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Abstract: Often, when a data-generating process is too complex to specify fully, a

standard likelihood-based inference is not available. However, a composite likeli-

hood can provide an inference based on a partial specification of a data-generating

process. Furthermore, its robustness to model specification and computational

simplicity makes the composite likelihood method widely applicable. This study

conducts a theoretical investigation of the composite likelihood ratio test (CLRT)

when the parameters of interest may lie on the boundary of the parameter space.

Our main result shows that the limiting distribution of the CLRT is equivalent to

that of the likelihood ratio test of a normal mean problem, in which the restricted

mean of a multivariate normal distribution is tested based on one observation from

a multivariate normal distribution with an inverse Godambe information matrix.

Furthermore, we illustrate our general theoretical result by applying it to a variety

of examples. Lastly, our simulation results confirm that the limiting distribution

of the CLRT performs well in finite samples.

Key words and phrases: Boundary condition, composite likelihood, hypothesis test-

ing, likelihood ratio test.

1. Introduction

Likelihood-based inferences are commonly used to model complex data. In

some applications, specifying the data-generating process fully is difficult, or is

not preferred, owing to a lack of knowledge about the true model or computa-

tional challenges. One possible solution is to conduct an inference based on a

partially specified model. Introduced by Lindsay (1988), the composite likeli-

hood approach has drawn a great deal of attention, and is widely used in many

areas, such as biomedical research (Heagerty and Lele (1998); Molenberghs and

Verbeke (2005); Wellner and Zhang (2000); Henderson and Shimakura (2003);

Guan (2006); He and Yi (2011)), statistical genetics (McVean et al. (2004); My-

ers et al. (2005); Larribe and Fearnhead (2011)), geostatistics (Vecchia (1988);
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Nott and Rydén (1999); Stein, Chi and Welty (2004); Padoan, Ribatet and Sis-

son (2010)), finance (Bhat, Varin and Ferdous (2010); Varin and Vidoni (2008)),

social science, and many others.

Specifically, a composite likelihood is constructed as the product of a set

of low-dimensional marginal or conditional densities. This approach is especially

useful for modeling correlated data with a complex or unknown dependency struc-

ture, or for reducing a complex likelihood function with a high computational

cost to a much simpler function. For instance, when a working independence

assumption is adopted, the composite likelihood is also called an independence

likelihood (Chandler and Bate (2007)). Because the data-generating process

is partially specified, a composite likelihood inference is more robust than the

standard likelihood-based inference. For further detail on composite likelihood

methods, refer to Varin, Reid and Firth (2011), and the references therein.

In standard hypothesis testing problems, regularity conditions require that

the parameter values are interior points of the parameter space under the null

hypothesis. This assumption guarantees that the composite score function is zero

at the maximum composite likelihood estimate. This first-order condition means

the composite likelihood ratio statistic is asymptotically a mixture of weighted

χ2
1 (Kent (1982); Molenberghs and Verbeke (2005)). In many important ap-

plications, however, the parameters of interest may lie on the boundary of the

parameter space. This constraint can arise from the definition of the parame-

ter space, or from previous knowledge on the possible range of the parameter.

For example, such a problem is encountered in diagnostic systematic reviews,

which evaluate diagnostic accuracy by pooling the sensitivity and specificity of a

dichotomized diagnostic test from multiple studies (Chen et al. (2014, 2015)).

As acknowledged in the literature, ignoring the boundary constraints often

leads to a substantial loss of power (Self and Liang (1987); Chen and Liang

(2010)). However, theoretical results for composite likelihood-based inferences

under boundary conditions have not been established. In this study, we aim to fill

this gap by providing the limiting distributions of the composite likelihood ratio

tests (CLRTs) under boundary conditions. Furthermore, we apply our general

theoretical result to study the following three examples: (1) a stratified case-

control study; (2) diagnostic systematic reviews; and (3) adverse event detection

in medical reports. In our simulation studies, we found that the naive method of

ignoring the boundary constraints is grossly conservative, resulting in up to 48%

less power than that of the proposed test.

The rest of this paper is organized as follows. In Section 2, we define the
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composite likelihood, and introduce applications that include boundary prob-

lems. In Section 3, we first provide several regularity conditions, and then derive

the asymptotic distribution of the CLRT. Here, we also provide a detailed cal-

culation of the limiting distribution when all parameters of interest are on the

boundary. In addition, we consider situations in which a subset of the parameters

of interest lie on the boundary. In Section 4, we revisit the examples in Section

2. In Section 5, we present our simulation studies. Lastly, Section 6 concludes

the paper.

2. Notation and Examples

2.1. Composite likelihood

Let f(x; θ) be the probability density function of a multidimensional vector

random variable X, indexed by a p-dimensional parameter θ = (θ1, . . . , θp)
T ,

where θ belongs to the parameter space Ω, a subset of Rp. We assume model

identifiability, such that distinct values of θ correspond to distinct probability

distributions. Suppose N independent random variables X1, . . . , XN are ob-

served from the model f(x; θ). Let {A1, . . . ,AK} be a set of marginal or con-

ditional events, with associated likelihoods Li(θ; Ak) ∝ pr(Xi ∈ Ak; θ), where

k = 1, 2, . . . ,K and K is the number of events. Following Lindsay (1988), a

composite log likelihood can be construct as

`c(θ) =

N∑
i=1

K∑
k=1

ωk logLi(θ; Ak),

where ωk, for k = 1, . . . ,K, are nonnegative weights associated with the like-

lihood Li(θ; Ak). In particular, in longitudinal data analyses, the composite

likelihood can be constructed by pooling the marginal densities, without consid-

ering the correlation between repeated measurements. The use of this likelihood

is studied by Chandler and Bate (2007). The maximum of the composite likeli-

hood at the parameter value θ̂c is the maximum composite likelihood estimator.

Denote the first two derivatives of `c(θ) as Uc(θ) and hc(θ), respectively. Because

each component of the composite likelihood is a true likelihood, it carries impor-

tant features of the ordinary likelihood; for example, Bartlett identities hold for

each component

E {Sik(θ)} = 0, and E {−hik(θ)} = E {Sik(θ)}2 , for k = 1, 2, . . . ,K,

where Sik(θ) and hik(θ) denote the first two derivatives, respectively, of

logLi(θ; Ak). Because the composite score function Uc(θ) is a linear combination
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of component score functions Sik(θ), Uc(θ) is an unbiased estimating equation.

Assume that we are interested in testing H0 : θ = θ0 versus H1 : θ 6= θ0. Standard

regularity conditions assume that θ0 is an interior point of the parameter space.

Under some extra regularity conditions, the CLRT, 2{`c(θ̂c)− `c(θ0)}, converges

in distribution to a mixture of independent χ2
1 variables (Varin, Reid and Firth

(2011)), where the weights are the eigenvalues of H(θ0)G−1(θ0), with

H(θ) = −E

{
K∑
k=1

ωkhik(θ)

}
, J(θ) = E

{
K∑
k=1

ωkSik(θ)

}{
K∑
k=1

ωkSik(θ)

}T
,

and G(θ0) = H(θ0)J−1(θ0)H(θ0).

However, in many real applications, θ0 may lie on the boundary of the param-

eter space, which makes existing asymptotic results based on the CLRT invalid.

In the following, we present three examples in which boundary problems are

encountered.

2.2. Test for positive associations in stratified case-control studies with

sparse data

The stratified case-control design is widely used in epidemiological and ge-

netic studies. In particular, in the ith stratum, xi1, . . . , xini denote p× 1 vectors

of potential risk factors of ni cases, and xini+1, . . . , xiNi denote the potential risk

factors of mi controls, where mi = Ni−ni and i = 1, . . . ,K. A logistic regression

model that accounts for stratum-specific effects is

logit pr(yij = 1 in stratum i|xij) = αi + βTxij ,

i = 1, . . . ,K, and j = 1, . . . , Ni,

where yij = 1 if the jth subject in the ith stratum belongs to the case group,

and yij = 0 otherwise. The coefficients β quantify the effects of risk factors xij
on disease status yij . In the case that ni and mi are uniformly bounded, but

the number of stratum K → ∞, the maximum likelihood estimator is known

to be inconsistent. One common technique to solve this problem is to use the

composite likelihood method proposed by Liang (1987), which extended the well-

known Mantel–Haenszel estimator to logistic regression models with multiple risk

factors. Specifically, for the (j, l) case-control pair of subjects in the ith stratum

(j = 1, . . . , ni; l = ni + 1, . . . , Ni), the conditional probability that xij is from

the case, given that one of xij and xil is from the case and the other is from the

control, can be calculated as
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pr(yij = 1, yil = 0|yij + yil = 1, xij , xil;αi, β) =
eβ

Txij

eβTxij + eβTxil
.

Thus a composite likelihood can be formulated by considering all nimi possible

pairs within the ith stratum,

Li(β) =

ni∏
j=1

Ni∏
l=ni+1

eβ
Txij

eβTxij + eβTxil
.

A composite likelihood that combines the data from all K strata for β is then

constructed by assigning the weight wi to Li(β):

`c(β) =

K∑
i=1

wi log {Li(β)} =

K∑
i=1

wi log


ni∏
j=1

Ni∏
l=ni+1

eβ
Txij

eβTxij + eβTxil

 .

Without loss of generality, we consider the weights wi = N−1
i , where the max-

imum composite likelihood estimator reduces to the Mantel–Haenszel estimator

when only a binary covariate is considered (Liang (1987)). Suppose some of the

risk factors are known to be positively associated with the occurrence of a disease.

Then, testing the null hypothesis H0 : β = 0 is a boundary problem.

2.3. Test for heterogeneity in diagnostic systematic reviews

Diagnostic systematic reviews are a vital step in evaluating the accuracy of a

diagnostic test. For a dichotomized diagnostic test, this usually involves drawing

and comparing the sensitivity (Se) and specificity (Sp) from multiple studies.

However, pooling the data is not straightforward. First, the estimated Se and

Sp are typically negatively correlated between studies (Reitsma et al. (2005)).

Second, there may be substantial between-study heterogeneity in paired indices

(Moses, Shapiro and Littenberg (1993); Irwig et al. (1995); Rutter and Gatso-

nis (1995)). Such heterogeneity may arise from differences in study population

characteristics, variability of assessments, and other factors.

To account for these challenges, Chen et al. (2014, 2015) proposed a com-

posite likelihood-based approach that is robust and computationally convenient,

in which they construct a composite likelihood function using an independent

working assumption between Se and Sp. More specifically, considering a diag-

nostic review of m studies, denote ni11, ni00, ni01, and ni10 as the number of

true positives, true negatives, false positives, and false negatives, respectively,

for i = 1, . . . ,m. Let ni1 = ni11 + ni10 and ni0 = ni01 + ni00 be the number of

diseased and healthy subjects, respectively, and Sei and Spi be the study-specific
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Se and Sp, respectively. Assume that

ni11|(ni1, Sei) ∼ Binomial(ni1;Sei), ni00|(ni0, Sei) ∼ Binomial(ni0;Spi),

g(Sei) = XT
i β1 + µi1, g(Spi) = ZTi β2 + µi2,(

µi1
µi2

)
∼ BN

((
0

0

)
, Σ =

(
τ2

1 ρτ1τ2

ρτ1τ2 τ2
2

))
,

where g(·) is a known link function, such as the logit function; Xi and Zi are

vectors of study-level covariates, possibly overlapping, related to Sei and Spi;

τ2
1 and τ2

2 capture the between-study heterogeneity in Se and Sp, respectively;

and ρ describes the correlation between the random effects Sei and Spi in the

transformed scale.

Ignoring the correlation between Sei and Spi, a composite likelihood can be

constructed by setting ρ = 0 in the above model:

`c(θ) =

m∑
i=1

log

{∫
q(ni11|ni1;Sei)φ(Sei;β1, τ

2
1 )dSei

×
∫
q(ni00|ni0;Spi)φ(Spi;β2, τ

2
2 )dSpi

}
,

where θ = (βT1 , β
T
2 , τ1, τ2)T , φ(·; ·, ·) is the probability density function of a uni-

variate logit normal distribution, and q(·|·; ·) is the probability mass function of

a binomial distribution. In this model, testing for heterogeneity in Se and Sp

across all studies is equivalent to testing H0 : τ2
1 = τ2

2 = 0. This is a hypothesis

testing problem with boundary constraints.

2.4. Signal detection of adverse event (AE) reporting rate

The Vaccine Adverse Event Reporting System (VAERS) is a national vaccine

safety surveillance program that collects information about adverse events (AE)

that occur after the administration of vaccines licensed for use in the United

States (Chen et al. (1994); Niu, Erwin and Braun (2001); Shimabukuro et al.

(2015)). The surveillance data are structured in a table format, with vaccine-AE

combinations (i.e., a certain type of AE after a particular vaccination) as the

column variable, and the reporting year as the row variable (Huang, Zalkikar

and Tiwari (2011)). In total, we have I years and J vaccine-AE combinations.

The table cell nij shows the number of events reported for the jth vaccine-AE

combination during the ith year. The total number of reported cases for the ith

year is the marginal total of the ith row, denoted as ni.. The total number of jth

vaccine-AE combinations across all years is the marginal total of the jth column,
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denoted as n.j . Let n.. denote the total number of events.

To account for the large number of zero cells in our data nij , we consider the

following zero-inflated Poisson model:

nij | ni., pij , wij

{
= 0 with probability wij ,

∼ Poisson(ni.pij) with probability 1− wij ,
where wij is the probability of observing a true zero in the ith year and jth

vaccine-AE combination, and pij is the probability of reported cases in the ith

year and jth vaccine-AE combination. In order to account for the heterogeneity

in the reporting proportion for a fixed jth vaccine-AE combination through year

1990 to 2015 (the most recent reporting year), we further assume that

logit(pij) ∼ N(β0j , τ
2
j ), i = 1, . . . , I,

where β0j = logit(p0j), p0j is the overall reporting proportion for the jth vaccine-

AE combination across all years and τ2
j represents the variation in the reporting

proportion. Similarly, we assume the weight wij is defined as follows

logit(wij) ∼ N(α0j , δ
2
j ), i = 1, . . . , I,

where α0j = logit(w0j), w0j is the overall probability of observing a true zero

across all years and δ2
j represents the variation in observing a true zero.

A composite likelihood of the jth vaccine-AE combination can be constructed

by multiplying the marginal densities of nij , ignoring their correlations:

`c(θ) =

I∑
i=1

log

{∫ 1

0

∫ 1

0
p(nij |ni.; pij , wij)p(pij |p0j , τ

2
j )p(wij |w0j , δ

2
j )dpijdwij

}
,

where θ = (w0j , β0j , τ
2
j , δ

2
j ). Testing whether the reporting rate is the same

across all years is equivalent to testing the hypothesis H0 : τ2
j = δ2

j = 0, which is

a boundary problem.

2.5. Additional examples

Other examples of problems with boundary constraints in composite like-

lihood inferences include testing for spatial correlations in a Gaussian random

field model in geostatistics applications (Guan (2006)), and testing for serially

dependence in time serial data in panel studies (Wellner and Zhang (2000)).

In the next section, we give our main results. The above examples are

revisited in Section 4.
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3. Main Results

3.1. Regularity conditions

To derive the asymptotic results, we impose the following regularity condi-

tions.

R1: The first two derivatives of `c(θ), with respect to θ on the intersection of

the neighborhoods of the true parameter value, θ0, and Ω, exist and are

continuous. If θ0 is on the boundary of Ω, the derivatives of `c(θ) are taken

from the appropriate side.

R2: The parameter space Ω is compact, the function E{`c(θ)} is continuous,

and θ0 = arg maxθ∈ΩE{`c(θ)} is unique. There exists a function A(X)

with finite expectation, such that |
∑K

k=1 ωk logLi(θ; Ak)| ≤ A(Xi), for any

θ ∈ Ω.

R3: On the intersection of neighborhoods of θ0 and Ω, for any 1 ≤ j, k ≤ p, it

holds that |
∑K

k=1 ωk(∂
2 logLi(θ; Ak))/(∂θj∂θk)| ≤ C(Xi), where C(X) is a

function of X with finite expectation.

R4: The variability matrix, J(θ), exists and is positive-definite at θ0.

R5: The sensitivity matrix, H(θ), exists and is positive-definite at θ0.

When studying the limiting distribution of an estimator for θ0, we can think

of it as a local problem, because only the values of θ near θ0 are relevant, asymp-

totically. Thus, we assume that the parameter space near θ0 can be locally

approximated by a cone. This approach was used by Chernoff (1954) and Self

and Liang (1987) in the context of likelihood ratio tests.

Definition 1. The set Ω ⊂ Rp is approximated at θ0 by a cone with a vertex at

θ0, CΩ, if

(1) infx∈CΩ
‖ x− y ‖= o(‖ y − θ0 ‖) for all y ∈ Ω

and

(2) infy∈Ω ‖ x− y ‖= o(‖ x− θ0 ‖), for all x ∈ CΩ.

We assume that the parameter space Ω is regular enough to be approximated

by a cone with a vertex at θ0, which is mild enough to encompass a wide variety of

shapes for Ω. In the sections that follow, we first give the asymptotic distribution
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of the CLRT statistic when θ0 is on the boundary of Ω. Then, we derive the exact

form of the asymptotic distribution in several cases.

For notational simplicity, rewrite the hypothesis H0 : θ = θ0 as H0 : θ ∈ Ω0,

where Ω0 = {θ : θ = θ0 ∈ Ω}. The complement of Ω0 in Ω is denoted by Ω1. For

any subset of Rp, ϕ, we define Lϕ = supθ∈ϕ `c(θ). We also define the maximum

composite likelihood estimator in the parameter space ϕ, θ̂
(ϕ)
c , as that value of θ

in the closure of ϕ that maximizes `c(θ). The CLRT statistic can be written as

CLRT = −2(LΩ0
− LΩ).

3.2. Limiting distribution of the CLRT statistic

First, we establish the
√
N -consistency of the maximum composite likelihood

estimator.

Lemma 1. If the regularity conditions R1–R5 hold, then as N → ∞, θ̂c con-

verges to θ0 in probability. Moreover, N1/2(θ̂c − θ0) = Op(1).

A proof is given in Section S1 of the online Supplementary Material. Now,

we derive the asymptotic distribution of the CLRT.

Theorem 1. If the regularity conditions R1–R5 hold, θ0 is a limiting point of

both Ω0 and Ω1, and the sets Ω0 and Ω1 are approximated by nonempty cones CΩ0

and CΩ1
, respectively, then under the null hypothesis, the asymptotic distribution

of the CLRT is the same as the distribution of the likelihood ratio test of θ ∈ CΩ0

against θ ∈ CΩ1
, based on one observation from a population with a multivariate

normal distribution with mean θ0 and covariance matrix H(θ0)−1J(θ0)H(θ0)−1,

while the covariance matrix is misspecified as H(θ0)−1 in the likelihood ratio test.

The proof is based on two approximations. First, Ω is approximated by CΩ

locally around θ0. This is justified by the
√
N -consistency of θ̂c and the definition

of the approximating cones, given previously. The second approximation follows a

similar argument to that of Self and Liang (1987), who used a quadratic function

to approximate the composite likelihood. Further technical details are available

in Section S2 of the online Supplementary Material.

In some special cases, the sensitivity matrix may be equal to the variabil-

ity matrix, for example, in partial likelihood inferences for censored data (Cox

(1975)). In such cases, the misspecified covariance matrix H(θ0)−1J(θ0)H(θ0)−1

is equal to J(θ0)−1, and Theorem 1 reduces to Theorem 3 of Self and Liang

(1987). However, in general, the equality is not satisfied (Molenberghs and Ver-

beke (2005)). The purpose of Theorem 1 is to reduce the general problem of
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computing the limiting distribution of the CLRT to a problem of computing the

distribution of

QCΩ0
(Z)−QCΩ

(Z), (3.1)

where Qϕ(Z) = infθ∈ϕ {Z − (θ − θ0)}T H(θ0) {Z − (θ − θ0)}, CΩ = CΩ0

⋃
CΩ1

,

and Z ∼MVN(0, G−1(θ0)), where G(θ0) = H(θ0)J(θ0)−1H(θ0) is known as the

Godambe information matrix.

The limiting distribution of the CLRT in equation (3.1) is still complicated.

In the following, we focus on an important special case in which the representation

given in equation (3.1) can be simplified further.

3.3. An important special case

Partition the parameter vector, θ, into two parameter sets θT = (γT , ηT ),

where γ denotes the parameters of interest that will be tested, and η denotes the

nuisance parameters. Then, further partition the parameter vector into four co-

ordinates. Here, we adopt the notation in Self and Liang (1987): (p11, p12, p21, p−
p11−p12−p21), where the first p11 coordinates of θ represent the parameters of γ

with true values on the boundary; the next p12 coordinates represent the parame-

ters of γ with true values not on the boundary; the next p21 coordinates represent

the first p21 components of η with true values on the boundary; and finally, the

remaining p − p11 − p12 − p21 coordinates represent the last p − p11 − p12 − p21

parameters of η with true values not on the boundary. Note that p1 = p11 + p12

represents the dimension of γ, and p − p1 represents the dimension of η. In the

rest of this paper, we denote the boundary value as zero for ease of presentation.

In the following, we consider a special case in which two parameters of interest

are on the boundary, and the remaining (p−2)-dimensional nuisance parameters

are not on the boundary; that is, H0 : γ = 0, with γ = (γ1, γ2), γ1 ≥ 0, and

γ2 ≥ 0. All three examples discussed in Section 2 belong to this setting.

The parameter configuration is give by (2, 0, 0, p − 2). Then, CΩ0
= {0}2 ×

Rp−2 and CΩ = [0,+∞)2 × Rp−2. Partitioning ZT = (ZTγ , Z
T
η ) and G(θ0) and

H(θ0) with respect to (γ, η) as

G(θ0) =

(
Gγγ Gγη
Gηγ Gηη

)
, H(θ0) =

(
Hγγ Hγη

Hηγ Hηη

)
,

Gγ|η = Gγγ −GγηG−1
ηηG

T
γη, Hγ|η = Hγγ −HγηH

−1
ηη H

T
γη,

with some algebra, equation (3.1) reduces to

ZTγ Hγ|ηZγ − inf
γ∈[0,+∞)2

(Zγ − γ)T Hγ|η (Zγ − γ) .
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Figure 1. Diagram of the parameter space for the special case.

Let Hγ|η = P TP , where P is a 2 × 2 nonsingular matrix, and denote

C̃γ =
{
γ̃ : γ̃ = Pγ for any γ ∈ [0,+∞)2

}
and Z̃γ = PZγ . Then, the limiting

distribution of the CLRT can be rewritten as

‖ Z̃γ ‖2 − inf
γ̃∈C̃γ

‖ Z̃γ − γ̃ ‖2,

where ‖ · ‖ is the usual Euclidean metric. The calculation of the second term in

the above equation depends on the location of Z̃γ relative to the boundary of C̃γ .

The shaded region in Fig. 1 represents C̃γ , and (0, 0) is the origin. The angle

in the shaded area is less than 180◦. This is because that the convexity of Cγ is

preserved under the linear mapping γ → Pγ. Denote the rotation matrix in a

two-dimensional Euclidean space R2 and the matrix Hγ|η by

Tx =

(
cos(x) − sin(x)

sin(x) cos(x)

)
, Hγ|η =

(
a b

b d

)
,

respectively. Further, denote the columns of P by P1 and P2, and the inner

product of vectors a and b by 〈a, b〉 = bTa. It can be shown that the limiting

distribution of the CLRT is given by

CLRT =



‖ Z̃γ ‖2∼ U = λ1χ
2
1 + λ2χ

2
1 if Z̃ is in the shaded region,{

〈P2, Z̃γ〉
‖ P2 ‖

}2

∼ d∗χ2
1/d if Z̃ is in region 1,{

〈P1, Z̃γ〉
‖ P1 ‖

}2

∼ a∗χ2
1/a if Z̃ is in region 2,

0 if Z̃ is in region 3,
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where λ1 and λ2 are eigenvalues of Hγ|ηG
−1
γ|η, and a∗ and d∗ are elements in the

matrix Hγ|ηG
−1
γ|ηHγ|η, such that

Hγ|ηG
−1
γ|ηHγ|η =

(
a∗ b∗

b∗ d∗

)
.

The mixing probabilities for the shaded region, region 1, and region 2 are

πs = cos−1 [((Gγ|η)12)/({(Gγ|η)11(Gγ|η)22}1/2)]

2π
,

π1 = cos−1 [((0, 1)Gγ|ηH
−1
γ|ηP

TTπ/2P2)/({(0, 1)Gγ|η(
0
1 )}1/2{P T2 T Tπ/2PH

−1
γ|ηGγ|ηH

−1
γ|ηP

TTπ/2P2}1/2)]

2π
,

π2 = cos−1 [((1, 0)Gγ|ηH
−1
γ|ηP

TT−π/2P1)/({(1, 0)Gγ|η(
1
0 )}1/2{P T1 T T−π/2PH

−1
γ|ηGγ|ηH

−1
γ|ηP

TT−π/2P1}1/2)]

2π
,

respectively. Thus, the asymptotic distribution of the CLRT is a mixture of

U , d∗χ2
1/d, a∗χ2

1/a, and χ2
0, with mixing probabilities πs, π1, π2, and 1 − πs −

π1 − π2, respectively.

4. Examples

4.1. Test for positive associations in stratified case-control studies with

sparse data

Suppose the covariates xij are p-dimensional, and that two of them are known

to be positively associated with the occurrence of a disease. To test the two

positive associations simultaneously, the null hypothesis is H0 : β1 = β2 = 0,

and the alternative is Ha : any of β1, β2 > 0. In this case, the parameter vector,

θ = (β1, β2, . . . βp)
T , can be partitioned into two sets θT = (γT , ηT ), for example,

γ = (β1, β2)T and η = (β3, . . . , βp)
T . The parameter configuration is given by

(2, 0, 0, p−2), CΩ0
= {0}2×Rp−2, and CΩ = [0,+∞)2×Rp−2, which is the same

as the special case discussed in Section 3.3. Thus, the asymptotic distribution of

the CLRT is a mixture of U , d∗χ2
1/d, a∗χ2

1/a, and χ2
0, with mixing probabilities

πs, π1, π2, and 1 − πs − π1 − π2, respectively, where the weights and mixing

probabilities are calculated using the equations given in Section 3.3.

4.2. Test for heterogeneity in diagnostic systematic reviews

As discussed in Section 2.3, the null hypothesis is H0 : τ2
1 = τ2

2 = 0, and the

parameters involved are θ = (τ2
1 , τ

2
2 , β1, β2)T . Partition this into two parameter

sets θT = (γT , ηT ), where γ = (τ2
1 , τ

2
2 )T and η = (β1, β2)T . The parameter

configuration is given by (2, 0, 0, 2), CΩ0
= {0}2×R2, and CΩ = [0,+∞)2×R2,

which is the same as the special case in Section 3.3, with p = 4. Thus, the
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limiting distribution of the CLRT is obtained by applying the results in Section

3.3.

4.3. Signal detection of AE reporting rate

To test whether the reporting rate is the same across all years for the jth

vaccine-AE combination, the null hypothesis can be written as H0 : τ2
j = δ2

j = 0.

Similarly, we partition the parameter vector, θ = (τ2
j , δ

2
j , α0j , β0j)

T , into two

parameter sets θT = (γT , ηT ), where γ = (τ2
j , δ

2
j )
T and η = (α0j , β0j)

T . The

parameter configuration is given by (2, 0, 0, 2), CΩ0
= {0}2 × R2, and CΩ =

[0,+∞)2 × R2, which is the same as the special case in Section 3.3, with p = 4.

Thus, the results in Section 3.3 can be applied.

5. Simulation

To explore the finite-sample performance of the theoretical findings, we con-

duct two simulation studies. In the first example, we consider the CLRT in

stratified case-control studies, as discussed in Section 4.1, with p = 3. In the

second example, we test the heterogeneity of the sensitivities and specificities be-

tween multiple studies in diagnostic systematic reviews, as discussed in Section

4.2.

5.1. Test for positive associations in stratified case-control studies with

sparse data

We simulate the data using three continuous covariates, and simultaneously

test β1 = β2 = 0, where β1 and β2 are known to be nonnegative. The nuisance

parameter β3 belongs to (−∞,+∞). The three covariates are independently

simulated from a standard normal distribution. To mimic the selection procedure

of a case-control study, we simulate 1,000 subjects for each stratum, and selecte

five cases and five controls. The number of strata varies from 25 to 200, and the

simulation is repeated 5,000 times. We compare the type-I error and the power

of the CLRT based on the derived asymptotic distribution with that based on

the naive χ2
2 distribution.

As shown in Table 1, the method based on the derived asymptotic distribu-

tion controls the type-I error very well in all scenarios, whereas the naive method

based on the χ2
2 distribution yields grossly conservative type-I errors based on

5,000 simulations. The power gain is also substantial (up to 48%) using the

derived asymptotic distribution of the CLRT. Thus, the naive method is more
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Table 1. Empirical rejection rates (%) in 5,000 simulations of the CLRT to test for two
regression coefficients in a stratified case-control study, based on different numbers of
strata K, strata sizes N , and effect sizes.

α = 0.10 α = 0.05 α = 0.01
Rejection (%) Rejection (%) Rejection (%)

(β1, β2, β3) (K, N) CLRT Naive CLRT Naive CLRT Naive
(0, 0, 0.1) (25, 10) 9.8 0.4 4.7 0.1 0.7 0.0

(50, 10) 10.5 0.3 5.2 0.1 1.0 0.0
(100, 10) 9.5 0.2 4.3 0.0 0.6 0.0
(200, 10) 10.1 0.5 4.9 0.1 1.1 0.0

(0.1, 0, 0.1) (25, 10) 25.9 2.4 15.7 0.6 4.4 0.0
(50, 10) 35.1 4.0 22.6 1.4 7.4 0.1

(100, 10) 51.4 9.6 37.5 4.1 15.3 0.5
(200, 10) 73.4 25.2 60.9 13.1 35.5 2.2

(0.1, 0.1, 0.1) (25, 10) 37.9 4.7 25.0 1.6 7.9 0.1
(50, 10) 56.1 11.0 41.4 4.4 17.9 0.5

(100, 10) 78.1 26.6 64.8 13.8 38.3 2.5
(200, 10) 95.1 62.0 90.0 44.7 73.3 16.2

(0.2, 0.2, 0.2) (25, 10) 76.2 24.5 62.9 12.7 32.7 2.0
(50, 10) 94.1 58.8 88.9 40.9 69.4 14.4

(100, 10) 99.8 93.0 99.3 84.8 96.3 57.3
(200, 10) 100.0 100.0 100.0 99.8 100.0 97.6

conservative and less powerful than the method based on the asymptotic distri-

bution of the CLRT.

5.2. Test for heterogeneity in diagnostic systematic reviews

As described in Sections 2.3 and 4.2, we test for the heterogeneity in the

sensitivities and specificities between multiple studies in diagnostic systematic

reviews. We assume the covariates Xi and Zi are univariate and independently

generated from a standard normal distribution. We set g(·) as the logit function,

and set β1 = g(0.95), β2 = g(0.90), and ni1 = ni0 = 50. We simulate µi1, µi2
from a bivariate normal distribution with ρ = −0.8, and τ2

1 = τ2
2 take increasing

values from 0, 0.05, 0.15, to 0.25. Then, ni11 and ni00 are simulated from the

binomial distribution, as described in Section 2.3. We compare the type-I error

and power of the CLRT based on the derived asymptotic distribution with that

based on the naive χ2
2 distribution under different numbers of studies m.

As shown in Table 2, the method based on the derived asymptotic distribu-

tion controls the type-I error reasonably well at nominal levels of 0.1, 0.05, and

0.01 in all scenarios. However, the naive method yields grossly conservative type
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Table 2. Empirical rejection rates (%) for 5,000 simulations using the CLRT for hetero-
geneity in diagnostic systematic reviews, based on different numbers of studies m.

α = 0.10 α = 0.05 α = 0.01
Rejection (%) Rejection (%) Rejection (%)

τ21 = τ22 m CLRT Naive CLRT Naive CLRT Naive
0 10 0.6 0.0 0.0 0.0 0.0 0.0

20 2.5 0.3 0.7 0.1 0.0 0.0
40 4.3 1.3 1.8 0.2 0.1 0.0
80 7.0 2.3 3.0 0.8 0.3 0.0

160 9.3 3.2 4.4 1.4 0.6 0.1
0.05 10 33.4 20.3 22.9 12.5 8.8 4.5

20 33.9 20.8 23.1 13.4 9.1 4.8
40 47.1 30.2 34.2 20.1 14.6 8.14
80 57.8 39.7 44.2 29.3 21.7 12.5

160 74.9 58.6 62.7 47.2 37.5 25.5
0.15 10 52.5 36.2 39.9 26.8 20.9 13.8

20 68.7 55.6 59.0 46.6 39.2 28.7
40 71.0 55.8 59.1 46.8 40.7 31.2
80 97.7 95.7 96.2 93.6 91.6 87.3

160 100.0 100.0 100.0 99.9 99.8 99.6
0.25 10 70.6 58.6 62.1 50.3 44.1 34.3

20 92.2 87.2 88.8 82.8 78.2 70.3
40 97.9 96.6 96.9 95.1 93.6 90.4
80 100.0 99.8 99.9 99.8 99.7 99.3

160 100.0 100.0 100.0 100.0 100.0 100.0

I error in this example based on 5,000 simulations. The power gain is up to 15%

as a result of using the asymptotic distribution of the CLRT.

6. Application to a Systematic Review of Modern Imaging Technolo-

gies for the Surveillance of Melanoma

Melanoma is a type of skin tumor that develops from pigment-containing

cells known as melanocytes. Melanoma is a less common type of skin cancer,

but is much more dangerous when not found early, resulting in the majority

(75%) of deaths related to skin cancer (Lo and Fisher (2014)). Modern imaging

technology can be used for the early detection of melanoma metastasis, and pro-

vides a cost-effective surveillance approach (Jemal et al. (2009)). Currently, the

most commonly used diagnostic imaging technologies for melanoma include ul-

trasonography (US), computed tomography (CT), positron emission tomography

(PET), and a combination of the latter two (PET-CT). In addition to evaluate
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the relative performance of these contemporary diagnostic imaging technologies

in diagnosing melanoma for patients at different stages, for example, regional and

distant lesions, it is also important to quantify the heterogeneity in the imaging

technologies, in terms of their operating characteristics, for example, the vari-

ability in sensitivity and specificity across study populations. Xing et al. (2011)

conducted a diagnostic review based on 98 published studies of 10,528 patients,

carried out between January 1, 1990, and June 30, 2009. The number of studies

for each diagnostic imaging technology and type of cancer (regional and distant

metastasis) are shown in Table S1 in the online Supplementary Material.

We applied the proposed composite likelihood model described in Section

2.3. Then, we used the proposed CLRT described in Section 3.3 to test for het-

erogeneity in the sensitivities and specificities of the imaging technologies for

different cancer types across multiple studies for seven technology-cancer combi-

nations. Our results show that, when diagnosing regional metastatic melanoma,

all four imaging technologies have significantly heterogeneous sensitivity or speci-

ficity across multiple studies (p < 0.001). In diagnoses of distance metastatic

melanoma, CT and PET have significant heterogeneity of sensitivity or speci-

ficity across studies (p < 0.05), whereas the combination of CT and PET does

not (p > 0.1). Figure S1 in the online Supplementary Material shows the ranges

of the sensitivities and specificities of the imaging technologies when diagnosing

cancer types across studies. Note that the specificities are generally higher than

the sensitivities, in general, and the heterogeneity of specificity is smaller than

the sensitivity across studies for all diagnosis methods. The heterogeneities of

both sensitivity and specificity are higher in the diagnosis of regional metastatic

melanoma than they are for those of distant metastatic melanoma. We also com-

pared the results of the proposed methods to the naive method, which ignores

the boundary constraints. The naive method was more conservative, although

it still identified the significant heterogeneity in the sensitivity or specificity of

the four imaging technologies used to diagnose regional metastatic melanoma,

and in the PET technology used to diagnose distant metastatic melanoma, given

that the magnitudes of these heterogeneities are relatively large. However, the

naive method failed to identify the significant heterogeneity in the sensitivity or

specificity of the CT technology used to diagnose distant metastatic melanoma,

which was identified by the proposed method.
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7. Discussion

In this study, we derive the asymptotic distribution of the CLRT when a

subset of the testing parameters lie on the boundary of the parameter space,

following the work of Self and Liang (1987) and Chen and Liang (2010). The

former work studied the asymptotic behavior of the regular likelihood ratio test

when the parameters of interest lie on the boundary. The latter extended the

results to deal with situations when a subset of the parameters of interest are

tested based on the pseudolikelihood of Gong and Samaniego (1981). Considering

that the composite likelihood approach has become increasingly popular, and no

previous works have examined the asymptotic behaviors of the CLRT under

boundary constraints, our work strives to fill this gap. Note that the results

presented here are very broad, in that any partially specified models can be

considered a special case of a composite likelihood.

The composite likelihood ratio-based inference under boundary constraints

is a difficult question. Although the asymptotic results derived here yield well-

controlled type-I errors and adequate power, calculating the test statistic becomes

more complicated as the number of boundary parameters increases. Another al-

ternative is to use numerical methods. However, caution is required in terms of

validity, choice of tuning parameters, computational cost, and practical perfor-

mance. For example, standard nonparametric and parametric bootstrap methods

lead to inconsistent estimates when the parameter is on the boundary of the pa-

rameter space (Andrews (2000)). This inconsistency is due to the non-smoothness

of the empirical distribution from which the bootstrap samples are generated.

Andrews (2000) proposed subsampling and m-out-of-n bootstrap methods for ob-

taining consistent estimators of the limiting distributions of test statistics under

boundary constraints. The m-out-of-n bootstrap provides a smoothing operation

on the empirical distribution function, by resampling with replacement a smaller

sample size m from the original n samples, where m is of a smaller order than

n. However, these numerical methods require additional tuning parameters, and

the performance varies in practice. For details of m-out-of-n bootstrap, please

refer to Politis, Romano and Wolf (1999), and the references therein.

To examine its practical performance, we implemented the m-out-of-n boot-

strap method to estimate the limiting distribution of the CLRT statistic and to

test for positive associations in the example of stratified case-control studies with

sparse data, as described in Section 5.1. We adopted the method proposed by

Bickel and Sakov (2008) to make a data-adaptive choice on resampling size m,
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with q = 0.85. The results are shown in Section S4 of the online Supplemen-

tary Material. Note that the performance of the m-out-of-n bootstrap method is

between that of the proposed method and the naive method. More specifically,

the empirical type-I error rates of the m-out-of-n bootstrap method are closer to

the nominal levels than the naive method is, but are still very conservative com-

pared with the proposed method. The power loss of the m-out-of-n bootstrap

method was substantial, compared with the proposed method. In addition, the

m-out-of-n bootstrap method required more computational hours than the naive

and proposed methods did. Recently, Chen et al. (2018) proposed a a testing

procedure that can better balance computational simplicity and statistical power

for inference under boundary conditions using likelihoods where the second-order

Bartlett identity does not hold. The proposed method was based on a conditional

technique proposed by Susko (2013) and Bartholomew (1961). The test statis-

tic converges weakly to a simple χ2 distribution with data-dependent degrees of

freedom, given the number of parameters lying on the boundary. It avoids the

calculation of mixing proportions with limited sacrifice of statistical power.

Supplementary Material

In the online supplementary material, we provide detailed proofs for Lemma 1

and Theorem 1, and present an example that uses data on a diagnostic review

of imaging technologies for the surveillance of melanoma, taken from Xing et al.

(2011). We also provide the empirical type-I error rates and power of tests

for positive associations in stratified case-control studies with sparse data, as

described in Section 5.1. Here, we use a composite likelihood ratio statistic and

its limiting distribution, calculated using the m-out-n bootstrap method.
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