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Abstract: Often, when a data-generating process is too complex to specify fully, a
standard likelihood-based inference is not available. However, a composite likeli-
hood can provide an inference based on a partial specification of a data-generating
process. Furthermore, its robustness to model specification and computational
simplicity makes the composite likelihood method widely applicable. This study
conducts a theoretical investigation of the composite likelihood ratio test (CLRT)
when the parameters of interest may lie on the boundary of the parameter space.
Our main result shows that the limiting distribution of the CLRT is equivalent to
that of the likelihood ratio test of a normal mean problem, in which the restricted
mean of a multivariate normal distribution is tested based on one observation from
a multivariate normal distribution with an inverse Godambe information matrix.
Furthermore, we illustrate our general theoretical result by applying it to a variety
of examples. Lastly, our simulation results confirm that the limiting distribution
of the CLRT performs well in finite samples.

Key words and phrases: Boundary condition, composite likelihood, hypothesis test-
ing, likelihood ratio test.

1. Introduction

Likelihood-based inferences are commonly used to model complex data. In
some applications, specifying the data-generating process fully is difficult, or is
not preferred, owing to a lack of knowledge about the true model or computa-
tional challenges. One possible solution is to conduct an inference based on a
partially specified model. Introduced by Lindsay (1988]), the composite likeli-
hood approach has drawn a great deal of attention, and is widely used in many
areas, such as biomedical research (Heagerty and Lele (1998); Molenberghs and
Verbeke (2005)); [Wellner and Zhang| (2000)); [Henderson and Shimakura (2003);
Guan| (2006)); He and Yi (2011))), statistical genetics (McVean et al. (2004); My-
ers et al.| (2005); Larribe and Fearnhead (2011))), geostatistics (Vecchial (1988);
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Nott and Rydén| (1999); |Stein, Chi and Welty| (2004)); Padoan, Ribatet and Sis-
son! (2010))), finance (Bhat, Varin and Ferdous (2010); Varin and Vidoni (2008)),
social science, and many others.

Specifically, a composite likelihood is constructed as the product of a set
of low-dimensional marginal or conditional densities. This approach is especially
useful for modeling correlated data with a complex or unknown dependency struc-
ture, or for reducing a complex likelihood function with a high computational
cost to a much simpler function. For instance, when a working independence
assumption is adopted, the composite likelihood is also called an independence
likelihood (Chandler and Bate (2007)). Because the data-generating process
is partially specified, a composite likelihood inference is more robust than the
standard likelihood-based inference. For further detail on composite likelihood
methods, refer to [Varin, Reid and Firth| (2011)), and the references therein.

In standard hypothesis testing problems, regularity conditions require that
the parameter values are interior points of the parameter space under the null
hypothesis. This assumption guarantees that the composite score function is zero
at the maximum composite likelihood estimate. This first-order condition means
the composite likelihood ratio statistic is asymptotically a mixture of weighted
X3 (Kent| (1982); Molenberghs and Verbeke (2005)). In many important ap-
plications, however, the parameters of interest may lie on the boundary of the
parameter space. This constraint can arise from the definition of the parame-
ter space, or from previous knowledge on the possible range of the parameter.
For example, such a problem is encountered in diagnostic systematic reviews,
which evaluate diagnostic accuracy by pooling the sensitivity and specificity of a
dichotomized diagnostic test from multiple studies (Chen et al.| (2014} 2015)).

As acknowledged in the literature, ignoring the boundary constraints often
leads to a substantial loss of power (Self and Liang (1987); Chen and Liang
(2010))). However, theoretical results for composite likelihood-based inferences
under boundary conditions have not been established. In this study, we aim to fill
this gap by providing the limiting distributions of the composite likelihood ratio
tests (CLRTSs) under boundary conditions. Furthermore, we apply our general
theoretical result to study the following three examples: (1) a stratified case-
control study; (2) diagnostic systematic reviews; and (3) adverse event detection
in medical reports. In our simulation studies, we found that the naive method of
ignoring the boundary constraints is grossly conservative, resulting in up to 48%
less power than that of the proposed test.

The rest of this paper is organized as follows. In Section 2, we define the
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composite likelihood, and introduce applications that include boundary prob-
lems. In Section 3, we first provide several regularity conditions, and then derive
the asymptotic distribution of the CLRT. Here, we also provide a detailed cal-
culation of the limiting distribution when all parameters of interest are on the
boundary. In addition, we consider situations in which a subset of the parameters
of interest lie on the boundary. In Section 4, we revisit the examples in Section
2. In Section 5, we present our simulation studies. Lastly, Section 6 concludes
the paper.

2. Notation and Examples
2.1. Composite likelihood

Let f(x;0) be the probability density function of a multidimensional vector
random variable X, indexed by a p-dimensional parameter § = (1,...,60,)7,
where 6 belongs to the parameter space {2, a subset of RP. We assume model
identifiability, such that distinct values of 6 correspond to distinct probability
distributions. Suppose N independent random variables Xi,..., Xy are ob-
served from the model f(x;60). Let {@A,..., ok} be a set of marginal or con-
ditional events, with associated likelihoods L;(0; <%,) o pr(X; € @:;0), where
k=1,2,...,K and K is the number of events. Following |Lindsay| (1988)), a
composite log likelihood can be construct as

N K
0e(0) =D wilog Li(0; ),
i=1 k=1
where wy, for £ = 1,..., K, are nonnegative weights associated with the like-

lihood L;(0; <%). In particular, in longitudinal data analyses, the composite
likelihood can be constructed by pooling the marginal densities, without consid-
ering the correlation between repeated measurements. The use of this likelihood
is studied by |Chandler and Bate| (2007)). The maximum of the composite likeli-
hood at the parameter value 0. is the maximum composite likelihood estimator.
Denote the first two derivatives of £.(6) as U.(f) and h.(0), respectively. Because
each component of the composite likelihood is a true likelihood, it carries impor-
tant features of the ordinary likelihood; for example, Bartlett identities hold for
each component

E{Sy(0)} =0, and E{—hy(0)} = E{S;(0)}*, for k=1,2,...,K,

where S;;(0) and h;(0) denote the first two derivatives, respectively, of
log L;(6; <%). Because the composite score function U.(f) is a linear combination
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of component score functions S;;(0), U.(f) is an unbiased estimating equation.
Assume that we are interested in testing Hy : 0 = 0y versus Hi : 6 # 6. Standard
regularity conditions assume that 6y is an interior point of the parameter space.
Under some extra regularity conditions, the CLRT, 2{¢,(f.) — £.(6o)}, converges
in distribution to a mixture of independent X% variables (Varin, Reid and Firth
(2011))), where the weights are the eigenvalues of H(6y)G~(6p), with

K K K T
H(9) = —E{ Ewkhik(ﬁ)}, J(6) = E{ Zwksik(e)}{ Zwksik(e)} :
k=1 k=1 k=1

and G(H()) = H(Qo)J_l(Qo)H(Q())

However, in many real applications, 8y may lie on the boundary of the param-
eter space, which makes existing asymptotic results based on the CLRT invalid.
In the following, we present three examples in which boundary problems are
encountered.

2.2. Test for positive associations in stratified case-control studies with
sparse data

The stratified case-control design is widely used in epidemiological and ge-

netic studies. In particular, in the ith stratum, x;1, ..., z;,, denote p x 1 vectors
of potential risk factors of n; cases, and x;n,+1, ..., x;n, denote the potential risk
factors of m; controls, where m; = N;—n; and i = 1,..., K. A logistic regression

model that accounts for stratum-specific effects is
logit pr(y;; = 1 in stratum i|z;;) = o; + ﬁTxij,
i=1,....,K, and j=1,.... N,

where y;; = 1 if the jth subject in the ith stratum belongs to the case group,
and y;; = 0 otherwise. The coefficients 8 quantify the effects of risk factors x;;
on disease status y;;. In the case that n; and m; are uniformly bounded, but
the number of stratum K — oo, the maximum likelihood estimator is known
to be inconsistent. One common technique to solve this problem is to use the
composite likelihood method proposed by Liang (1987)), which extended the well-
known Mantel-Haenszel estimator to logistic regression models with multiple risk
factors. Specifically, for the (j,1) case-control pair of subjects in the ith stratum
(G =1,....,n50 =n; +1,...,N;), the conditional probability that x;; is from
the case, given that one of x;; and x;; is from the case and the other is from the
control, can be calculated as
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BT
€ J
pr(yi; = Lya = Olyij + ya = 1, 245, xa; v, ) = BTz 1 BT
Thus a composite likelihood can be formulated by considering all n;m; possible
pairs within the ith stratum,

LE”

H H 5$z7+€5 Ti

j=1ll=n;+1
A composite likelihood that combines the data from all K strata for 3 is then
constructed by assigning the weight w; to L;(3):

eBTiUij

K
zzzlwzlog{L } szlog H H BTy 1 BT

j=1ll=n;+1

Without loss of generality, we consider the weights w; = N;l, where the max-
imum composite likelihood estimator reduces to the Mantel-Haenszel estimator
when only a binary covariate is considered (Liang (1987)). Suppose some of the
risk factors are known to be positively associated with the occurrence of a disease.

Then, testing the null hypothesis Hy : 8 = 0 is a boundary problem.

2.3. Test for heterogeneity in diagnostic systematic reviews

Diagnostic systematic reviews are a vital step in evaluating the accuracy of a
diagnostic test. For a dichotomized diagnostic test, this usually involves drawing
and comparing the sensitivity (Se) and specificity (Sp) from multiple studies.
However, pooling the data is not straightforward. First, the estimated Se and
Sp are typically negatively correlated between studies (Reitsma et al. (2005)).
Second, there may be substantial between-study heterogeneity in paired indices
(Moses, Shapiro and Littenberg (1993); Irwig et al. (1995)); Rutter and Gatso-
nis| (1995))). Such heterogeneity may arise from differences in study population
characteristics, variability of assessments, and other factors.

To account for these challenges, Chen et al. (2014} |2015) proposed a com-
posite likelihood-based approach that is robust and computationally convenient,
in which they construct a composite likelihood function using an independent
working assumption between Se and Sp. More specifically, considering a diag-
nostic review of m studies, denote n;11, N0, Nio1, and n;19 as the number of
true positives, true negatives, false positives, and false negatives, respectively,
fori=1,...,m. Let n;1 = n;11 + ny10 and n;o = nyo1 + ns00 be the number of
diseased and healthy subjects, respectively, and Se; and Sp; be the study-specific
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Se and Sp, respectively. Assume that

ni11|(nii, Se;) ~ Binomial(nii; Se;),  niool(nio, Sei) ~ Binomial(ngo; Spi),

9(Sei) = X181+ i,  9(Spi) = Z] Ba + pia,

K BN 0 5 T pTIT
1i2 0/’ pTITY T ’

where ¢(+) is a known link function, such as the logit function; X; and Z; are
vectors of study-level covariates, possibly overlapping, related to Se; and Sp;;
72 and 72 capture the between-study heterogeneity in Se and Sp, respectively;
and p describes the correlation between the random effects Se; and Sp; in the
transformed scale.

Ignoring the correlation between Se; and Sp;, a composite likelihood can be
constructed by setting p = 0 in the above model:

le(0) = log {/Q(nill\nil;Sei)¢(5€i;51,712)d56i
i=1

X /Q(ni00|ni0§Spi)¢(5pi§527722)dspi},

where § = (8%, 8%, 71, 72)T, ¢(;-,-) is the probability density function of a uni-
variate logit normal distribution, and ¢(-|-;-) is the probability mass function of
a binomial distribution. In this model, testing for heterogeneity in Se and Sp
across all studies is equivalent to testing Hp : 72 = 72 = 0. This is a hypothesis
testing problem with boundary constraints.

2.4. Signal detection of adverse event (AE) reporting rate

The Vaccine Adverse Event Reporting System (VAERS) is a national vaccine
safety surveillance program that collects information about adverse events (AE)
that occur after the administration of vaccines licensed for use in the United
States (Chen et al. (1994); Niu, Erwin and Braun| (2001)); Shimabukuro et al.
(2015)). The surveillance data are structured in a table format, with vaccine-AE
combinations (i.e., a certain type of AE after a particular vaccination) as the
column variable, and the reporting year as the row variable (Huang, Zalkikar
and Tiwari (2011)). In total, we have I years and J vaccine-AE combinations.
The table cell n;; shows the number of events reported for the jth vaccine-AE
combination during the ith year. The total number of reported cases for the ith
year is the marginal total of the ith row, denoted as n; . The total number of jth

vaccine-AFE combinations across all years is the marginal total of the jth column,
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denoted as n ;. Let n_ denote the total number of events.
To account for the large number of zero cells in our data n;;, we consider the
following zero-inflated Poisson model:
{: 0 with probability wj;;,
nij | Mi., Pij, wij _ . .
~ Poisson(n; p;;) with probability 1 — w;j,
where w;; is the probability of observing a true zero in the ith year and jth
vaccine-AE combination, and p;; is the probability of reported cases in the ith
year and jth vaccine-AE combination. In order to account for the heterogeneity
in the reporting proportion for a fixed jth vaccine-AE combination through year
1990 to 2015 (the most recent reporting year), we further assume that

loglt(pl]) ~ N(50]7T]2)7Z = ]-a <. 7-[7
where fy; = logit(po;), po; is the overall reporting proportion for the jth vaccine-

AE combination across all years and Tj2 represents the variation in the reporting
proportion. Similarly, we assume the weight w;; is defined as follows

logit(wij) ~ N(aoj,52),i = 1, Ce ,I,

where ap; = logit(wp;), wo; is the overall probability of observing a true zero
across all years and (5J2- represents the variation in observing a true zero.

A composite likelihood of the jth vaccine-AE combination can be constructed
by multiplying the marginal densities of n;;, ignoring their correlations:

1 1 pl
le(0) = log {/0 /0 p(nijni; pij, wig)p(pij |p0jasz)p(wij‘w()ja632‘)dpijdwij} :
i=1

where 6 = (woj, Boj,TjQ,(SJQ-). Testing whether the reporting rate is the same
across all years is equivalent to testing the hypothesis Hy : Tj2 = 5? = 0, which is

a boundary problem.

2.5. Additional examples

Other examples of problems with boundary constraints in composite like-
lihood inferences include testing for spatial correlations in a Gaussian random
field model in geostatistics applications (Guan| (2006)), and testing for serially
dependence in time serial data in panel studies (Wellner and Zhang| (2000))).

In the next section, we give our main results. The above examples are

revisited in Section 4.
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3. Main Results
3.1. Regularity conditions

To derive the asymptotic results, we impose the following regularity condi-
tions.

R1: The first two derivatives of £.(#), with respect to 6 on the intersection of
the neighborhoods of the true parameter value, 6y, and 2, exist and are
continuous. If 6y is on the boundary of 2, the derivatives of ¢.(f) are taken
from the appropriate side.

R2: The parameter space ) is compact, the function E{/.(0)} is continuous,
and 0y = argmaxgeq E{l.(0)} is unique. There exists a function A(X)
with finite expectation, such that | Zszl wi log L (0; o,)| < A(X;), for any
0 €.

R3: On the intersection of neighborhoods of 0y and €2, for any 1 < j, k < p, it
holds that | Zszl wi (9% log L;(0; #4,))/(80;00x)| < C(X;), where C(X) is a

function of X with finite expectation.
R4: The variability matrix, J(6), exists and is positive-definite at 6.
R5: The sensitivity matrix, H(#), exists and is positive-definite at 6.

When studying the limiting distribution of an estimator for 6y, we can think
of it as a local problem, because only the values of 6 near 6y are relevant, asymp-
totically. Thus, we assume that the parameter space near 6y can be locally
approximated by a cone. This approach was used by |Chernoff (1954]) and |Self
and Liang| (1987) in the context of likelihood ratio tests.

Definition 1. The set Q) C RP is approximated at 0y by a cone with a vertexr at
90; OQ; Zf

(1) infeecs | 2~y 1= ol y — 0o |I) for all y € ©
and
(2) infyeq ||z —y [|=o(|| x =00 ||), for all z € Cq.

We assume that the parameter space {2 is regular enough to be approximated
by a cone with a vertex at fp, which is mild enough to encompass a wide variety of
shapes for €. In the sections that follow, we first give the asymptotic distribution
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of the CLRT statistic when 6 is on the boundary of 2. Then, we derive the exact
form of the asymptotic distribution in several cases.

For notational simplicity, rewrite the hypothesis Hy : 0 = 6y as Hg : 0 € Qg,
where Qg = {0 : 0 = 0y € Q}. The complement of 2 in 2 is denoted by ;. For
any subset of RP, o, we define L, = supge,, £c(0). We also define the maximum

5(%)

composite likelihood estimator in the parameter space @, 8¢, as that value of 4
in the closure of ¢ that maximizes £.(f). The CLRT statistic can be written as

CLRT = —2(Lg, — Lq).
3.2. Limiting distribution of the CLRT statistic

First, we establish the v/ N-consistency of the maximum composite likelihood

estimator.

Lemma 1. If the regularity conditions R1-R5 hold, then as N — oo, 0. con-
verges to 0y in probability. Moreover, N'/2(0, — 6) = Op(1).

A proof is given in Section S1 of the online Supplementary Material. Now,
we derive the asymptotic distribution of the CLRT.

Theorem 1. If the regularity conditions R1-R5 hold, 6y is a limiting point of
both oy and 1, and the sets Qo and Oy are approximated by nonempty cones Coq,
and Cq,, respectively, then under the null hypothesis, the asymptotic distribution
of the CLRT is the same as the distribution of the likelihood ratio test of 0 € Cq,
against 0 € Cq,, based on one observation from a population with a multivariate
normal distribution with mean 0y and covariance matriz H(6y) = J(60) H (6y)~*,
while the covariance matriz is misspecified as H(0o) ™1 in the likelihood ratio test.

The proof is based on two approximations. First, {2 is approximated by Cq
locally around 6. This is justified by the v/ N-consistency of 0. and the definition
of the approximating cones, given previously. The second approximation follows a
similar argument to that of Self and Liang| (1987)), who used a quadratic function
to approximate the composite likelihood. Further technical details are available
in Section S2 of the online Supplementary Material.

In some special cases, the sensitivity matrix may be equal to the variabil-
ity matrix, for example, in partial likelihood inferences for censored data (Cox
(1975))). In such cases, the misspecified covariance matrix H(6y)~*.J(6p)H (6y) "
is equal to J(6p)~!, and Theorem 1 reduces to Theorem 3 of [Self and Liang
(1987). However, in general, the equality is not satisfied (Molenberghs and Ver-
beke (2005)). The purpose of Theorem 1 is to reduce the general problem of
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computing the limiting distribution of the CLRT to a problem of computing the
distribution of

Qcq, (Z2) = Qoo (Z), (3.1)
where Qu(Z) = infpep {Z — (6 — 60)}" H(00){Z — (6 — 60)}, Co = Ca, U Ca,,
and Z ~ MV N(0,G1(6y)), where G(6p) = H(60)J(00) 1 H(6p) is known as the
Godambe information matrix.

The limiting distribution of the CLRT in equation (3.1]) is still complicated.

In the following, we focus on an important special case in which the representation
given in equation (3.1)) can be simplified further.

3.3. An important special case

Partition the parameter vector, 6, into two parameter sets 7 = ('yT,nT),
where v denotes the parameters of interest that will be tested, and 7 denotes the
nuisance parameters. Then, further partition the parameter vector into four co-
ordinates. Here, we adopt the notation in Self and Liang (1987)): (p11, p12, p21,P—
P11 — P12 — p21), where the first p1; coordinates of 6 represent the parameters of ~y
with true values on the boundary; the next p;2 coordinates represent the parame-
ters of v with true values not on the boundary; the next po; coordinates represent
the first py; components of n with true values on the boundary; and finally, the
remaining p — p11 — p12 — po1 coordinates represent the last p — p11 — p12 — po1
parameters of 1 with true values not on the boundary. Note that p; = p11 + p1o
represents the dimension of v, and p — p; represents the dimension of 7. In the
rest of this paper, we denote the boundary value as zero for ease of presentation.
In the following, we consider a special case in which two parameters of interest
are on the boundary, and the remaining (p — 2)-dimensional nuisance parameters
are not on the boundary; that is, Hy : v = 0, with v = (y1,72), 71 > 0, and
~v9 > 0. All three examples discussed in Section 2 belong to this setting.

The parameter configuration is give by (2,0,0,p — 2). Then, Cq, = {0}? x
RP=% and Cq = [0,4+00)? x RP~2. Partitioning Z7 = (Z,j;,Z,:]F) and G(6p) and
H (0y) with respect to (v,n) as

G G H, H
G = | 7 B H(h) = vy Ham
(o) (Gm Gnn) 7 (%o (Hm Hnn) ’

—1 T —1 44T
Gylp = Gy = GGy Gos Hypy = Hyy — HypHyy  Hp,
with some algebra, equation (3.1]) reduces to
. T
ZYHyyZy — inf  (Zy =) Hypy (Zy— 7).

I Y€[0,+00)?
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Figure 1. Diagram of the parameter space for the special case.

Let H,, = PTP, where P is a 2 x 2 nonsingular matrix, and denote
CN’,Y = {5 :4 = P for any v € [0,400)?} and Z7 = PZ,. Then, the limiting
distribution of the CLRT can be rewritten as

I Zy > = inf || Z, =7 |
yely

where || - || is the usual Euclidean metric. The calculation of the second term in
the above equation depends on the location of Z7 relative to the boundary of CE.
The shaded region in Fig. 1 represents C’w and (0, 0) is the origin. The angle
in the shaded area is less than 180°. This is because that the convexity of C, is
preserved under the linear mapping v — P~. Denote the rotation matrix in a

n by

~ [cos(z) —sin(x) _fa b
B (sin(az) cos(z) > » Haln = (b d) ’

respectively. Further, denote the columns of P by P; and P», and the inner

two-dimensional Euclidean space R? and the matrix H,

product of vectors a and b by (a,b) = bTa. It can be shown that the limiting
distribution of the CLRT is given by

( I Z«, HQN U = >\1X% + )\29(% if Z is in the shaded region,
- 2
P, Z >
CLRT = 2~ 2
P, Z 7
M ~a*x3/a if Z is in region 2,
I Pl
0 if Z is in region 3,
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where A1 and A\ are eigenvalues of H,YMG;“I?, and a* and d* are elements in the

matrix H vam ~|n» such that

a* b*
'Y|77G'y|77 ¥in = <b>k d*>

The mixing probabilities for the shaded region, region 1, and region 2 are

1 [((G'yIn)H)/({(G'yIn)ll( 'yln)22}1/2)]
2T ’
—1 [((O I)G'ym “/\WP Tw/ZPZ)/({(Ovl) 7\7}( )}1/2{PTTZ/2PH 1G

Gl

Ts = COS

LPTT, 1o P }1/?)]

1 = COS D) y
v

Ty = COSil [((170)G~/|nH vn P T_ w/QPI)/({(lvo)Gwln( )}1/2{PTTT /QPHn,\,llG'y\n 7\7, —W/ZPl}l/z)]

- 27 ’

respectively. Thus, the asymptotic distribution of the CLRT is a mixture of
U, d*x3/d, a*x?/a, and x3, with mixing probabilities 7, 71, m2, and 1 — 75 —
m — o, respectively.

4. Examples

4.1. Test for positive associations in stratified case-control studies with
sparse data

Suppose the covariates x;; are p-dimensional, and that two of them are known
to be positively associated with the occurrence of a disease. To test the two
positive associations simultaneously, the null hypothesis is Hy : 1 = [2 = 0,
and the alternative is H, : any of 81,82 > 0. In this case, the parameter vector,
0 = (B1, B2, ... Bp)T, can be partitioned into two sets 87 = (7, nT), for example,
v = (B1,B2)T and n = (Bs,...,B,)T. The parameter configuration is given by
(2,0,0,p—2), Cq, = {0}% x RP~2, and Cq = [0, +00)? x RP~2, which is the same
as the special case discussed in Section 3.3. Thus, the asymptotic distribution of
the CLRT is a mixture of U, d*x?/d, a*x3/a, and X3, with mixing probabilities
ms, w1, w2, and 1 — wg — m; — 7o, respectively, where the weights and mixing
probabilities are calculated using the equations given in Section 3.3.

4.2. Test for heterogeneity in diagnostic systematic reviews

As discussed in Section 2.3, the null hypothesis is Hy : 72 = 73 = 0, and the
parameters involved are 6 = (72,72, 41, B2)7. Partition this into two parameter
sets 07 = (vT,nT), where v = (72,72)T and n = (81,52)7. The parameter
configuration is given by (2, 0, 0, 2), Cq, = {0}? x R%, and Cq = [0, +00)? x R?,
which is the same as the special case in Section 3.3, with p = 4. Thus, the
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limiting distribution of the CLRT is obtained by applying the results in Section
3.3.

4.3. Signal detection of AE reporting rate

To test whether the reporting rate is the same across all years for the jth
vaccine-AFE combination, the null hypothesis can be written as Hy : TjQ = 632- = 0.
)T

Similarly, we partition the parameter vector, § = (72,62 aoj,Bo;)" , into two

72%5
parameter sets 07 = (47, n7), where v = (7]2,5]2-)T and 7 = (agj,Bo;). The
parameter configuration is given by (2, 0, 0, 2), Cq, = {0}? x R?, and Cq =
[0, 4+00)% x R?, which is the same as the special case in Section 3.3, with p = 4.

Thus, the results in Section 3.3 can be applied.

5. Simulation

To explore the finite-sample performance of the theoretical findings, we con-
duct two simulation studies. In the first example, we consider the CLRT in
stratified case-control studies, as discussed in Section 4.1, with p = 3. In the
second example, we test the heterogeneity of the sensitivities and specificities be-
tween multiple studies in diagnostic systematic reviews, as discussed in Section
4.2.

5.1. Test for positive associations in stratified case-control studies with
sparse data

We simulate the data using three continuous covariates, and simultaneously
test B1 = B2 = 0, where 51 and 5 are known to be nonnegative. The nuisance
parameter 3 belongs to (—oo,400). The three covariates are independently
simulated from a standard normal distribution. To mimic the selection procedure
of a case-control study, we simulate 1,000 subjects for each stratum, and selecte
five cases and five controls. The number of strata varies from 25 to 200, and the
simulation is repeated 5,000 times. We compare the type-I error and the power
of the CLRT based on the derived asymptotic distribution with that based on
the naive x2 distribution.

As shown in Table 1, the method based on the derived asymptotic distribu-
tion controls the type-I error very well in all scenarios, whereas the naive method
based on the x3 distribution yields grossly conservative type-I errors based on
5,000 simulations. The power gain is also substantial (up to 48%) using the
derived asymptotic distribution of the CLRT. Thus, the naive method is more
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Table 1. Empirical rejection rates (%) in 5,000 simulations of the CLRT to test for two
regression coeflicients in a stratified case-control study, based on different numbers of
strata K, strata sizes N, and effect sizes.

a=0.10 a=0.05 a=0.01
Rejection (%)  Rejection (%)  Rejection (%)

(61, B2, P3) (K,N) CLRT Naive CLRT Naive CLRT Naive
0,0,01) (25 10) 98 04 47 01 07 00
(50,10) 105 03 52 0.1 1.0 0.0
(100, 10) 9.5 0.2 4.3 0.0 0.6 0.0
(200, 10) 10.1 0.5 4.9 0.1 1.1 0.0
(0.1,0,00) (25, 10) 259 24 157 06 14 00
(50,10) 351 40 226 14 74 01
(100,10) 514 96 375 41 153 0.5
(200, 10) 73.4 25.2 60.9 13.1 35.5 2.2
(0.1,01,00) (25 10) 379 47 250 16 79 01
(50, 10) 56.1 11.0 41.4 4.4 17.9 0.5
(100, 10) 78.1 26.6 64.8 13.8 38.3 2.5
(200, 10) 95.1 62.0 90.0 44.7 73.3 16.2
(0.2, 0.2, 0.2) (25, 10) 76.2 24.5 62.9 12.7 32.7 2.0
(50, 10)  94.1 588 889 409  69.4 144
(100, 10) 99.8 93.0 99.3 84.8 96.3 57.3

)

100.0  100.0  100.0 99.8  100.0 97.6

conservative and less powerful than the method based on the asymptotic distri-
bution of the CLRT.

5.2. Test for heterogeneity in diagnostic systematic reviews

As described in Sections 2.3 and 4.2, we test for the heterogeneity in the
sensitivities and specificities between multiple studies in diagnostic systematic
reviews. We assume the covariates X; and Z; are univariate and independently
generated from a standard normal distribution. We set ¢(-) as the logit function,
and set 51 = ¢(0.95), B2 = ¢(0.90), and n;; = n;p = 50. We simulate 1, fi2
from a bivariate normal distribution with p = —0.8, and 72 = 72 take increasing
values from 0, 0.05, 0.15, to 0.25. Then, n;;1 and n;gy are simulated from the
binomial distribution, as described in Section 2.3. We compare the type-I error
and power of the CLRT based on the derived asymptotic distribution with that
based on the naive x3 distribution under different numbers of studies m.

As shown in Table 2, the method based on the derived asymptotic distribu-
tion controls the type-I error reasonably well at nominal levels of 0.1, 0.05, and
0.01 in all scenarios. However, the naive method yields grossly conservative type
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Table 2. Empirical rejection rates (%) for 5,000 simulations using the CLRT for hetero-
geneity in diagnostic systematic reviews, based on different numbers of studies m.

a=0.10 a=0.05 a=0.01

Rejection (%)  Rejection (%)  Rejection (%)

2 =12 m CLRT Naive CLRT Naive CLRT Naive
0 10 0.6 0.0 0.0 0.0 0.0 0.0
20 2.5 0.3 0.7 0.1 0.0 0.0
40 4.3 1.3 1.8 0.2 0.1 0.0
80 7.0 2.3 3.0 0.8 0.3 0.0
160 9.3 3.2 4.4 1.4 0.6 0.1
0.05 10 33.4 20.3 22.9 12.5 8.8 4.5
20 33.9 20.8 23.1 13.4 9.1 4.8

40 47.1 30.2 34.2 20.1 14.6 8.14
80 57.8 39.7 44.2 29.3 21.7 12.5
160 74.9 58.6 62.7 47.2 37.5 25.5
0.15 10 52.5 36.2 39.9 26.8 20.9 13.8
20 68.7 55.6 99.0 46.6 39.2  28.7
40 71.0 55.8 59.1 46.8 40.7  31.2
80 97.7 95.7 96.2 93.6 91.6 87.3
160  100.0 100.0  100.0 99.9 99.8  99.6
0.25 10 70.6 58.6 62.1 50.3 44.1 34.3
20 92.2 87.2 88.8 82.8 78.2 70.3
40 97.9 96.6 96.9 95.1 93.6 90.4
80  100.0 99.8 99.9 99.8 99.7  99.3
160  100.0 100.0 100.0 100.0 100.0 100.0

I error in this example based on 5,000 simulations. The power gain is up to 15%
as a result of using the asymptotic distribution of the CLRT.

6. Application to a Systematic Review of Modern Imaging Technolo-
gies for the Surveillance of Melanoma

Melanoma is a type of skin tumor that develops from pigment-containing
cells known as melanocytes. Melanoma is a less common type of skin cancer,
but is much more dangerous when not found early, resulting in the majority
(75%) of deaths related to skin cancer (Lo and Fisher (2014)). Modern imaging
technology can be used for the early detection of melanoma metastasis, and pro-
vides a cost-effective surveillance approach (Jemal et al.| (2009)). Currently, the
most commonly used diagnostic imaging technologies for melanoma include ul-
trasonography (US), computed tomography (CT), positron emission tomography
(PET), and a combination of the latter two (PET-CT). In addition to evaluate
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the relative performance of these contemporary diagnostic imaging technologies
in diagnosing melanoma for patients at different stages, for example, regional and
distant lesions, it is also important to quantify the heterogeneity in the imaging
technologies, in terms of their operating characteristics, for example, the vari-
ability in sensitivity and specificity across study populations. Xing et al.| (2011])
conducted a diagnostic review based on 98 published studies of 10,528 patients,
carried out between January 1, 1990, and June 30, 2009. The number of studies
for each diagnostic imaging technology and type of cancer (regional and distant
metastasis) are shown in Table S1 in the online Supplementary Material.

We applied the proposed composite likelihood model described in Section
2.3. Then, we used the proposed CLRT described in Section 3.3 to test for het-
erogeneity in the sensitivities and specificities of the imaging technologies for
different cancer types across multiple studies for seven technology-cancer combi-
nations. Our results show that, when diagnosing regional metastatic melanoma,
all four imaging technologies have significantly heterogeneous sensitivity or speci-
ficity across multiple studies (p < 0.001). In diagnoses of distance metastatic
melanoma, CT and PET have significant heterogeneity of sensitivity or speci-
ficity across studies (p < 0.05), whereas the combination of CT and PET does
not (p > 0.1). Figure S1 in the online Supplementary Material shows the ranges
of the sensitivities and specificities of the imaging technologies when diagnosing
cancer types across studies. Note that the specificities are generally higher than
the sensitivities, in general, and the heterogeneity of specificity is smaller than
the sensitivity across studies for all diagnosis methods. The heterogeneities of
both sensitivity and specificity are higher in the diagnosis of regional metastatic
melanoma than they are for those of distant metastatic melanoma. We also com-
pared the results of the proposed methods to the naive method, which ignores
the boundary constraints. The naive method was more conservative, although
it still identified the significant heterogeneity in the sensitivity or specificity of
the four imaging technologies used to diagnose regional metastatic melanoma,
and in the PET technology used to diagnose distant metastatic melanoma, given
that the magnitudes of these heterogeneities are relatively large. However, the
naive method failed to identify the significant heterogeneity in the sensitivity or
specificity of the CT technology used to diagnose distant metastatic melanoma,
which was identified by the proposed method.
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7. Discussion

In this study, we derive the asymptotic distribution of the CLRT when a
subset of the testing parameters lie on the boundary of the parameter space,
following the work of [Self and Liang (1987)) and |(Chen and Liang (2010)). The
former work studied the asymptotic behavior of the regular likelihood ratio test
when the parameters of interest lie on the boundary. The latter extended the
results to deal with situations when a subset of the parameters of interest are
tested based on the pseudolikelihood of Gong and Samaniego| (1981)). Considering
that the composite likelihood approach has become increasingly popular, and no
previous works have examined the asymptotic behaviors of the CLRT under
boundary constraints, our work strives to fill this gap. Note that the results
presented here are very broad, in that any partially specified models can be
considered a special case of a composite likelihood.

The composite likelihood ratio-based inference under boundary constraints
is a difficult question. Although the asymptotic results derived here yield well-
controlled type-I errors and adequate power, calculating the test statistic becomes
more complicated as the number of boundary parameters increases. Another al-
ternative is to use numerical methods. However, caution is required in terms of
validity, choice of tuning parameters, computational cost, and practical perfor-
mance. For example, standard nonparametric and parametric bootstrap methods
lead to inconsistent estimates when the parameter is on the boundary of the pa-
rameter space (Andrews (2000))). This inconsistency is due to the non-smoothness
of the empirical distribution from which the bootstrap samples are generated.
Andrews (2000) proposed subsampling and m-out-of-n bootstrap methods for ob-
taining consistent estimators of the limiting distributions of test statistics under
boundary constraints. The m-out-of-n bootstrap provides a smoothing operation
on the empirical distribution function, by resampling with replacement a smaller
sample size m from the original n samples, where m is of a smaller order than
n. However, these numerical methods require additional tuning parameters, and
the performance varies in practice. For details of m-out-of-n bootstrap, please
refer to |Politis, Romano and Wolf (1999), and the references therein.

To examine its practical performance, we implemented the m-out-of-n boot-
strap method to estimate the limiting distribution of the CLRT statistic and to
test for positive associations in the example of stratified case-control studies with
sparse data, as described in Section 5.1. We adopted the method proposed by
Bickel and Sakov| (2008) to make a data-adaptive choice on resampling size m,
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with q = 0.85. The results are shown in Section S4 of the online Supplemen-
tary Material. Note that the performance of the m-out-of-n bootstrap method is
between that of the proposed method and the naive method. More specifically,
the empirical type-I error rates of the m-out-of-n bootstrap method are closer to
the nominal levels than the naive method is, but are still very conservative com-
pared with the proposed method. The power loss of the m-out-of-n bootstrap
method was substantial, compared with the proposed method. In addition, the
m~out-of-n bootstrap method required more computational hours than the naive
and proposed methods did. Recently, |Chen et al. (2018) proposed a a testing
procedure that can better balance computational simplicity and statistical power
for inference under boundary conditions using likelihoods where the second-order
Bartlett identity does not hold. The proposed method was based on a conditional
technique proposed by Susko| (2013) and Bartholomew| (1961). The test statis-
tic converges weakly to a simple x? distribution with data-dependent degrees of
freedom, given the number of parameters lying on the boundary. It avoids the

calculation of mixing proportions with limited sacrifice of statistical power.

Supplementary Material

In the online supplementary material, we provide detailed proofs for Lemma 1
and Theorem 1, and present an example that uses data on a diagnostic review
of imaging technologies for the surveillance of melanoma, taken from Xing et al.
(2011). We also provide the empirical type-I error rates and power of tests
for positive associations in stratified case-control studies with sparse data, as
described in Section 5.1. Here, we use a composite likelihood ratio statistic and
its limiting distribution, calculated using the m-out-n bootstrap method.
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