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Abstract: In a time-varying coefficient model, the regression coefficient is allowed

to change over time as a nonparametric function to capture the time-varying fea-

ture. Owing to its popularity in time series applications, where the assumption of

independence typically does not hold, it is desirable to allow dependent and nonsta-

tionary observations. We consider the problem of semiparametric variable labeling

and estimation for multi-output time-varying coefficient models in a time series set-

ting, where a variable can be labeled as time-varying, time-constant, or irrelevant,

in a nested structure. We first show that the natural approach of imposing separate

penalties on the local linear estimator and its derivative do not work as intended

for semiparametric labeling, owing to the lack of connection between the coefficient

and the derivative estimators in the popular local linear method. We then propose a

stratified fix that borrows information from the coefficient estimator and combines

it with the derivative into the same stratum that simultaneously achieves successful

labeling and estimation. We establish the theoretical properties of the proposed

method, including its estimation and labeling consistency, for a general class of

nonstationary processes. Numerical examples, including a Monte Carlo simulation

study and a real-data application, are presented to illustrate the proposed method.

Key words and phrases: Kernel smoothing, local linear estimation, nonstationary

time series, time-varying coefficient model, variable selection.

1. Introduction

Linear regression models have been recognized as powerful and popular sta-

tistical tools for studying the relationship between a response variable and a set

of explanatory variables. However, for applications to time series data, numer-

ous empirical examples have suggested that the regression coefficient does not

necessarily stay as a constant, and can change over time with other aspects of

the data, making the observed time series nonstationary. For example, Fan and

Zhang (1999) studied the relationship between the number of daily hospital ad-

missions and the level of multiple pollutants in Hong Kong, finding a time-varying
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relationship. Gao and Hawthorne (2006) regressed the global temperature series

on the Southern Oscillation Index (SOI), and argued that at least the intercept

term should be treated as time varying in a nonparametric fashion, owing to a lack

of knowledge about the change. Zhang and Wu (2015) considered the problem of

modeling U.S. treasury yields, and found statistical evidence for a time-varying

linear drift for the yield curve rates with six-month maturity. Such applications

motivated the time-varying coefficient model, in which the regression coefficient is

no longer assumed to be a constant, but is modeled as a nonparametric function

of time to capture the time-varying feature.

The time-varying coefficient model is related to the varying coefficient model,

which has been studied extensively; see, for example, Fan and Zhang (1999),

Zhang, Lee and Song (2002), Xia, Zhang and Tong (2004), Ahmad, Leelahanon

and Li (2005), Fan and Huang (2005), Li and Liang (2008), Wang, Li and Huang

(2008), Wang and Xia (2009), Tang et al. (2012), Xue and Qu (2012), Cheng,

Honda and Zhang (2016), and an excellent review by Fan and Zhang (2008).

However, in a varying coefficient model, the observations are typically assumed

to be independent samples, and the distribution from which the index variable is

sampled is often assumed to have a continuous density function that is bounded

away from zero and infinity on its support. This prevents allowing the determin-

istic time as the index variable, and as a result, different treatments are often

needed for the time-varying coefficient model. In particular, by using lagged

values as potential explanatory variables, the time-varying coefficient model can

include the influential time-varying autoregressive model (Rao (1970); Dahlhaus,

Neumann and Sachs (1999); Moulines, Priouret and Roueff (2005); Van Bellegem

and Dahlhaus (2006)) as a special case. However, the latter model cannot be

covered by the varying coefficient model with a random index. In addition, when

there is only an intercept term in the model, the time-varying coefficient model

reduces to the mean nonstationary model of Johnstone and Silverman (1997),

Wu and Zhao (2007), Zhang and Wu (2011), and Zhang (2016), which has been

widely used in nonparametric trend estimation and testing problems.

For time-varying coefficient models with nonstationary time series observa-

tions, Zhou and Wu (2010) constructed simultaneous confidence bands for the

coefficient functions, and Zhang and Wu (2012) considered an integrated squared

test that can be more suitable for detecting smooth and dense changes. In addi-

tion to estimating the coefficient functions and testing the hypotheses associated

with them, an important problem is to label or partition the variables into time-

varying, time-constant, and irrelevant categories. This tricategory labeling task

in a nested structure has been studied mainly using a two-step approach, where
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one focuses separately on a bicategory labeling task at each step. For example,

Li and Liang (2008) assumed prior knowledge on the partition between time-

varying and time-constant components, and applied a penalized quasi-likelihood

method to label the time-constant variables in the parametric part, and a sep-

arate generalized likelihood ratio test to label the time-varying variables in the

nonparametric part; see also Li, Chen and Lin (2009). Zhang and Wu (2012) first

use an information criterion to label zero and nonzero variables, and then further

apply an integrated squared nonparametric test among the labeled nonzero vari-

ables to label time-constant variables. Zhang (2015) use a penalized local linear

method to first label irrelevant variables, and then apply an information criterion

on the remaining variables to further label the time-varying ones.

The main focus of this study is to consider a penalized local linear method

that can simultaneously achieve successful tricategory labeling and semiparamet-

ric estimation in a single step. Unlike the basis expansion approach, which can

borrow results directly from the well-developed penalized least squares, extend-

ing the popular local linear method (Fan and Gijbels (1996)) to the penalized

setting can be nontrivial. As a result, even in the important work of Li and

Liang (2008), penalized methods are only used for variable selection in the para-

metric component, and variable selection in the nonparametric component is still

handled using the generalized likelihood ratio test. Wang and Xia (2009) first

considered a penalized kernel estimator by vectorizing the local constant estima-

tor on a set of discrete time points, so that one can place a penalty directly on

the norm of that vector to obtain sparse solutions. Zhang (2015) proposed a local

linear shrinkage method that can handle the additional derivative estimator from

the more sophisticated local linear method. This method is able to work with

nonparametric kernel estimators in their original function form without having

to vectorize on a discrete set. However, in the aforementioned studies, penal-

ized kernel estimation is used mainly to label irrelevant variables, and making it

work for labeling time-varying and time-constant variables can be nontrivial. In

Section 2, we demonstrate that the natural approach of penalizing the derivative

estimator from the local linear method may not work as intended, because a zero

derivative estimator will not guarantee a constant coefficient estimator, owing to

the lack of connection between the two in the local linear estimation. To ad-

dress this, in Section 3.1, we propose a new stratified penalization method that is

able to automatically yield nonparametric coefficient estimators for time-varying

variables, constant estimators for time-constant variables, and zero estimators

for irrelevant variables. As a result, the method achieves the task of tricategory

labeling and semiparametric estimation simultaneously in a computationally effi-
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cient manner. Note that we consider the multi-output setting in which a variable

is labeled as time-constant or irrelevant if its coefficient function is uniformly

constant or zero for all outputs. We establish the theoretical properties of the

proposed method, including its estimation and labeling consistency, in Section 3.2

for a general class of nonstationary processes. Numerical experiments, including

a Monte Carlo simulation study and a real-data analysis, are provided in Section

4 to illustrate the proposed method and examine its finite-sample performance.

Section 5 concludes the paper.

2. Direct Penalization on the Derivative: A Natural Approach and its

Issue

Consider the time-varying coefficient model

yi,n = x>i,nβ(ti,n) + ei,n, i = 1, . . . , n, (2.1)

where β : [0, 1] → Rp is the coefficient function, ti,n = i/n represents the time,

and (ei,n) is a sequence of random noise. The coefficient function in model (2.1)

can be estimated using the local constant estimator (Wang and Xia (2009)),

which at each time point t ∈ [0, 1] can be obtained by

β̆(t) = argmin
η(t)∈Rp

n∑
i=1

{yi,n − x>i,nη(t)}2K
(
ti,n − t
bn

)
, (2.2)

where K(·) is a kernel function and bn is the bandwidth. For the kth component

of η(·), let |ηk|[0,1] = {
∫ 1
0 |ηk(t)|

2dt}1/2 denote its norm. Then, the penalized local

constant estimator minimizes∫ 1

0

n∑
i=1

{yi,n − x>i,nη(t)}2K
(
ti,n − t
bn

)
dt+

p∑
k=1

fλk
(|ηk|[0,1]), (2.3)

where fλk
(·) is the penalty function for the kth variable, with the tuning pa-

rameter λk that controls the degree of penalization. Unlike (2.2), the penalized

estimator in (2.3) can achieve parameter estimation and variable selection simul-

taneously in a computationally efficient manner; see, for example, Zhang (2015).

However, for the time-varying coefficient model, it is often the case that one is

interested in distinguishing not only relevant and irrelevant variables, but also

time-varying and time-constant components; see, for example, Cai, Fan and Yao

(2000), Fan and Zhang (2000), Li and Liang (2008), Zhang and Wu (2012), and

Zhang (2015), among others. This makes it a tricategory labeling problem, in
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which each variable is labeled as time-varying, time-constant, or irrelevant if the

associated coefficient function is a time-varying nonparametric function, a uni-

form constant, or zero, respectively.

To achieve the aforementioned tricategory labeling, a natural approach is to

consider the local linear method (Fan and Gijbels (1996)), which estimates not

only the coefficient function, but also its derivative:

{β̃(t), β̃′(t)}= argmin
η(t),η′(t)∈Rp

n∑
i=1

{yi,n − x>i,nη(t)− x>i,nη′(t)(ti,n − t)}2K
(
ti,n − t
bn

)
.

Let

Ωn({η(t),η′(t)}t∈[0,1])=

∫ 1

0

n∑
i=1

{yi,n−x>i,nη(t)−x>i,nη′(t)(ti,n−t)}2K
(
ti,n − t
bn

)
dt.

Then, similarly to (2.3), we can consider its penalized version that minimizes

Ωn({η(t),η′(t)}t∈[0,1]) +

p∑
k=1

fλk
(|ηk|[0,1]) +

p∑
k=1

fτk(|η′k|[0,1]), (2.4)

where the first penalty penalizes the coefficient estimator and shrinks it to zero

for irrelevant variables, whereas the second penalty penalizes the derivative esti-

mator and shrinks it to zero for time-constant variables; see, for example, Gao

(2019) and Chan, Gao and Palma (2022). The penalized local linear estimator

in (2.4) is intuitively straightforward in the sense that it exploits the derivative

estimator from the local linear method and takes advantage of the mathemati-

cal connection between a function being constant and its derivative being zero.

However, in the following, we show that directly imposing a penalty on the deriva-

tive, as in (2.4), may not work as intended, because a zero derivative estimator

does not necessarily guarantee that the associated coefficient estimator will be a

constant. This is mainly because the mathematical connection between a func-

tion and its derivative does not carry over to the local linear estimation scheme.

Specifically, for the true coefficient function, it is mathematically guaranteed that

a zero derivative will lead to a constant function. However, when performing the

local linear estimation, the derivative term is regarded as the coefficient of an ad-

ditional explanatory variable, namely, xi,n(ti,n− t). As a result, such a coefficient

being zero does not necessarily guarantee that the coefficient of xi,n will be the

same for different time points, because they are simply treated as the coefficients

for different variables xi,n(ti,n − t) and xi,n. As a result, additional manual flat-

tening is often needed when implementing such a method. This typically leads
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to an altered optimization problem that is different from (2.4) in a nonnegligible

manner, making its theoretical property difficult to understand.

To provide further insight into the aforementioned issue, we consider the

simple setting when p = 1 with a time-constant coefficient, that is, when

yi,n = xi,nβ + ei,n, i = 1, . . . , n, (2.5)

and apply the penalized estimator in (2.4) to determine whether it will automat-

ically reduce to a constant in this case. For simplicity, we assume that β 6= 0,

and focus on the semi-oracle estimator β̌(t), t ∈ [0, 1], that minimizes

Ωn({η(t), η′(t)}t∈[0,1]) + fτ (|η′k|[0,1]). (2.6)

This differs from (2.4) by dropping the first penalty term on the regression coef-

ficient, because it is known to be nonzero, hence the term semi-oracle.

Theorem 1. Assume that fτ (x) = τ |x| takes the LASSO penalty. Then, for

any given data (xi,n, yi,n), for i = 1, . . . , n, with nondegenerate local designs for

each t ∈ [0, 1], the semi-oracle estimator β̌(t), for t ∈ [0, 1], that minimizes (2.6)

among all square integrable continuous functions is equivalent to the local constant

estimator in (2.2) for a sufficiently large choice of τ .

Because the regression coefficient in (2.5) is assumed to be a nonzero constant,

the oracle choice of the tuning parameters in (2.4) should be λ = 0 and τ = +∞.

That is, no penalty should be put on the regression coefficient to reduce the bias

caused by the penalized estimation of a nonzero coefficient function, whereas a

sufficient penalization should be put on the derivative to force the coefficient

function estimator to become a constant. However, from Theorem 1, the direct

penalization on the derivative as in (2.4) may not work as intended, even with this

oracle choice of the tuning parameters. In particular, when the penalty function

satisfies the natural condition that fτ (0) = 0 (Fan and Li (2001)), using the

oracle tuning λ = 0 in (2.4) makes it equivalent to (2.6), the solution of which,

by Theorem 1, becomes the local constant estimator in (2.2) for a sufficiently

large choice of τ with an oracle choice of τ = +∞. Therefore, imposing a direct

penalization on the derivative, as in (2.4), typically does not yield a time-constant

regression coefficient estimator, which can cause ambiguity when labeling time-

varying and time-constant variables. The result in Theorem 1 can be generalized

to penalty functions other than the LASSO, but the main purpose here is to

show that directly penalizing the derivative may not work as intended, even

when the popular and successful LASSO penalty is used. We propose a stratified
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fix that is able to automatically produce nonparametric coefficient estimators for

time-varying variables, constant estimators for time-constant variables, and zero

estimators for irrelevant variables, thus achieving the goals of tricategory labeling

and semiparametric estimation at the same time.

3. Stratified Penalization: A Fix

3.1. Methodology

Here, we consider the multi-output time-varying coefficient model

yi,n = B(ti,n)>xi,n + ei,n, i = 1, . . . , n, (3.1)

where yi,n ∈ Rd is the multi-output response vector, xi,n ∈ Rp is the set of ex-

planatory variables, B : [0, 1]→ Rp×d is the coefficient function matrix, with its

kth row being the coefficient function vector for the kth variable, and (ei,n) is

a sequence of random vectors that form a triangular array of multivariate non-

stationary processes that can depend on (xi,n) to accommodate heteroscedastic

errors. Compared with the single-response setting (2.1), variable selection in

the multi-output setting typically requires additional effort; see, for example,

Turlach, Venables and Wright (2005), Rothman, Levina and Zhu (2010), Chen

and Huang (2012), and Lee and Liu (2012), among others. The aforementioned

studies consider variable selection for multi-output regression models in the tra-

ditional setting when the regression coefficient is assumed to be a constant. Here,

we consider the time-varying setting (3.1), in which the regression coefficient can

change over time as a nonparametric function. In this case, one is interested

in labeling not only relevant and irrelevant variables, but also time-varying and

time-constant variables. Here, a variable is said to be time constant or irrele-

vant if its coefficient function is uniformly a constant or zero, respectively, for all

outputs. This cannot be achieved by performing variable selection separately on

each of the response variables.

Let Θ(t) = {θl,k,j(t)}l,k,j be a three-way tensor function, with Θ0,·,·(t) =

{θ0,k,j(t)}k,j = B(t), Θ1,·,·(t) = {θ1,k,j(t)}k,j = bnB
′(t), and its norm |Θ|[0,1] =

{
∑

l,k,j

∫ 1
0 θl,k,j(t)

2dt}1/2. Then, we can write the multi-output kernel criterion

function as

Υn({Θ(t)}t∈[0,1]) =∫ 1

0

n∑
i=1

∣∣∣∣yi,n −Θ0,·,·(t)
>xi,n −Θ1,·,·(t)

>xi,n

(
ti,n − t
bn

)∣∣∣∣2K ( ti,n − tbn

)
dt.
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To construct appropriate penalty structures that can achieve simultaneous tri-

category labeling and semiparametric estimation, instead of imposing penalties

directly on the coefficient part and the derivative part, as in (2.4), we pro-

pose decomposing the norm of Θ according to the different strata implied by

the nested tricategory labeling structure. In particular, the irrelevant label

stratum has a projection of zero, the time-constant label stratum has a pro-

jection of θ̄k,· =
∫ 1
0 θ0,k,·(t)dt, where θ0,k,·(t) = {θ0,k,1(t), . . . , θ0,k,d(t)}>, and

the time-varying label stratum has a projection of θ0,k,·(t) − θ̄k,·, together with

θ1,k,·(t) = {θ1,k,1(t), . . . , θ1,k,d(t)}>. This motivates us to consider the stratified

penalized local linear (SPLL) estimator Θ̂(t) = {θ̂l,k,j(t)}l,k,j , for t ∈ [0, 1], that

minimizes

Υn({Θ(t)}t∈[0,1]) +

p∑
k=1

fλk,n
(|θ̄k,·|)

+

p∑
k=1

gτk,n

([∫ 1

0
{|θ0,k,·(t)− θ̄k,·|2 + |θ1,k,·(t)|2}dt

]1/2)
,

where fλk,n
(·) and gτk,n

(·) are penalty functions with nonnegative tuning param-

eters λk,n and τk,n, respectively. We establish its theoretical properties, including

the estimation and labeling consistency, in Section 3.2 for a general class of non-

stationary processes, and our results are directly applicable to vector time-varying

autoregressive models. The two terms |θ̄k,·| and
∫ 1
0 |θ0,k,·(t) − θ̄k,·|

2dt in the

penalty have their own and separate goals. In particular, the term
∫ 1
0 |θ0,k,·(t)−

θ̄k,·|2dt is mainly used to merge with the derivative
∫ 1
0 |θ1,k,·(t)|

2dt as a group

structure. This ensures that, for a time-constant variable, both will be penal-

ized to zero, making the coefficient function θ0,k,·(t) ≡ θ̄k,· be a constant and its

derivative θ1,k,·(t) ≡ 0, thus solving the issue of the direct derivative penalization

approach. The other additional term |θ̄k,·| ensures that once the regression coef-

ficient function is shrunken to its constant projection θ̄k,·, it can further penalize

the coefficient to zero to correctly label irrelevant variables.

3.2. Theoretical properties

In (3.1), we allow nonstationary time series observations, which have been

studied extensively in the literature; see, for example, Priestley (1965), Dahlhaus

(1997), Cheng and Tong (1998), Mallat, Papanicolaou and Zhang (1998), Giur-

canu and Spokoiny (2004), Ombao, von Sachs and Guo (2005), Zhou and Wu

(2010), and Zhang (2013), and the references therein. Let (εi) be a sequence of

independent and identically distributed (i.i.d.) innovations, and denote its shift
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process by F i = (. . . , εi−1, εi). Here, we follow Zhang (2015) and assume that

max
1≤i≤n

‖xi,n −G(ti,n,F i)‖ = O(n−1), max
1≤i≤n

‖ei,n −H(ti,n,F i)‖ = O(n−1),

(3.2)

for some measurable functions G and H, such that (xi,n) and (ei,n) are proper

sequences of random vectors with E(ei,n | xi,n) = 0. Compared with the ex-

act representation in Wu (2005), the approximate framework in (3.2) allows the

popular time-varying autoregressive model (Rao (1970); Dahlhaus, Neumann and

Sachs (1999); Moulines, Priouret and Roueff (2005); Van Bellegem and Dahlhaus

(2006)) and covers a wide range of linear and nonlinear processes; see also the

discussion in Zhang and Wu (2012). Let ε?0 be identically distributed as ε0,

but independent of the sequence (εi). We can define the coupled shift process

F?
i = (. . . , ε−1, ε

?
0, ε1, . . . , εi). Then, for any collection of processes {J(t;F i)}i∈Z

on t ∈ [0, 1], the functional dependence measure of Wu (2005) can be written as

δi,q(J) = sup
t∈[0,1]

‖J(t;F i)− J(t;F?
i )‖q, ∆0,q(J) =

∞∑
i=0

δi,q(J),

where δi,q(J) measures the dependence of J(t;F i) on the innovation ε0, and its

cumulative effect is measured by ∆0,q(J). Let L = G ×H>. We assume the

following conditions.

(A1) The coefficient matrix function B ∈ C3[0, 1], the class of three times contin-

uously differentiable matrix-valued functions on [0, 1].

(A2) The underlying process satisfies ∆0,4(G) + ∆0,2(L) <∞.

(A3) There exists a constant 0 < C <∞ such that

‖G(t1,F i)−G(t2,F i)‖+ ‖L(t1,F i)−L(t2,F i)‖ ≤ C|t1 − t2|

holds uniformly for all t1, t2 ∈ [0, 1].

(A4) The smallest eigenvalue of E{G(t,F i)G(t,F i)
>} is bounded away from

zero on [0, 1].

Condition (A1) is a smoothness condition on the regression coefficient matrix

function, which is a common assumption for nonparametric kernel estimation; see,

for example, Fan and Gijbels (1996). Condition (A2) is a short-range dependence

condition quantified by the functional dependence measure of Wu (2005); see also

Zhou and Wu (2010) and Zhang and Wu (2012). Condition (A3) is a stochastic
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Lipschitz continuity condition, under which the underlying process can be locally

approximated by a stationary process within a small window; see, for example,

the discussion in Zhang and Wu (2011). Condition (A4) is a regularity condition

that prevents the design matrix from being singular in probability; see also Zhang

(2015). Throughout this paper, we assume that the kernel function K ∈ K, the

collection of symmetric functions in C1[−1, 1], with
∫ 1
−1K(v)dv = 1. Examples

include the Epanechnikov kernel K(v) = 0.75 max(1− v2, 0), the Bartlett kernel

K(v) = max(1 − |v|, 0), and the rectangle kernel K(v) = 0.5I(|v| ≤ 1), with I(·)
being the indicator function, among many others. We also assume the following

conditions on the penalty functions.

(P1) fλ(0) = 0 and gτ (0) = 0.

(P2) λ−1 supx∈R |f ′λ(x)| <∞ and τ−1 supx∈R |g′τ (x)| <∞.

(P3) λ−1 lim infx→0+ |f ′λ(x)| > 0 and τ−1 lim infx→0+ |g′τ (x)| > 0.

Conditions (P1)–(P3) are natural requirements for good penalty functions

(Fan and Li (2001)), and are satisfied by many popular choices, such as the

LASSO penalty of Tibshirani (1996), the hard thresholding penalty of Antoniadis

(1997), and the SCAD penalty of Fan and Li (2001). Let Dv, Dc, and D0 denote

subsets of time-varying, time-constant, and irrelevant variables, respectively, and

we further write Dv = Dv0 ∪ Dv1, where Dv0 is the set of time-varying variables

with |θ̄k,·| = 0 and Dv1 = Dv \ Dv0. Theorems 2 and 3 provide the estimation

consistency and labeling consistency for the proposed SPLL estimator.

Theorem 2. Assume (A1)–(A4), (P1), (P2), bn→0, and nbn→∞. If {(nbn)−1/2

+ b2n}(maxk∈Dc∪Dv1
λk,n + maxk∈Dv

τk,n) = O(1), then the norm

|Θ̂−Θ|[0,1] = Op{(nbn)−1/2 + b2n}.

Theorem 3. Assume (A1)–(A4), (P1)–(P3), bn→0, and nb2n→∞. If {(nbn)−1/2

+b2n}(maxk∈Dc∪Dv1
λk,n+maxk∈Dv

τk,n) = O(1), mink∈D0
λk,n/{(nbn)1/2+nb3n} →

∞, and mink∈Dc
v
τk,n/{(nbn)1/2 + nb3n} → ∞, then

pr

{
max

k∈D0∪Dc

sup
t∈[0,1]

∣∣∣∣θ̂0,k,·(t)−∫ 1

0
θ̂0,k,·(s)ds

∣∣∣∣ = 0 and max
k∈D0∪Dc

sup
t∈[0,1]

|θ̂1,k,·(t)| = 0

}
→ 1,

and

pr

{
max
k∈D0

sup
t∈[0,1]

|θ̂0,k,·(t)| = 0 and max
k∈D0

sup
t∈[0,1]

|θ̂1,k,·(t)| = 0

}
→ 1.
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By Theorem 3, for time-constant or irrelevant variables, the SPLL estimator

proposed in Section 3.1 automatically produces a constant coefficient function

with a zero derivative estimator. In addition, for irrelevant variables nested

within D0 ∪ Dc, the coefficient function is regularized to zero uniformly over

time. Therefore, it achieves the simultaneous tricategory variable labeling and

semiparametric estimation, without having to decompose the problem into two

bicategory labeling subproblems, as in Li and Liang (2008) and Zhang and Wu

(2012). Note that in Li and Liang (2008), prior knowledge is assumed on the par-

tition between the time-varying and time-constant variables, and therefore their

labeling problem is supervised. This study concerns the unsupervised setting,

where we do not assume we have this prior knowledge. In the following section,

we describe the implementation of the proposed SPLL method, and examine its

finite-sample performance using a Monte Carlo simulation study and a real-data

analysis.

4. Implementation

4.1. Computational algorithm

Although penalized methods and their computational algorithms have been

widely studied in the literature, existing results focus mainly on the traditional

linear regression model with constant coefficients; see, for example, Tibshirani

(1996), Knight and Fu (2000), Fan and Li (2001), Efron et al. (2004), Yuan and

Lin (2006), and Zou and Li (2008), and the references therein. In addition, differ-

ent penalty terms are usually put on the coefficients associated with the variables.

In the current setting, the two penalty terms f and g can both be associated with

the same variable, but for different purposes, where one regularizes a time-varying

function into a constant, and the other shrinks a constant toward zero. Further-

more, the current setting requires appropriately combining localized least squares

functions, as in traditional kernel regression methods, with suitably constructed

global penalization terms to achieve successful semiparametric variable labeling

and estimation. In the Supplementary Material, we describe an iterative algo-

rithm that can be used to compute the SPLL estimator proposed in Section 3.1.

Next, we discuss the choice of the tuning parameters.

4.2. Tuning parameter selection

Implementing the proposed SPLL method requires two sets of tuning param-

eters. The first (τk,n) controls the degree of regularization from the time-varying

stratum to the time-constant stratum, and the second (λk,n) controls the degree
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of regularization from the time-constant stratum to the irrelevant label stratum.

Here, we adopt the idea of the adaptive LASSO (Zou (2006)), and set

λk,n = λn ·
∣∣∣∣∫ 1

0
θ̃0,k,·(t)dt

∣∣∣∣−1 ,
τk,n = τn ·

[∫ 1

0

{∣∣∣∣θ̃0,k,·(t)− ∫ 1

0
θ̃0,k,·(s)ds

∣∣∣∣2 + |θ̃1,k,·(t)|2
}
dt

]−1/2
, (4.1)

for some tuning parameters λn and τn that do not depend on k, where Θ̃(t) =

{θ̃l,k,j(t)}l,k,j , for t ∈ [0, 1], can be taken as the unpenalized local linear estimator.

Note that the norm [
∫ 1
0 {|θ̃0,k,·(t)−

∫ 1
0 θ̃0,k,·(s)ds|

2 + |θ̃1,k,·(t)|2}dt]1/2 is relatively

small for time-constant variables and relatively large for time-varying variables.

Thus, the choice in (4.1) can lead to adaptive tuning for different variables. When

the bandwidth bn = cn−1/5, for some 0 < c < ∞, has the asymptotic mean

squared error optimal rate, following a similar discussion to that in Zhang (2015),

one can simply use the asymptotic choice λn = n1/5 and τn = n1/5. For any set

D, we use |D| to denote its cardinality. To provide a finite-sample data-driven

choice of the pair (λn, τn), we consider a natural extension of the information

criterion used in Zhang (2015) to the current setting, and minimize

EIC(λ, τ) = log{Υn({Θ̂(t;λ, τ)}t∈[0,1])}+
log n

nbn
· |D̂c0(λ, τ)|+ log n

nbn
· |D̂v(λ, τ)|,

which can also be viewed as a semiparametric extension of the traditional BIC.

The simulation study in Section 4.3 shows that this data-driven tuning selector

performs reasonably well for the current tricategory variable labeling and semi-

parametric estimation.

4.3. Simulation results

We conduct Monte Carlo simulations to examine the finite-sample perfor-

mance of the proposed SPLL method. For this, let εk = (εk,1, . . . , εk,p−1)
> ∈

Rp−1, for k ∈ Z, be independent innovation vectors with independent Rademacher

components, and let Pj(t) be the jth order Legendre polynomial. Let M� =

(0.2|i−j|)1≤i,j≤p−1 and P (t) ∈ R(p−1)×(p−1) be a diagonal matrix with the jth

diagonal element Pj(2t− 1)/4. Then, the vector ξk = M�εk has dependent com-

ponents, and we form xi,n =
∑∞

j=0P (i/n)jξi−j , which is a nonstationary process,

owing to the coefficients being time varying. Let εk,l, for k ∈ Z, l ∈ {1, . . . , d},
be an array of independent standard normal random variables that is also inde-

pendent of the process (εk). We then form the nonstationary nonlinear process



STRATIFIED PENALIZATION FOR SEMIPARAMETRIC LABELING 1037

ζi,n = (ζi,1,n, . . . , ζi,d,n)>, with ζi,l,n = εi,l + 2(i/n − 0.5)2{|εi−1,l| − (2/π)1/2} +∑∞
j=1 j

−2εi−j,l. We consider the following multi-output time-varying coefficient

model with heteroscedastic errors:

yi,n = β0(ti,n) +

p−1∑
k=1

βk(ti,n)xi,k,n + 0.5σ(x2i,2,n + x2i,3,n)1/2ζi,n, i = 1, . . . , n.

Let n = 500. We consider the following configurations on the variable labeling,

where we use a-b-c to indicate a configuration with a time-varying variables, b

nonzero time-constant variables, and c zero variables.

(2-2-16) Two time-varying variables: β0(t) = {3(2t−1)2, 2(2t−1)3}> and β2(t) =

{2 sin(2πt− 1), 2 cos(2πt+ 1)}>; two time-constant variables: β1(t) = (−1,

π/3)> and β3(t) = (1.5,−21/2)>; and 16 zero variables β4(t) = · · · =

β19(t) = (0, 0)>.

(5-5-10) Five time-varying variables: β0(t) = {3(2t − 1)2, 2(2t − 1)3}>, β2(t) =

{2(2t − 1), 2 cos(2πt − 1)}>, β4(t) = {2 cos(2πt), 2(2t − 1)2}>, β6(t) =

{cos(πt) + 1, 2 sin{exp(πt − 2)}}>, and β8(t) = [exp(−2t + 1), 2{sin(−2πt

+ 1)}3]>; five time-constant variables: β1(t) = (2,−1.5)>, β3(t) = (1.5,

−π/3)>, β5(t) = (π/2, π1/2)>, β7(t) = (−31/2, 21/2)>, and β9(t) = (−e1/2,
3/π)>; and 10 zero variables β10(t) = · · · = β19(t) = (0, 0)>.

(2-8-10) Two time-varying variables: β0(t) = {3(2t−1)2, 2(2t−1)3}> and β2(t) =

{2 sin(2πt), 2 cos(2πt)}>; eight time-constant variables: β1(t) = (1, 51/2/2)>,

β3(t) = (π/2,−1.3)>, β4(t) = (e1/2,−1.5)>, β5(t) = (1.5, 4/π)>, β6(t) =

(1.2, 31/2)>, β7(t) = (0.8, 71/3)>, β8(t) = (−21/2, 1)>, and β9(t) = (−5/π,

π/3)>; and 10 zero variables β10(t) = · · · = β19(t) = (0, 0)>.

The three configurations above represent cases with a small number of nonzero

variables, a balanced number of time-varying and time-constant variables, and

an unbalanced number of time-varying and time-constant variables, respectively.

For each configuration, we consider two noise levels σ ∈ {1, 2}, and apply the

proposed SPLL method for the semiparametric variable labeling and estimation.

We also make a comparison with the two-step procedure of Zhang (2015), denoted

by Zhang15, and the direct derivative penalization method of Gao (2019), denoted

by Gao19. Throughout our numerical experiments, we use the LASSO penalty

function. The results with σ = 2 are reported in Table 1. The results with σ = 1

follow a similar pattern, and are provided in the Supplementary Material. Note

that a case is considered to be under-labeled if at least one component of one

variable is mislabeled from time varying to time constant, from time constant to
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zero, or from time varying to zero. On the other hand, a case is considered to be

over-labeled if there is no under-labeling, and at least one variable is mislabeled

from zero to time constant, from time constant to time varying, or from zero to

time varying. We also report the labeling consistency ratio (LCR), defined as

the proportion of correctly labeled variables, along with the mean squared error

(MSE) of the associated semiparametric estimates.

We observe the following from our simulation results. First, the proposed

SPLL method performs reasonably well, because for most of the cases consid-

ered, it produces the highest proportion of correctly labeled models, especially

for the challenging cases when σ = 2. Its performance is also reasonably robust

to different choices of the bandwidth. In addition, it typically leads to semipara-

metric estimates with a much smaller MSE than that of the two-step procedure

of Zhang (2015). Note that even for the less challenging cases when σ = 1, as

reported in Table 1 of the Supplementary Material, for which both the method

of Zhang (2015) and the proposed method produce almost ideal results on vari-

able labeling, the proposed method continues to yield semiparametric estimates

with a much smaller MSE. This is mainly because the two-step procedure of

Zhang (2015) does not fully use the labeling information when performing the

nonparametric estimation, whereas the proposed method is able to interactively

take advantage of the labeling information during the iteration. Furthermore,

the proposed stratified method seems to improve on the direct derivative penal-

ization method of Gao (2019). The reported LCR values show that the method

of Gao (2019), although correctly labeling most of the variables, exhibits diffi-

culty on a few variables, resulting in a very low proportion of correctly labeled

models for certain configurations. Note that the proportion of correctly labeled

models is a much more demanding metric than the LCR, because it does not

allow even a single mislabeled variable. The less satisfactory performance of the

method of Gao (2019) is mainly because it relies almost exclusively on derivative

estimates to identify time-constant variables, and it is well known that, in local

linear estimation, derivative estimates typically exhibit subpar quality compared

with coefficient estimates; see, for example, Fan and Gijbels (1996). In addition,

the underlying theory of such a direct derivative penalization method can be am-

biguous and difficult to understand, as illustrated in Section 2. In contrast, the

proposed stratified local linear method combines information from both coefficient

estimates and their derivatives into the same stratum to label time-constant vari-

ables, and is theoretically guaranteed to yield consistent semiparametric labeling

and estimation.
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Table 1. Simulation results for σ = 2, based on 100 realizations for each configuration.

Model bn Method Under-label Correct Over-label MSE LCR
2-2-16 0.1 SPLL 0.00 0.99 0.01 0.0335 0.9995

Zhang15 0.09 0.66 0.25 0.0765 0.9730
Gao19 0.89 0.06 0.05 0.1931 0.9355

0.2 SPLL 0.00 1.00 0.00 0.0283 1.0000
Zhang15 0.10 0.81 0.09 0.0652 0.9810
Gao19 0.00 0.26 0.74 0.0366 0.9085

0.3 SPLL 0.00 1.00 0.00 0.0375 1.0000
Zhang15 0.10 0.75 0.15 0.0702 0.9785
Gao19 0.00 0.09 0.91 0.0414 0.8425

5-5-10 0.1 SPLL 0.04 0.94 0.02 0.0795 0.9970
Zhang15 0.46 0.44 0.10 0.2510 0.9375
Gao19 1.00 0.00 0.00 0.4982 0.7855

0.2 SPLL 0.00 0.96 0.04 0.0610 0.9980
Zhang15 0.12 0.79 0.09 0.1926 0.9635
Gao19 0.61 0.14 0.25 0.1504 0.9385

0.3 SPLL 0.00 0.98 0.02 0.0714 0.9990
Zhang15 0.12 0.74 0.14 0.1857 0.9650
Gao19 0.02 0.14 0.84 0.0848 0.8795

2-8-10 0.1 SPLL 0.00 0.98 0.02 0.0403 0.9990
Zhang15 0.10 0.71 0.19 0.1682 0.9595
Gao19 0.76 0.11 0.13 0.2111 0.9420

0.2 SPLL 0.00 1.00 0.00 0.0352 1.0000
Zhang15 0.12 0.81 0.07 0.1570 0.9650
Gao19 0.00 0.41 0.59 0.0450 0.9405

0.3 SPLL 0.00 1.00 0.00 0.0443 1.0000
Zhang15 0.13 0.79 0.08 0.1593 0.9665
Gao19 0.00 0.18 0.82 0.0501 0.9020

4.4. Data analysis

In this section, we apply the results to study the influence of El Niño-Southern

Oscillation, characterized by the Southern Oscillation Index (SOI), on tempera-

ture anomalies, which is an important problem in climate science, and has been

studied by Privalsky and Jensen (1995), Zheng and Basher (1999), Gao and

Hawthorne (2006), McLean (2014), and Zhang (2015), among others. In this

data analysis, we focus on determining what lags of the SOI should be used, and

whether they should be treated as time-varying explanatory variables. For this,

we consider the multi-output time-varying coefficient model

yi = β0(ti,n) +

25∑
j=1

βj(ti,n)xi,j−13 + ei, i = 1, . . . , n, (4.2)
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where yi = (yi,1, yi,2)
> are temperature anomalies from the northern and south-

ern hemispheres, and xk is the k-month-ahead SOI for k ∈ {−12, . . . , 12}. For

comparison with existing results, we use monthly data from 01/1936 to 12/2019,

which can be downloaded from the Climatic Research Unit website: https://

crudata.uea.ac.uk/cru/data/temperature/. In this case, the sample size

n = 984, and time series plots are provided in Figure 1. We then apply the

SPLL method proposed in Section 3 for the semiparametric variable labeling and

estimation of (4.2), where the tuning parameters are selected by using the ex-

tended information criterion described in Section 4.2. For the bandwidth, we use

a two-step selection procedure. We first use the asymptotic bandwidth b◦n = n−1/5

to obtain an initial labeling. Then, we apply the dependence-adjusted general-

ized cross-validation described in Section 4.3 of Zhang and Wu (2012) to the

selected nonzero variables to obtain a data-driven bandwidth; see also Section

4.1 of Zhang (2015). Our analysis results show that, among the 25 lags consid-

ered, xi,−2 and xi,0 are labeled as time-constant variables, and all other lags are

labeled as zero variables. In addition, the intercept is labeled as a time-varying

variable, suggesting the following semiparametric multi-output model:

yi = β0(ti,n) + β11xi,−2 + β13xi,0 + ei, i = 1, . . . , n,

where the estimated time-varying coefficients β̂0(·) = {β̂0,1(·), β̂0,2(·)}> are plot-

ted in Figure 2 for the northern and southern hemispheres, and the estimated

time-constant coefficients are given by β̂11 = (−0.011,−0.015)> and β̂13 =

(−0.015,−0.014)>.

Note that the method of Zhang (2015) leads to the multi-output model

yi = β0(ti,n) + β10xi,−3 + β11xi,−2 + β12xi,−1 + β13xi,0 + ei, i = 1, . . . , n.

Compared with the model selected by the proposed SPLL method, it shares the

same insight that the effect of the SOI on temperature anomalies can be viewed

as time-constant, whereas the intercept should be treated as time varying. This

provides a data-driven approach to verify the semiparametric assumption com-

monly used in the climate science literature; see, for example, McLean (2014),

who poses the possibility of a time-varying relationship, but does not explore

statistical tools other than the simple linear regression to investigate further. On

the other hand, the proposed SPLL method selects only xi,−2 and xi,0 as impor-

tant lags, which differs from the aforementioned model selected by the method of

Zhang (2015). The simulation results reported in Table 1 show that the method

of Zhang (2015) can have a higher probability of producing over-labeled models

https://crudata.uea.ac.uk/cru/data/temperature/
https://crudata.uea.ac.uk/cru/data/temperature/


STRATIFIED PENALIZATION FOR SEMIPARAMETRIC LABELING 1041

1940 1960 1980 2000 2020
-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

Time (years)

T
em

p
er

at
u

re
 (

ce
ls

iu
s)

Monthly temperature anomalies

 Northern hemisphere

1940 1960 1980 2000 2020
-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

Time (years)
T

em
p

er
at

u
re

 (
ce

ls
iu

s)

Monthly temperature anomalies

 Southern hemisphere

1940 1950 1960 1970 1980 1990 2000 2010 2020

-8

-4

0

4

Time (years)

In
d
ex

Monthly SOI

Figure 1. Time series plots for monthly temperature anomalies from the northern hemi-
sphere (top left), monthly temperature anomalies from the southern hemisphere (top
right), and the monthly SOI (bottom) during the period 01/1936–12/2019.

than the proposed SPLL method does, especially when there are a lot of zero coef-

ficients, as in the 2-2-16 configuration. Therefore, we believe the model produced

by the SPLL method is more reasonable. The climate science literature tends to

find a lag between the SOI and temperature anomalies, mainly by relying on the

correlation of annual averages calculated starting from different months. In con-

trast, the current analysis allows for the possibility that temperature anomalies

may be associated with multiple lags of the SOI.

5. Conclusion

In addition to the current context, the proposed stratified penalization method

sheds new light on the broader problem of how to incorporate penalization into
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Figure 2. Estimated time-varying coefficients β̂0(·) = {β̂0,1(·), β̂0,2(·)}> for the northern
(solid) and southern (dashed) hemispheres.

kernel smoothing for labeling variables into more than two categories in a nested

structure. Levina, Rothman and Zhu (2008) considered a nested LASSO method

when different variables have a natural ordering for bicategory labeling, whereas

in the current setting, each variable has its own nested structure for labeling.

We expect that the proposed stratified penalization method can be generalized

and will be useful in other problems that involve multi-category labeling with a

nested structure, such as when the time-constant label is replaced by a more gen-

eral parametric label. In addition, one may consider multiple parametric labels

in a nested structure, such as polynomials with nested orders. However, detailed

formulations of such problems and developing stratified penalization variants as

their solutions are beyond the scope of this study, and are left to future work.

Supplementary Material

The online Supplementary Material contains a detailed description of the

iterative algorithm for computing the proposed SPLL estimator, additional sim-

ulation results, and technical proofs of our results in Sections 2 and 3.
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