x; 2), it is easy to check that g(x; 1) = log(P (1jx)=P (2jx))=2.

Hence, (1.2) in this setting simply reduces to the standard cubic spline logistic

regression (cf. O'Sullivan, Yandell and Raynor (1986)).
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Obviously, Rv is not the only nonnegative de�nite matrix which generates

f1g
?, and 1

T
g = 0 is not the only choice for the side condition in an ANOVA

decomposition on f1; � � � ;Kg. For example, with ordinal categories one may

choose to use an RK corresponding to a roughness functional
PK�1

y=1 (g(y + 1) �

g(y))2 in f1g?, which shrinks the di�erences between adjacent categories.

3. Computation of Estimates

We �rst derive a loss function for the assessment of estimation precision.

Conditional on x, the symmetrized Kullback-Leibler distance between two con-

ditional densities eg=
R
Y e

g and eh=
R
Y e

h is SKL(g; hjx) = �g(g�hjx)��h(g�hjx),

where �g(hjx) =
R
Y
heg=

R
Y
eg. Observing Y jX from eg0=

R
Y
eg0 and X from f(x),

SKL(g; g0) =
R
X
SKL(g; g0jx)f(x) appears appropriate for assessing the perfor-

mance of g as an estimate of g0. A �rst order Taylor expansion of �g0+�f (hjx)

in � at � = 0 gives �g0(hjx) + �v(h; f jx) where v(h; f jx) = vg0(h; f jx) =

�g0(hf jx) � �g0(hjx)�g0(f jx), and by plugging in h = f = g � g0 and � = 1

one obtains a quadratic distance V (g � g0) =
R
X
v(g � g0jx)f(x) which approxi-

mates SKL(g � g0) for g near g0, where v(hjx) = v(h; hjx).

The space H is in general in�nite dimensional and ĝ not computable. For

the method to be of any use in practical estimation, one has to identify some

appropriate �nite dimensional function space in which estimates are to be calcu-

lated. A generic approach is to minimize (1.2) in Hn = J? � spanfRJ(Ti; �); i =

1; � � � ; ng, where RJ generates HJ and Ti = (Xi; Yi) are the observed data. When

g0 2 J? � HJ , it can be shown that the minimizer ĝn of (1.2) in Hn shares

with ĝ the same asymptotic convergence rates in SKL(g; g0) and in V (g � g0) as

� ! 0 and n ! 1 at certain rates, of course under suitable conditions, which

provides a statistical justi�cation for the choice of the adaptive space Hn; see

the Appendix. When L(gjdata) (cf. 1.1) depends on g only through evaluations

[Ti]g = g(Ti), such as in a logistic regression, then ĝn = ĝ; see, e.g., Wahba (1990)

and O'Sullivan, Yandell and Raynor (1986). The existence theorem of Section 2

also applies to ĝn.

Write �i = RJ(Ti; �) and J? = f��g
M
�=1. A function in Hn has an expression

g =
Pn

i=1 ci�i +
PM

�=1 d��� = �
T
c+ �

T
d, where � and � are vectors of functions

and c and d are vectors of coe�cients. Fixing smoothing parameters, ĝn can be

calculated via minimizing

�
1

n
1
T (Qc+ Sd) +

1

n

nX
i=1

log

Z
Y

expf�Ti c+ �
T
i dg+

�

2
c
TQc (3:1)

with respect to c and d, where Q is n�n with (i; j)th entry �i(Tj) = RJ(Ti; Tj) =

J(�i; �j) and where J(g; h) denotes the inner product associated with the square
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norm J(g), S is n �M with (i; �)th entry ��(Ti), �i is n � 1 with jth entry

�j(Xi; y), and �i is M � 1 with �th entry ��(Xi; y). Substituting the empiri-

cal distribution for f(x), we write �g(h) = (1=n)
Pn

i=1 �g(hjXi) and Vg(h; f) =

(1=n)
Pn

i=1 vg(h; f jXi). From an estimate ~g = �
T~c + �

T ~d, the one-step Newton

update for minimizing (3.1) can be shown to satisfy

�
V�;� + �Q V�;�

V�;� V�;�

��
c

d

�
=

�
Q1=n� �� + V�;g
ST

1=n� �� + V�;g

�
; (3:2)

where �� = �~g(�), �� = �~g(�), V�;� = V~g(�; �
T ), V�;� = V~g(�;�

T ), V�;� =

V~g(�;�
T ), V�;g = V~g(�; ~g), and V�;g = V~g(�; ~g).

Di�erent smoothing parameters � and �� (hidden in RJ) in (3.1) lead to

di�erent estimates, and ideally one would like to choose smoothing parame-

ters which yield the best-performing estimate. A performance-oriented iteration

scheme has been proposed, implemented, and evaluated for single smoothing pa-

rameter density estimation in Gu (1993a), which is designed to automatically land

a hopefully well-performing estimate using information from the data. An imple-

mentation in multiple smoothing parameter problems has been further explored

in Gu (1993b), which is directly applicable to conditional density estimation.

Below we describe the general ideas behind the algorithms, and refer technical

details to the aforementioned references.

Consider a single smoothing parameter problem with � to be chosen but RJ

�xed. As � varies, one may perceive ĝn as forming a \curve" in the function

space H, and the task is to locate a well-performing estimate on the \curve".

With a varying �, the one-step Newton updates of (3.2) from ~g may be perceived

as forming a \line" in H, and our strategy is to move onto the best-performing

estimate on the \line" in each iteration. Assuming that a means does exist for

the comparison of the performances of the estimates on such \lines", and that

the iteration does converge to a �xed point (��; g�), it is easy to see that g� is

indeed on the \curve" with � = ��, and there is no estimate on the \line" of

one-step Newton updates from g� that performs better than g�. We seek such a

g� as our automatic estimate. The same scenario holds for multiple smoothing

parameters, with the \curve" replaced by a \surface" and the \lines" replaced

by \planes".

In conditional density estimation, we shall use SKL(g; g0) or V (g�g0), which

are proxies of each other, to measure the performance of the estimate, and for the

observed data, we shall replace the density f(x) of X appearing in SKL(g; g0) and

V (g � g0) by the empirical distribution of Xi, as in the de�nitions of �g(h) and

Vg(h; f) above. For an estimate g on the \line" of one-step Newton updates from

~g, there exists a proxy of SKL(g; g0) or V (g�g0) consisting of three terms: a term

depending only on g0 and ~g, which can be ignored for comparative purposes, a
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term depending only on g and ~g, which can be computed, and a cross term of the

form �g0(g), whose components can be estimated by the corresponding sample

means or some cross-validated versions of sample means. Using such estimated

proxies of the performance measure on the \lines" to compare estimates, one

may drive the performance-oriented iteration to land a hopefully near optimal

estimate on the \curve".

With a careful implementation, such an iteration scheme rarely diverges in

our empirical studies under various settings. The algorithm takes J?, RJ , and the

data as inputs, and returns an estimate with automatic smoothing parameters,

if it converges.

4. Applications

In this section, we illustrate some applications of the technique in data anal-

ysis.

4.1. Penny thickness data: Known discontinuity

The data are thickness in mils of a sample of 90 U.S. Lincoln pennies listed in

Scott (1992), Appendix B.4. Two pennies from each year between 1945 to 1989

were measured. I mapped X � Y = [1944:5; 1989:5] � [49; 61] onto [0; 1]2, and

used the tensor product cubic spline of Example 2.2 with side conditions
R
X
gx =R

Y
gy =

R
X
gx;y =

R
Y
gx;y = 0, with RJ = �0;cR

y
c1 + ��;cR

x
�1R

y
c1 + �c;�R

x
c1R

y
�1 +

�c;cR
x
c1R

y
c1 and J? = f(y�:5); (x�:5)(y�:5)g. The performance-oriented iteration

e�ectively trimmed the terms ��;cR
x
�1R

y
c1 and �c;cR

x
c1R

y
c1. The automatic estimate

of f(yjx) is sketched in the left frame of Figure 4.1, where the solid line marks the

conditional medians, the dashed lines the conditional quartiles, and the horizontal

dotted lines the conditional 5th and 95th percentiles. The data are superimposed

as circles, with the x coordinate slightly perturbed to unmask a few overlaps. The

estimate is under the assumption of smoothness of the log conditional density on

both axes, despite the apparent abrupt downward shift of thickness from 1974 to

1975. A vertical dotted line is superimposed to mark the break.

A standard approach to regression with known breaks is to add jumps

at breaks, using the partial spline technique (cf. Wahba (1990)). We shall

try an adaptation here for conditional density estimation. To keep symme-

try between the two sides of the break, the marginal RKHS on the x axis

is to be generated by R0l + R0u + R�1 + Rc1, where R0l = I[x12L]I[x22L] and

R0u = I[x12U ]I[x22U ] generate window functions fI[x2L]g and fI[x2U ]g, respec-

tively, with L = [0; 2=3] and U = (2=3; 1]. An ANOVA decomposition is no

longer available in this construction, but we do not really need one on the x axis.

Taking the tensor products with R�1+Rc1 on the y axis, we have a con�guration

with RJ = �l;cR
x
0lR

y
c1 + �u;cR

x
0uR

y
c1 + ��;cR

x
�1R

y
c1 + �c;�R

x
c1R

y
�1 + �c;cR

x
c1R

y
c1 and
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asymptomatic; I lumped together the �rst three (call them symptomatic) which

seem to have similar disease rates as much lower than that associated with asymp-

tomatic chest pain. X2 is covered by [60; 210]. After a transform log10(x+ 1) to

make it more evenly scattered, X3 is covered by [0; :86]. There are �ve diagnostic

categories, 0 for no disease, and 1 through 4 for angiographic disease status. I

shall present two parallel analyses, one with disease status aggregated and one

with them separate as in the original data. The former is a logistic regression

and the latter is a multinomial regression.

The x axis now has three dimensions, one binary and two continuous. After

mapping [60; 210] � [0; :86] onto [0; 1]2, one may use the tensor product cubic

spline of Example 2.2 on the product domain of the two continuous covariates. To

incorporate the binary covariate one may take the tensor product of 1+Rx1
v with

RK's on the (product) continuous domain, where Rx1
v on f1; 2g2 can be written

as a 2 � 2 matrix (I � 11
T=2). Since a simple constant shift may su�ce in this

context, I chose to cut o� all but one product term which involves Rx1
v , that of Rx1

v

with the constant, Rx1
v Rx2

0 Rx3
0 , or e�ectively Rx1

v itself; this is the same as using

the partial spline technique to add a term. The RK on the covariate domain is

thus taken as 1+Rx1
v +Rx2

�1+R
x2
c1+R

x3
�1+R

x3
c1+R

x2
�1R

x3
�1+R

x2
c1R

x3
�1+R

x2
�1R

x3
c1+R

x2
c1R

x3
c1 ,

with each term subject to a scaling. On the y axis one may simply use Ry
v as

the RK, which can be written as a 2 � 2 matrix (for logistic regression) or a

5 � 5 matrix (for multinomial regression). Taking the tensor product of the

RKHS's on X and Y, we shall use RJ = ��;0R
x2
�1R

y
v + �c;0R

x2
c1R

y
v + �0;�R

x3
�1R

y
v +

�0;cR
x3
c1R

y
v + ��;�R

x2
�1R

x3
�1R

y
v + �c;�R

x2
c1R

x3
�1R

y
v + ��;cR

x2
�1R

x3
c1R

y
v + �c;cR

x2
c1R

x3
c1R

y
v with

eight smoothing parameters, and J? = fRy
v(y; j); R

x1
v (x1; 1)R

y
v(y; j)g

K�1
j=1 with

dimension 2(K � 1), where K is 2 or 5, the number of diagnostic categories.

Note that Rx1
v and Ry

v are di�erent when K = 5.

For multinomial regression, the performance oriented iteration e�ectively

trimmed all but two penalized terms, leaving only ��;0; �0;� > 0. This leads to

a parametric logistic model of the form g(x1; x2; x3; y) = �x1;y + �y(x2 � :5) +


y(x3 � :5) with
P

y �1;y =
P

y �2;y =
P

y �y =
P

y 
y = 0 (cf. 2.1). There are

however signi�cant di�erences between our nonparametric-turned-parametric es-

timate and the maximum likelihood estimate directly based on such a parametric

model. One di�erence is that we have allowed more 
exibility in the procedure,

but our performance estimates implied that the extra 
exibility did not seem to

be advantageous for the given data. Another di�erence is that the parameters

�y and 
y have been shrunk towards zero, with the amount of shrinking tuned

automatically according to our performance estimates.

For logistic regression, the performance oriented iteration with the \same"

eight penalized terms enrountered numerical di�culty as �0;� was moving towards

1. This indicates that the one dimensional space f(x3 � :5)Rv(y; 1)g generated
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by the RK Rx3
�1R

y
v should have been put into J? instead of being penalized. The

iteration with (x3 � :5)Rv(y; 1) added to J? and �0;�R
x3
�1R

y
v removed from RJ

converged without incidence, e�ectively leaving only ��;0; ��;c > 0.

One reason that none of the \nonparametric" terms survived the automatic

trimming for K = 5 but one survived for K = 2 might be due to the fact that J?
has 8 dimensions for K = 5 whereas the augmented J? only has 3 dimensions for

K = 2. Also, the three penalized \parametric" terms for K = 5, of which two

survived, each have 4 dimensions, but the two penalized terms for K = 2 each

have only 1 dimension.
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Figure 4.2. Heart Disease Data. Left: disease rates with symptomatic chest

pain; right: disease rates with asymptomatic chest pain. Solid lines are

estimates from logistic model and dotted lines estimates from multinomial

model. Circles are healthy patients and stars disease patients.

The estimated disease rate, the probability that a patient has angiographic

disease, is shown in Figure 4.2, where the solid lines are from the logistic model

and the dotted lines are aggregated from the multinomial model. Data are super-

imposed as circles (no disease) or stars (disease). It can be seen that the estimates

from the two models agree well in data-dense areas. The logistic and multinomial

estimates took about 138 and 246 cpu minutes to compute, respectively, on an

IBM-RS6000.

Following a suggestion by the Associate Editor, we also calculated the para-

metric maximum likelihood estimates of form g(x1; x2; x3; y) = �x1;y+�y(x2�:5)+


y(x3�:5)+�y(x2�:5)(x3�:5),
P

y �1;y =
P

y �2;y =
P

y �y =
P

y 
y =
P

y �y = 0,

for K = 2 and of form g(x1; x2; x3; y) = �x1;y + �y(x2 � :5) + 
y(x3 � :5),



722 CHONG GU

P
y �1;y =

P
y �2;y =

P
y �y =

P
y 
y = 0, for K = 5, without shrinking. The

estimated disease rate is shown in Figure 4.3, where the dashed lines are from

the parametric logistic model, the dotted lines are aggregated from the para-

metric multinomial model, and the solid lines of Figure 4.2 are superimposed

for comparison. The 5 degrees-of-freedom parametric interactive logistic esti-

mate with a log likelihood
P303

i=1 log f(YijXi) = �149:29 does not seem to �t the

data as well, as compared to the spline logistic estimate with a log likelihoodP303
i=1 log f(YijXi) = �142:77. It is interesting to observe that the estimate ag-

gregated from the 16 degrees-of-freedom parametric multinomial �t comes out

extremely close to the spline logistic estimate.
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Figure 4.3. Heart Disease Data. Left: disease rates with symptomatic chest

pain; right: disease rates with asymptomatic chest pain. Solid lines are

spline estimates from logistic model, dashed lines parametric estimates from

logistic model, and dotted lines parametric estimates from multinomial

model. Circles are healthy patients and stars disease patients.

5. Discussion

Research on graphical models, or density estimation with various conditional

independence structures, has been rather active in recent literature, with much

of the recent results focusing on the derivation of parametric distribution families

for mixtures of continuous and discrete random variables; see, e.g., Wermuth and

Lauritzen (1990) and Whittaker (1990) and references therein. With generic do-

mains X and Y in (1.2), the technique presented in this article seems to pose a vi-

able approach to nonparametric estimation of graphical models, particularly the

so-called graphical chain models, a sequence of conditional distributions, possibly
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with a mixture of continuous and discrete variables. It is relatively straightfor-

ward to �t models with known independence structures, provided an automatic

smoothing parameter selection is successful. It appears much more di�cult, how-

ever, to infer independence structures from the data in a nonparametric analysis.

The computational availability of nonparametric graphical models facilitates re-

search in this direction.

When K = 2 in Example 2.3, it is seen that the estimation via (1.2) using Rv

on the y axis is equivalent to the standard penalized likelihood logistic regression,

of course with the same RKHS con�guration on the x axis. The smoothing

parameter selection as implemented in the algorithms of Gu (1993a, b), however,

is similar to but technically di�erent from that of Gu (1992) designed for a

computation scheme in which the penalized likelihood problem is solved via a

sequence of penalized weighted least squares problems. Further empirical study

is needed to compare the two methods for smoothing parameter selection in

logistic regression.
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Appendix: Asymptotic Theory

We describe an asymptotic theory, which extends theoretical support to the

proposed method. The theory is parallel to that in Gu and Qiu (1993), where

technical details are to be found. We shall assume that g0 2 H, and that the

maximum likelihood estimate exists in J? so ĝ and ĝn exist. The theory concerns

the asymptotic convergence rates of ĝ and ĝn.

Assuming f(x) > 0 on X , V (g) =
R
X v(gjx)f(x) de�nes a square norm in

H � fg : Ayg = 0g interpretable under the stochastic structure. J(g) de�nes

the notion of smoothness. A characterization of the models implied by (1.2) is

via an eigenvalue analysis of J with respect to V . A bilinear form B is said

to be completely continuous with respect to another bilinear form A, if for any

� > 0, there exist �nite number of linear functionals l1; � � � ; lk� such that lj(�) = 0,

j = 1; � � � ; k�, implies that B(�) � �A(�) (cf. Weinberger (1974), Section 3.3).

Assumption A.1. V is completely continuous with respect to J .

Under A.1, it can be shown that there exist �� 2 H and 0 � �� " 1,

� = 1; 2; � � �, such that V (�� ; ��) = ��;� and J(�� ; ��) = ����;�, where ��;� is the

Kronecker delta and V (�; �) and J(�; �) are the (semi) inner products associated

with V (g) and J(g). Since J(g) =
P

� g
2
��� and �� " 1, A.1 implies that the
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term �J(g) in (1.2) for any �xed � restricts the model space to an e�ectively

�nite dimension in terms of the V norm, which is necessary for noise reduction,

and that the e�ective model space dimension can be expanded by letting �! 0

as n!1. The rate of growth of �� quanti�es the notion of smoothness implied

by J(g).

Assumption A.2. �� = c��
r, where r > 1, c� 2 (�1; �2), and 0 < �1 < �2 � 1.

For Examples 2.1 and 2.2, it can be shown that A.1 and A.2 are both satis�ed,

with r = 2�� and r = 4�� for linear and cubic splines, respectively, where � > 0

is positive but arbitrary; for Example 2.3 with a cubic spline on the X domain,

r = 4. See Gu (1993c) for relevant technical details.

De�ne Q�(g) = �(1=n)
Pn

i=1fg(Xi; Yi) � �g0(gjXi)g + (1=2)V (g � g0) +

(�=2)J(g), a quadratic approximation of (1.2) at g0. Let g1 be the minimizer

of Q�(g) in H, which exists similar to ĝ. The convergence rates of ĝ and ĝn are

based on that of g1.

Theorem A.1. Under A:1 and A:2, as �! 0 and n�1=r !1, (V + �J)(g1 �

g0) = Op(n
�1��1=r + �).

We need a few more technical assumptions for the rest of the theory.

Assumption A.3. For g in a convex set B0 around g0 containing ĝ, ĝn and g1,

9c1; c2 2 (0;1) such that c1v(hjx) � vg(hjx) � c2v(hjx); 8h 2 H;8x 2 X :

Assumption A.4. 9c3 <1 such that
R
X
v2(�� jx)f(x) � c3, 8�.

Assumption A.5. 9c4 <1 such that

Z
X

[v(����jx) + f�g0(����jx)�

Z
X

�g0(����jx)f(x)g
2]f(x) � c4; 8�; �:

Note that vg(f � hjx) = �g((f � h)2jx) � �2
g(f � h) is a form of (weighted)

mean square error between f and h with eg as the weight; thus A.3 is simply

assuming that minor changes in the weight function do not change the order of

magnitude of the mean square error, which appears mild. It is easy to show

that �g(g � hjx) � �h(g � hjx) = v�g+(1��)h(g � hjx) for some � 2 [0; 1], so A.3

implies that v(g � hjx) and SKL(g; hjx), and hence V (g � h) and SKL(g; h),

are of the same order of magnitude for g; h 2 B0. A.4 and A.5 are essentially

moment conditions on the Fourier basis ��(X;Y ): A uniform bound on the fourth

moments of ��(X;Y ) is su�cient for A.4 and A.5 to hold. Although explicit

forms are in general not available, ��(X;Y ) will grow in frequency as � !1 as

its de�nition suggests, but it is unlikely to grow inde�nitely in magnitude since
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V (��) = 1. Hence, such moment conditions seem highly plausible. A.3 { A.5

may not be easily veri�able from more primitive conditions, however.

The convergence rates of ĝ and ĝn are summarized in the following theorems,

with the latter supporting our use of ĝn in practice.

Theorem A.2. Under A.1 { A.4, as �! 0 and n�2=r !1, (V +�J)(ĝ�g0) �

SKL(ĝ; g0) = Op(n
�1��1=r + �).

Theorem A.3. Modify A:3 to also include gn in the convex set B0, where gn
is the projection of ĝ in Hn. Under A:1 { A:5, as � ! 0 and n�2=r ! 1,

(V + �J)(ĝn � g0) � SKL(ĝn; g0) = Op(n
�1��1=r + �).

The proofs of Theorems A.1-A.3 are straightforward adaptations of those in

Gu and Qiu (1993), and hence are omitted.
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