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Abstract: The appearance of massive data has become increasingly common in con-

temporary scientific research. When the sample size n is huge, classical learning

methods become computationally costly in regression analysis. Recently, the or-

thogonal greedy algorithm (OGA) has been revitalized as an efficient alternative in

the context of kernel-based statistical learning. In a learning problem, accurate and

fast prediction is often of interest. This makes an appropriate termination crucial

for OGA. In this paper, we propose a new termination rule for OGA via investi-

gating its predictive performance. The proposed rule is conceptually simple and

convenient for implementation, which suggests an O(
√

n/ logn) number of essential

updates in an OGA process. It therefore provides an appealing route to conduct

efficient learning for massive data. With a sample dependent kernel dictionary, we

show that the proposed method is strongly consistent with an O(
√

logn/n) con-

vergence rate to the oracle prediction. The promising performance of the method

is supported by simulation and data examples.

Key words and phrases: Forward regression, greedy algorithms, kernel methods,

massive data, nonparametric regression, sparse modeling.

1. Introduction

In modern scientific research, collecting data of unprecedented sizes is in-

creasingly frequent. When the amount of data is huge, many traditional model-

ing strategies become computational infeasible. Developing effective and efficient

approaches to analyze massive data has been a recent focus in statistical learning

and data mining. See Li, Lin, and Li (2013), National Research Council (2013),

and Rajaraman, Leskovec, and Ullman (2011), for example.

Unlike data collected from designed experiments, massive data sets are some-

times available only from uncontrolled natural mechanisms. To avoid potential

model mis-specifications, semiparametric or nonparametric methods may be pre-

ferred. In regression analysis, one popular strategy is to build a regression model

based on a set of pre-specified basis functions (dictionary). In particular, learn-

ing from a sample dependent kernel dictionary (SDKD) has received a great
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deal of attention, due to its high modeling flexibility and implementation fea-

sibility (Shi, Feng, and Zhou (2011), Wu and Zhou (2008)). Specifically, let

z = {(yi,xi); i = 1, . . . , n} be n independent observations from the model

Y = f∗(X) + ϵ, (1.1)

where Y is a response variable, X is a p-dimensional covariate vector, and ϵ

is an observational noise with mean zero. We assume that X is random and

independent of ϵ. The goal of learning is to explore the relationship f(X) : X →
Y such that f(X) is a good prediction of Y . Let E(f) = E(|f(X)− Y |2) denote
the predictive error between f(X) and Y . It is known that E(f) is minimized

at f∗(X) = E(Y |X). Thus, f∗ serves as a conceptual oracle prediction. A good

prediction f is expected to be close to f∗. In the SDKD-based approach, the

dictionary is set as

Dz = {K(xi, ·) : i = 1, . . . , n}, (1.2)

where K(·, ·): Rp×Rp → R is a continuous, symmetric, and nonnegative definite

kernel function. The learning task is conducted by exploring f from the functional

space linearly spanned by the elements in Dz, Hz = span{Dz} = {g : g(·) =∑n
i=1 θiK(xi, ·) for θi ∈ R}. In this paper, we are particularly interested in

learning from Dz with a large sample size n (e.g., n > 10, 000).

For learning purposes, various regularization methods have been proposed.

These methods specify f(X) by minimizing a regularized empirical loss. Exam-

ples include but are not limited to the regularized least squares methods (RLS;

Girosi, Jones, and Poggio (1995), De Vito, Caponnetto, and Rosasco (2005))

and the support vector machine (SVM; Cortes and Vapnik (1995), Steinwart and

Christmann (2008)). Although these methods are effective for learning, they are

typically developed for the situation where n is moderate. When the regulariza-

tion methods are applied to datasets with large sample sizes, solving the asso-

ciated optimization problems often involves the inversion of a huge information

matrix. This causes special problems for algorithmic design and memory storage.

In addtion, the large scale of Dz makes tuning these methods a challenging task.

In recent works, the orthogonal greedy algorithm (OGA) has been revitalized

as a computationally convenient alternative for learning (Barron et al. (2008),

Chen, Li, and Pan (2013a), Chen et al. (2013b). It starts from a null model and

explores f(X) based on a series of expanding subspaces. It therefore provides

a stepwise learning framework without the need to handle a huge information

matrix at all steps. Such an “expansion” strategy, in contrast with regularization,

brings many potential computational benefits for learning in large-n situations.

In the literature, OGA and its variants have been widely used for signal

sparse approximation and recovery. See, for examples, Devore and Temlyakov



PREDICTION-BASED TERMINATION RULE FOR OGA 843

(1996), Tropp (2004), Cai and Wang (2011), Wang (2009), and Zhang (2009,

2011). However, it has not drawn much attention for statistical learning with

a focus on prediction. In OGA-based learning, an appropriate termination rule

is crucial. This is analogous to tuning parameter selection in the regularization

methods. Essentially, a termination rule for OGA determines the number of

updating steps k that is needed for an effective prediction. To be specific, let f̂k
denote the prediction obtained from a k-step OGA. It is known that an overly

large k causes overfitting and slows down the learning process. Meanwhile, a

parsimonious k often makes f̂k an unreliable prediction due to the inadequate

training. Barron et al. (2008) suggested picking a k that minimizes a penalized

empirical risk

k′ = arg min
k∈Nn

{ n∑
i=1

(f̂k (xi)− yi)
2 + κk log(n)

}
, (1.3)

where Nn = {1, 2, . . . , n} and κ is a positive constant. The final prediction f̂k′

therefore comes from a compromise between goodness of fit and model complex-

ity. Although f̂k′ is shown to be consistent, a full OGA running (n-step) is often

needed before k′ can be determined. Thus, implementing (1.3) can be time con-

suming in large n situations. Moreover, as Barron et al. (2008) recommended a

large value for κ, rule (1.3) tends to select a k′ that may be overly small in ap-

plication. Addressing the same issue under a slightly different framework, Chen,

Li, and Pan (2013a), Chen et al. (2013b) proposed terminating OGA when

n∑
i=1

(f̂k (xi)− yi)
2 + n

∥∥∥f̂k∥∥∥
l1
≤

n∑
i=1

y2i (1.4)

is satisfied with ∥f∥l1 = inf {
∑

i |θi| : f =
∑

i θiK(xi, .)}. Despite its theoretical

feasibility, (1.4) often leads to a long updating procedure that makes it inefficient

for massive data analysis; see Section 3.2. Recently, Ing and Lai (2011) studied

the predictive performance of OGA in high-dimensional linear models. They sug-

gested that, if f∗ is linear in X and has a weak sparse representation, OGA may

only need k ≪ n updates for an accurate prediction. However, this encouraging

result is not directly applicable to non-parametric statistical learning.

The existing literature prompts us to seek a new termination rule that gears

OGA to learning with massive data. In particular, we conjecture that a sensible

k can be selected directly based on a discrepancy measure between f̂k and the

oracle f∗. Compared with the aforementioned methods, such a strategy may

provide more straightforward insights on k, which helps to conduct an efficient

learning procedure. In this spirit, we propose a prediction-based termination rule

(PTR) for using OGA in learning with massive data. This rule treats L(f̂k) =
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E(f̂k − f∗)2 (i.e., generalization error) as a natural discrepancy measure for f̂k
and selects a k∗ such that L(f̂k∗) is properly bounded. Specifically, it suggests

k∗ = O(
√

n/ log n) for OGA-based learning, which efficiently leads to a prediction

with an O(
√

log n/n) convergence rate to f∗. Since k∗ ≪ n for the large n

situations, PTR makes the associated OGA computationally attractive. The

scale of k∗ also suggests a sparse kernel basis for estimating a general f∗. To

some extent, this finding provides a theoretical justification for the sparse model

assumption that is commonly used in signal recovery and feature selection. Under

mild conditions, we further show that the OGA procedure implemented by PTR

is strongly consistent to the oracle prediction f∗. The promising performance of

the new method is supported by a series of simulations and data examples.

The rest of this paper is organized as follows. In Section 2, we propose the

new PTR for OGA and assess its theoretical properties. In Section 3, we show

numerical studies to demonstrate the good performance of PTR, especially in

large-n situations. Finally, we conclude in Section 4 with some remarks. The

proofs of theorems are given in the online Supplementary Material.

2. Termination for the OGA-based Learning

2.1. The OGA framework

Following earlier notation, suppose that Y ∈ [−M,M ] ⊂ R1 for some positive

constant M and X ∈ X ⊂ Rp for some compact set X with a positive Lebesgue

measure. The goal of learning is to find a good prediction of Y by analyzing a

set of training samples z = {(yi,xi); i ∈ Nn}.
OGA is a stepwise method that seeks the best prediction from a series of

expanding subspaces of F : X → R1. It outputs the final prediction when the

updating procedure meets a certain termination criterion. Before it is applied

to statistical learning, OGA was also known as orthogonal matching pursuit or

projection pursuit regression (Friedman and Stuetzle (1981), Mallat and Zhang

(1993), Pati, Rezaiifar, and Krishnaprasad (1993)). One can refer to Temlyakov

(2003) for more history about this method.

For the convenience of presentation, we introduce additional notation as

follows. For any given z and f, g ∈ F , we define the empirical inner product and

the empirical norm, respectively, by

< f, g >n=
1

n

n∑
i=1

f(xi)g(xi), ∥f∥2n =
1

n

n∑
i=1

|f(xi)|2.

We treat an arbitrary vector u = (u1, . . . , un)
T ∈ Rn as a degenerated function

on X , so that

< f,u >n=
1

n

n∑
i=1

f(xi)ui(xi) =
1

n

n∑
i=1

uif(xi).
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For a given kernel function K(·, ·), we set

D∗
z =

{ K(xi, ·)
∥K(xi, ·)∥n

: i ∈ Nn

}
as a normalized dictionary based on z. This forms a candidate learning space

Fz = {TM [f ] : f ∈ span{D∗
z}},

where

TM [f(·)] =

{
sign[f(·)]M, |f(·)| > M,

f(·), |f(·)| ≤ M,

is a truncating operator.

With above settings, we present the OGA-based learning procedure as the

following algorithm.

Algorithm 1 (OGA).

Input: z, M , K(·, ·), k∗

Output: f̂k∗

Compute D∗
z and set k = 1, V0 = ∅, r0 = y = (y1, . . . , yn)

T .

When k ≤ k∗, recursively do substeps a-d:

a Update the active set by Vk = Vk−1 ∪ {gk}, where

gk = argmax
g∈D∗

z

|< rk−1, g >n| .

b Let gk = (g1, . . . , gk)
T . Compute

β̂k = argmin
βk

∥y − gT
k βk∥2n,

and update the estimate by fk = gT
k β̂k.

c Update the residual by rk = y − (fk(x1), fk(x2), ..., fk(xn))
T .

d Increase the number of steps k by one.

Output f̂k∗ = TM [fk].

Here OGA never selects the same atom twice because a selected atom is

orthogonal to the current residual. Compared with the regularization method,

OGA is essentially a forward-searching procedure that avoids direct storage and

operations on the full model. This framework brings many computational bene-

fits to learning in large-n situations.
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2.2. Termination strategy

Although OGA provides an appealing route for learning, an appropriate k∗

needs to be determined in applications. The efficiency of OGA relies heavily
on the choice of k∗, which indicates the number of basis functions included in
f̂k∗ . For statistical learning, a good choice of k∗ should make f̂k∗ an accurate
prediction of Y .

To be specific, suppose that Z = (Y,X) follows an unknown distribution ρ
on [−M,M ]× X ⊂ Rp+1. We use ρX to denote the marginal distribution of X.
For an arbitrary function f(X), we take

∥f∥2ρX =

∫
X
f(X)2dρX

as a norm with respect to ρX . Under model (1.1), the predictive error of an
arbitrary f(X) can be measured by

E(f) = E(|f(X)− Y |2), (2.1)

which attains its minimum at f = f∗. Therefore,

L(f̂k) = E(f̂k)− E(f∗) = ∥f̂k − f∗∥2ρX (2.2)

serves as a discrepancy measure between f̂k and the oracle f∗ in terms of the
predictive power. Accordingly, an ideal k∗ should be selected such that L(f̂k) is
minimized at k = k∗. In the machine learning community, term (2.2) is often
referred to as the generalization error.

Although an optimal k∗ is desirable, it is only conceptual because the oracle
f∗ is unknown. One feasible idea is then to find a good k∗ such that L(f̂k∗)
is properly controlled. In the literature, several rules have been proposed for
choosing a k∗ such that f̂k∗ has a balanced goodness of fit and model complexity.
We propose selecting a sensible k∗ through bounding L(f̂k) directly. This strat-
egy may help to provide more straightforward insights on k∗ for the prediction
purpose.

Since f̂k is obtained based on n independent and identically distributed
(i.i.d.) samples of Z, L(f̂k) is random with respect to probability measure ρn. To
provide some guidance on choosing k∗, we derive a probability bound for L(f̂k).

Proposition 1. Let f̂k be the k-step OGA output defined by Algorithm 1. Then,
for any 0 < δ < 1 and h ∈ span{D∗

z}, when n is sufficiently large, the following
holds with probability at least 1− δ

L(f̂k) ≤ C
{
∥f∗ − h∥2ρX + log

2

δ

(∥h∥2l1
k

+
∥h∥2∞ + k log n

n

)}
, (2.3)

where C is a positive constant and ∥.∥∞ denotes the function L∞ norm.
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The proof is given in the online Supplementary Material. Proposition 1

implies that, with a high confidence level, the generalization error of f̂k is bounded

by a quantity depending on k and h. This result extends Theorem 3.1 of Barron et

al. (2008) in the sense that the error bound holds for f̂k with any k ≥ 1. It reveals

an intrinsic predictive property for an arbitrary k-step OGA and therefore serves

as a useful tool for choosing an appropriate k∗. Since we assume ∥f∗∥∞ ≤ M ,

(2.3) attains its minimum with an h that is bounded above. Thus, a sensible

k∗ may be selected based on (2.3) with ∥h∥l1 ≤ T for some constant T > 0.

Heuristically, it is reasonable to set

k∗ = argmin
k

{T 2

k
+

k log n

n

}
= T

√
n

logn
, (2.4)

which minimizes (2.3) in k with ∥h∥l1 = T . Because (2.4) is derived from a

probability bound of L(f̂k), we name it as the prediction-based termination rule

(PTR).

As opposed to other rules in the literature, PTR provides a straightforward

insight on the scale of k∗. When n is large, PTR tends to pick a k∗ that is much

smaller than n. The sensible choice of k∗ makes the associated OGA procedure

computationally attractive. The proposed termination rule indicates that, for

prediction, only a few OGA updates may be needed. This amounts to suggesting

a sparse kernel basis that is essential for effective learning. With such a sparse

basis, researchers can further interpret the model parameters and conduct fast

predictions for the future responses. PTR is convenient for implementation,

because it does not involve large-scale ad hoc evaluations in the OGA process.

Simplicity gives the new rule an additional advantage for the analysis of massive

data.

The choice of T in (2.4) should reflect the prior information on f∗. Our

empirical experience suggests that choosing T ≤ 1+ log p is usually adequate for

conducting accurate prediction. The term log p is added to reflect the intuition

that the higher dimensionality of X often leads to longer OGA updating to

achieve an accurate prediction. Since OGA is computationally less demanding,

it is convenient to tune a proper T for a specific case. In our simulation studies,

the value of T was selected among a few candidates based on the high-dimensional

Akaike information criterion (HDAIC; Ing and Lai (2011)); see Section 3.1 for

more details. This empirical choice on T works reasonably well in our numerical

examples, and thus we recommend it for the practical implementation of PTR.

2.3. Consistency of PTR

We now provide some theoretical justifications for using Algorithm 1 with

k∗ decided by PTR (2.4), and refer to it as the PTR-based OGA procedure. In
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statistical learning, a good prediction rule is expected to approach the oracle

f∗ arbitrarily closely as the sample size increases. Such a property is typically

referred to as consistency. It is therefore important to first investigate whether

the proposed PTR leads to a consistent prediction.

For learning with a SDKD, the effectiveness of a method relies on the sam-

pling scheme as well as the choice of kernel K(·, ·). For convenience, let C(X ) be

the family of continuous functions on X and supp(·) denote the support set of a

measure. We assume the following technical conditions are satisfied.

C1 supp(ρX) = X .

C2 Let HK = span{KX : KX = K(X, .), X ∈ X} be the reproducing kernel

Hilbert space associated with K(·, ·). For any ω > 0 and f ∈ C(X ), there

exists a g ∈ HK such that ∥f − g∥ρX ≤ ω.

Condition C1 guarantees that X is an effective sampling space for random vari-

able X. Condition C2 is the notion of universal kernel proposed by Micchelli,

Xu, and Zhang (2006). Under our model setup, many choices of K(·, ·) satisfy

this condition; they include the Gaussian kernel as a special case. One can refer

to Micchelli, Xu, and Zhang (2006) for more discussion on universal kernels.

For asymptotic analysis, we associate both dictionary D∗
z and prediction f̂k∗

with sample size n.

Theorem 1. Let f̂k∗ be the output obtained from Algorithm 1 with k∗ decided by

GTR. If C1 and C2 are satisfied, then P{limn→∞ L(f̂k∗) = 0} = 1.

The proof is given in the online Supplementary Material. Theorem 1 shows

that f̂k∗ converges to the oracle prediction in an almost sure sense. Since X is

an arbitrary compact set with a positive Lebesgue measure in Rp, Theorem 1

applies to a wide range of distributions on X. Our result is closely related to the

notion of universal strong consistency defined by Györfy et al. (2002).

Remark 1. Theorem 1 is established under the assumption that both Y and

X are bounded, which might be a little restrictive. Similar assumptions have

been commonly used in the literature of kernel-based statistical learning (see

e.g., Barron et al. (2008), Chen et al. (2013b)). By using truncation techniques,

this assumption may be further relaxed by requiring only E(Y 2) < ∞. However,

such a relaxation likely requires a lengthy proof. We leave this issue for future

research.

Under our model setup, f̂k∗ has a diminishing generalization risk as the

sample size increases.

Corollary 1. Under conditions of Theorem 1, as n → ∞, E[L(f̂k∗)] → 0.
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Proof. Note that f∗(X) = E(Y |X) ∈ [−M,M ] and f̂k∗(X) ∈ F∗
z . We have

L(f∗) bounded by 4M2. The corollary is implied by the almost sure convergence

of L(f∗).

2.4. Convergence rate

While the consistency justifies the effectiveness of f̂k∗ , it provides less insight

on the efficiency of a learning procedure. To further assess the proposed PTR,

we investigate the convergence rate of E[L(f̂k∗)] under the following technical

condition.

C3 When n is sufficiently large, there exists a h′ ∈ span{D∗
z} such that

∥h′∥l1 ≤ B and ∥f∗ − h′∥∞ ≤ Bn−r

for some positive constants B and r.

Condition C3 corresponds to the L1,r space introduced in Barron et al. (2008).

Similar conditions have been commonly used for investigating OGA in sparse

approximation (see, e.g., Devore and Temlyakov (1996)). It is satisfied when f∗

has a representation in HK with a bounded l1 norm and a power-decayed tail.

The condition might be too stringent when the dimensionality of X is high. We

only use it to gain some understanding of the proposed PTR and do not intend

to make this condition the weakest possible. See Barron et al. (2008) for more

detailed discussion about C3.

Theorem 2. Suppose that Condition C3 is satisfied with r > 0.5, then

E[L(f̂k∗)] = O(

√
log n

n
).

The proof is given in the online Supplementary Material. It is known that

when an n-step OGA is used for approximating a known function, the essential

convergence rate is O(n−1/2), which cannot be generally improved without fur-

ther conditions (Devore and Temlyakov (1996)). Theorem 2 implies that, up to

an O(
√
log n) term, the PTR-based OGA approaches the unknown f∗ almost

as efficiently as a full OGA run. We suspect that the O(
√

log n/n) rate might

be nearly optimal for a SDKD-based learning, as additional cost needs to be

assessed for the truncated dictionary as well as the observational noise.

Remark 2. The convergence rate in Theorem 2 is applicable to PTR (8) with an

arbitrary scale parameter T > 0. In practice, we suggest tuning an appropriate T

from a finite set of candidate values. Thus, this rate is also generally applicable

to PTR with a user-specified T .
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2.5. Implementation issue

With the aid of PTR, OGA is geared to conducting efficient learning with

massive data. In this subsection, we provide an efficient implementation proce-

dure for it.

In Algorithm 1, computing β̂k from step b involves a least squares problem

with the solution

β̂k = (QT
kQk)

−1QT
k y, (2.5)

where Qk is a n × k matrix with the element in the ith row and jth column

being gj(xi). When a long OGA run is needed, a direct implementation of (2.5)

might be numerically less efficient. To further reduce computational burden, an

iterative form of β̂k is often used in practice. Specifically, letQ+
k = (QT

kQk)
−1QT

k

and Qk = (q1, . . . , qk) with qj = (gj(x1), . . . , gj(xn))
T for j ∈ Nk.

Proposition 2. In the updating procedure of Algorithm 1, for k ≥ 1, β̂k in step

b has form

β̂k+1 =

(
β̂k − ckQ

+
k qk+1

ck

)
,

where ck = qTk+1rk[q
T
k+1(I −QkQ

+
k )qk+1]

−1.

See Elad (2010) or Sturm and Christensen (2012) for the proof. Proposition

2 provides a convenient tool for implementing OGA. Specifically, given Q+
k at the

k-th step, β̂k+1 can be efficiently computed without complex operations. Based

on Proposition 2, we advocate the following algorithm as an efficient implemental

procedure for Algorithm 1.

Algorithm 2 (fast-OGA).

Input: z, M , K(·, ·), k∗

Output: f̂k∗

Compute D∗
z and set k = 1, r1 = y, V1 = {g1}, where

g1 = arg max
g∈D∗

z

|< r1, g >n| .

Let

β̂1 =
< y, g1 >n

< g1, g1 >n
, Q+

1 =
n−1qT1

< g1, g1 >n
, f1 = β̂1g1.

When k ≤ k∗, recursively do a-d substeps:

a Let Vk+1 = Vk ∪ {gk+1}, where gk+1 = argmaxg∈D∗
z
|< rk, g >n|.
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b Set

ak =
1

qTk+1[I −QkQ
+
k ]qk+1

, ck = akq
T
k+1rk.

Update

β̂k+1 =

(
β̂k − ckQ

+
k qk+1

ck

)
,

Q+
k+1 =

(
Q+

k {I − akqk+1q
T
k+1[I −QkQ

+
k ]}

akq
T
k+1[I −QkQ

+
k ]

)
,

and fk+1 = gT
k+1β̂k+1.

c Update rk+1 = y −Qk+1β̂k+1.

d Increase the number of steps k by one.

Output f̂k∗ = TM [fk].

3. Numerical Studies

We evaluated the finite sample performance of PTR with simulations and

data examples. We compared PTR with other popular termination rules in terms

of both computational efficiency and predictive accuracy. We conducted compar-

isons between the PTR-based OGA and regularization methods. All numerical

studies were implemented by MATLAB 8.2 on a windows workstation with 8-core

3.07GHz CPUs.

3.1. Simulations

We assessed the performance of PTR on a hypothetical learning problem

with p = 1. We generated independent observations z = {(yi,xi), i ∈ Nn} based

on model (1.1) with

f∗(x) =

{
sin(20x−10)

20x−10 , x ∈ [0, 0.5) ∪ (0.5, 1],

1, x = 0.5,

and ϵ ∼ N(0, 0.1). We adopted two sampling schemes: in the first scheme, we

sampled X from a uniform distribution on [0, 1]; in the second scheme, we sam-

pledX from a truncated normal distribution on [0, 1] with mean 0.5 and standard

deviation 0.25. These two schemes represent proportional and disproportional

sampling designs. Under each sampling scheme, we set n =1,000, 5, 000, 10, 000

and estimated f∗ through analyzing z.

To learn f∗, we applied the proposed PTR to OGA based on a Gaussian

kernel
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K(x1,x2) = exp
(
−

∥x1 − x2∥22
τ2

)
, (3.1)

with τ = 0.1 and ∥.∥2 denoting the L2 norm. To facilitate computation, we imple-

mented OGA by Algorithm 2 and set PTR with T ∈ T = {m(1+ log p)/20;m =

1, . . . , 20}. The final k∗ for OGA was decided by the PTR with a T ∈ T that

minimized

HDAIC(T ) = n log(∥y − f̂k(T )(X)∥2n) + 2k(T ) log n,

where k(T ) is the largest integer smaller than the PTR value with respect to

T . For comparison, we also carried out OGA based on termination rules (1.3)

and (1.4). For (1.3), Barron et al. (2008) suggested using κ = 2, 568M4(a + 5),

where a ≥ 1 indicates the total number of basis functions taken to be na. We

followed their recommendation by setting M = 1 and a = 1 according to our

setup. Moreover, we compared PTR with the termination rules used in Theorem

7 of Cai and Wang (2011) and Theorem 4 of Zhang (2009), which were proposed

for using OGA in sparse recovery. We refer to these rules as TR1, TR2, TR3,

and TR4, respectively, based on their orders of presentation. As a benchmark,

we further report the results from the support vector regression (SVR). In our

simulation studies, we implemented SVR by MATLAB package LIBSVM, where

a default 0.1-insensitive loss was used and λ was similarly tuned by HDAIC.

The performance of each method was evaluated on its goodness of fit, predic-

tive accuracy, model complexity, and computational cost. We measured goodness

of fit through the training root mean squared error

Tr-RMSE(f̂) =
{ 1

n

n∑
i=1

∣∣∣f̂(xi)− yi

∣∣∣2 }1/2
.

To assess the predictive accuracy, we generated an independent testing set z̃ =

{(ỹi, x̃i), i ∈ NT for T = 1, 000} from Y = f∗(X) with X ∼ U [0, 1] and computed

the testing root mean squared error

Ts-RMSE(f̂) =
{ 1

T

T∑
i=1

∣∣∣f̂(x̃i)− ỹi

∣∣∣2}1/2
.

The model complexity, k, was reported as the number of basis functions included

in each fitted model. For efficiency comparisons, we recorded the absolute com-

puting time (in seconds) for conducting each method and denote it by TIME.

The simulation results are summarized in Tables 1−2, where the statistics

are averaged based on 300 independent repetitions. For Tr-RMSE and Ts-RMSE,

we provide the corresponding standard errors in brackets. From these results,

we observe that the performance of OGA varies drastically according to different
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Table 1. Simulation results under the uniform sampling scheme.

Methods Tr-RMSE Ts-RMSE TIME k

n = 1, 000
PTR 0.099 (0.002) 0.010 (0.002) 0.2 9
TR1 0.502 (0.011) 0.389 (0.012) 52.2 0
TR2 0.099 (0.002) 0.014 (0.002) 52.2 1,000
TR3 0.106 (0.002) 0.039 (0.006) 0.4 22
TR4 0.139 (0.007) 0.096 (0.010) 0.3 9
SVR 0.099 (0.002) 0.019 (0.003) 1.4 315

n = 5, 000
PTR 0.099 (0.001) 0.006 (0.001) 1.9 10
TR1 0.402 (0.005) 0.390 (0.011) 1,256.3 0
TR2 0.099 (0.001) 0.006 (0.001) 1,256.3 5,000
TR3 0.103 (0.001) 0.024 (0.004) 1.9 18
TR4 0.111 (0.003) 0.048 (0.007) 1.8 15
SVR 0.099 (0.001) 0.007 (0.001) 15.7 1,584

n = 10, 000
PTR 0.100 (0.001) 0.004 (0.001) 6.2 9
TR1 0.403 (0.003) 0.389 (0.011) 16,533.1 0
TR2 0.010 (0.001) 0.004 (0.001) 16,533.1 10,000
TR3 0.102 (0.001) 0.021 (0.003) 6.1 17
TR4 0.107 (0.002) 0.038 (0.005) 6.1 15
SVR 0.099 (0.002) 0.005 (0.001) 44.3 3,163

termination rules. For TR1, a null model (k = 0) is consistently selected, which

results in an improper prediction with both high Tr-RMSE and Ts-RMSE. In

addition, since TR1 selects k based on a full OGA run, the whole procedure

requires a high computational cost. Unlike the stringency of TR1, method TR2

leads OGA to the other extreme, where k is chosen as the sample size n. Despite

the satisfactory Ts-RMSE, TR2 is computationally costly for large n cases and

brings little interpretive value in the fitted model. For TR3 and TR4, a small

k is picked for OGA and thus the procedure is computationally less intensive.

However, as reflected by the high Ts-RMSE, these rules fail to provide effective

predictions in our setup. In contrast, the performance of PTR is generally sat-

isfactory. In each case, it picks a proper k ≪ n and accurately predicts Y with

a high efficiency. Compared with SVR, PTR suggests models with higher spar-

sity; these models are useful for conducting fast predictions for future responses.

Moreover, it requires about 8 times less computational cost in n = 10, 000 cases.

Such a numerical advantage makes PTR attractive for massive data analysis.

As an illustration, in Figure 1 we show an OGA procedure in terms of Tr-

RMSE, Ts-RMSE, and TIME based on a typical example for n =1,000 under the
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Table 2. Simulation results under the truncated normal sampling scheme.

Methods Tr-RMSE Ts-RMSE TIME k

n = 1, 000
PTR 0.099 (0.002) 0.017 (0.004) 0.2 9
TR1 0.502 (0.011) 0.389 (0.012) 52.2 0
TR2 0.099 (0.002) 0.023 (0.004) 52.2 1,000
TR3 0.104 (0.003) 0.041 (0.009) 0.4 17
TR4 0.142 (0.006) 0.098 (0.012) 0.3 8
SVR 0.099 (0.002) 0.019 (0.005) 1.4 317

n = 5, 000
PTR 0.099 (0.001) 0.009 (0.002) 1.9 10
TR1 0.501 (0.005) 0.388 (0.011) 1,256.3 0
TR2 0.099 (0.001) 0.008 (0.002) 1,256.3 5,000
TR3 0.103 (0.001) 0.028 (0.005) 1.8 16
TR4 0.118 (0.002) 0.049 (0.008) 1.8 13
SVR 0.099 (0.001) 0.009 (0.002) 15.3 1,584

n = 10, 000
PTR 0.100 (0.001) 0.007 (0.001) 6.1 10
TR1 0.501 (0.003) 0.391 (0.012) 16,533.1 0
TR2 0.099 (0.001) 0.006 (0.001) 16,533.1 10,000
TR3 0.105 (0.001) 0.023 (0.004) 6.2 16
TR4 0.106 (0.002) 0.039 (0.006) 6.2 14
SVR 0.100 (0.001) 0.007 (0.001) 45.2 3,171

uniform sampling scheme. Here as the number of steps k increase, the OGA esti-

mator better fits the training data, but an overly large k does not help to improve

predictive accuracy and leads to a high computational cost. In this example, the

proposed method picks k = 9, which leads to high predictive accuracy with a

low computational cost. The effectiveness of PTR is further illustrated in Fig-

ure 2, where a close match is observed between the oracle f∗ and the prediction

obtained by the PTR-based OGA.

3.2. Remarks for TR1 and TR2

In our simulation studies, we observed that both TR1 and TR2 are less

effective in suggesting an appropriate k for OGA. In this subsection, we provide

further remarks regarding these two termination rules.

For picking a k′ > 0, TR1 requires that

∥f̂k − y∥2n + κ
k log(n)

n
≥ ∥f̂k′ − y∥2n + κ

k′ log(n)

n
≥ κ

k′ log(n)

n
(3.2)



PREDICTION-BASED TERMINATION RULE FOR OGA 855

Figure 1. An illustration example for the uniform sampling scheme with n =1,000.

Figure 2. Plot of the PTR-based OGA for the illustration example.
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Table 3. Specifications of real-world regression datasets.

Data sets Sample size (n) Dimension (p)

Boston housing 506 13
ENB2012 768 8
Bank 4100 8
Delta ailerons 7130 5
Delta elevator 9517 6
House8L 22784 8
CASP 45730 9

for any k < k′. As ∥f̂k − y∥2n ≤ 4M2, (3.2) implies

(k′ − k) ≤ 4nM2

κ log(n)
. (3.3)

Taking κ = 2568M4(a + 1) into (3.3), we have a necessary condition for k′ > 0

to be

k′ ≤ n

642M2(a+ 5) log n
. (3.4)

However, even in the simple case where k′ = 3, M = 1, and a = 1, (3.4) holds

only when n is approximately over 140, 000. Thus, in applications, TR1 is likely

to be overly stringent for OGA-based learning.

For TR2, the OGA procedure is terminated when (1.4) is satisfied, but our

simulation examples suggest that (1.4) is difficult to meet in applications. To gain

some insight, suppose that Y = f∗(X) = θφ(X), where θ is a model parameter

and φ ∈ D∗
z is the basis function selected by OGA with k = 1. In this situation,

the right hand side of (1.4) bounded by nθ2, while the left hand side of (1.4) is

n|θ| for any k ≥ 1. Thus, when θ ∈ (−1, 1), condition (1.4) can be never satisfied

and TR2 necessarily leads to k = n. This simple example indicates that TR2 can

lead to long OGA updating for huge n cases and thus is not suitable for massive

data analysis.

3.3. Data examples

We now assess the proposed method on seven datasets from a variety of

disciplines. Table 3 contains their sample sizes and dimensions. Refer to http:

//archive.ics.uci.edu/ml/datasets.html for background and detailed infor-

mation. For each dataset, we denote by y(i) the ith order statistics of the response

y = {yi, i ∈ Nn} and normalize the observations by

ỹi =
yi − y(1)

y(n) − y(1)
.

http://archive.ics.uci.edu/ ml/datasets.html
http://archive.ics.uci.edu/ ml/datasets.html
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Table 4. Results for analyzing the real-world datasets.

PTR SVR

Data sets Tr-RMSE Ts-RMSE TIME k Tr-RMSE Ts-RMSE TIME k

Boston h. 0.073(0.003) 0.081(0.011) 0.5 24 0.070(0.002) 0.079(0.015) 0.3 62

ENB2012 0.067(0.002) 0.069(0.003) 0.6 16 0.067(0.001) 0.069(0.002) 0.6 56

Bank 0.043(0.001) 0.043(0.001) 1.8 38 0.045(0.001) 0.045(0.001) 7.3 94

Delta ail. 0.038(0.001) 0.039(0.001) 3.3 23 0.041(0.001) 0.042(0.001) 9.4 147

Delta ele. 0.054(0.001) 0.053(0.001) 5.6 52 0.054(0.001) 0.054(0.002) 87.2 489

House8L 0.062(0.001) 0.064(0.002) 32.4 104 0.072(0.001) 0.074(0.002) 232.4 1408

CASP 0.049(0.001) 0.052(0.002) 188.7 168 0.053(0.001) 0.056(0.002) 536.5 1276

The dataset was then randomly split into two parts: a training set with size

n0 = ⌊4n/5⌋ and a testing set with size n1 = n − n0, where ⌊.⌋ denotes the

integer rounding operator. We applied the PTR-based OGA to the training set

with the same setting used in simulations and assessed its performance based on

the testing set. For the learning purpose, the Gaussian kernel was used, where

σ was tuned within [2−5, 25] based on a few pilot OGA runs on the full data.

The results are summarized in Table 4 with the same indices as Table 1. The

reported statistics are based on 300 independent replications. For comparison,

the performance of SVR is also reported. We exclude methods TR1-TR4 from

these analyses due to implementation issues.

From Table 4, both PTR and SVR perform reasonably well in terms of

predictive power. This is seen in their low Tr-RMSE values in all cases. Although

SVR tends to be efficient when n is small, it is computationally costly for large

n cases. In comparison, the PTR-based OGA provides accurate predictions with

models of high sparsity, where promising numerical advantages are also observed.

4. Concluding Remarks

We have developed a new termination rule PTR for OGA-based statistical

learning. In the proposed method, the number of updating steps of OGA is deter-

mined such that the generalization error of the associated estimator is properly

bounded. The new rule is conceptually simple and convenient for implemen-

tation, which gears the OGA method to the analysis of massive data. With a

proper SDKD, we showed that the PTR-based OGA procedure is strongly consis-

tent and achieves an O(
√

log n/n) convergence rate to the oracle prediction. In

applications, PTR accelerates the OGA learning process by suggesting a sparse

model with only k∗ = O(
√

n/ log n) basis functions. The promising performance

of proposed method has been supported by both simulation and data examples.
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The proposed PTR suggests that it is sufficient to use a sparse kernel basis to

estimate a general regression function. This implies that a good learning model

can be directly built from a subset of SDKD with at most k∗ elements. This

helps one conduct more efficient learning procedures for large-n situations. We

leave this topic for further research.

Supplementary Materials

The proofs of Proposition 1 and Theorems 1−2 are in the online supplemen-

tary material.
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