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Abstract: In this paper, we propose simultaneous confidence bands for the non-

parametric link function in single-index models in the presence of a nuisance index

parameter. We establish the asymptotic properties for the link function and its

derivative that allow simultaneous confidence bands for various inference tasks. In

addition, we propose an adaptive Neyman test statistic for testing the linearity of

the link function. We then conduct simulation studies to evaluate the performance

of the proposed method, and apply them to two data sets for illustration.
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1. Introduction

In essence, a single-index model (SIM) is a linear regression model with

a nonparametric link function. It provides a parsimonious way to implement

multivariate nonparametric regression, and avoids the so-called “curse of dimen-

sionality”. In this paper, we consider the SIM

Y = η(βT
0 X) + ε, (1.1)

where η(·) is an unknown link function, β0 ∈ Rp is a p×1 unknown index vector,

X is a p-dimensional covariate vector, and ε is a random error with mean zero

and variance σ2. We assume that X and ε are independent of each other, and

∥β0∥ = 1 with the first element of β0 positive to ensure identifiability. Single-

index models (SIMs) are popular and efficient in modeling high-dimensional data,

and there is a large literature on this topic. See, for example, Härdle, Hall, and

Ichimura (1993), Carroll et al. (1997), Xia and Li (1999), Xia et al. (2002), Xia

et al. (2004), Yu and Ruppert (2002), Zhu and Xue (2006), Wang et al. (2010),

Li et al. (2010), Liang et al. (2010), Chen, Gao, and Li (2013), Cui, Härdle, and

Zhu (2011), among others.

A problem in nonparametric or semiparametric regression is the con-

struction of simultaneous confidence bands (SCBs) for the mean function.
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Bickel and Rosenblatt (1973) considered SCBs and a goodness-of-fit test for the

estimation of a density function. Härdle and Bowman (1988) considered SCBs in

combination with locally adaptive smoothing parameters. Sun and Loader (1994)

constructed conservative confidence bands for the mean function based on some

prior information about the maximum roughness of mean function. Faraway and

Sun (1995) considered SCBs for heteroscedastic models using kernel smoothing.

Fan and Zhang (2000) and Zhang and Peng (2010) considered SCBs for varying-

coefficient models with a plug-in estimate of bias. Zhang, Fan, and Sun (2009)

studied the semiparametric model with cluster data by accounting for within-

cluster correlation. Krivobokova, Kneib, and Claeskens (2010) constructed SCBs

for univariate smooth curves based on penalized spline estimators. Further ref-

erence in constructing SCBs with heteroscedastic errors can be seen in Neumann

and Polzehl (1998), Claeskens and Van Keilegom (2003), and more.

For most nonparametric and semiparametric models, the nonparametric

component estimation can be simplified to a nonparametric regression estimation

with estimates of the nonparametric components orthogonal to estimates of the

parametric components. Therefore, the classical statistical inference methods for

nonparametric regression models can be readily extended to general nonpara-

metric and semiparametric models.

For SIMs, however, we do not have the orthogonality property between the

estimated link function and the estimated index parameter. To our knowledge,

there is little work in the literature in constructing SCBs for SIMs when the

index vector is treated as a nuisance parameter. SCBs for SIMs are useful for

checking the graphical representation of the link function. To improve the effi-

ciency for SCBs, we take into account the bias and high-order derivatives of the

link function estimates. The bias-corrected technique was introduced by Eubank

and Speckman (1993) for local constant kernel estimation, and by Xia (1998) for

local linear estimation in nonparametric regression.

The paper is organized as follows. In Section 2, we propose the estimation

procedures for model (1.1), and establish the asymptotic properties of the pro-

posed estimator. Specifically, we estimate the link function by the local linear

smoother, and the index parameter by the profile least squares method. In Sec-

tion 3, we test the hypothesis that the link function is linear. To achieve this,

we propose to extend the adaptive Neyman test of Fan (1996) to SIMs. We then

conduct simulation studies in Section 4 to evaluate the performance of the pro-

posed method, and apply them to two data sets in Section 5 for illustration. We

conclude the paper in Section 6 with some remarks, and present the technical

details in the supplementary material.
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2. Estimation Procedure

2.1. Estimation of the link function

Consider the SIM,

Yi = η(βT
0 Xi) + εi, i = 1, . . . , n, (2.1)

where Yi are observations, Xi are covariate vectors, and εi are independent and

identically distributed random errors with mean zero and variance σ2. Let Y =

(Y1, . . . , Yn)
T and ε = (ε1, . . . , εn)

T .

Of the various methods to estimate the link function η and its derivative

η′, we apply the local linear regression technique proposed in Fan and Gijbels

(1996). It is known that the local linear fitting has advantages in such aspects as

high asymptotic efficiency, design adaption, and automatic boundary correction.

Let K(·) be a kernel function and Kh(·) = h−1K(·/h), where h = hn is the

bandwidth. For a given β, the estimators of η and η′ are obtained by minimizing

the weighted sum of squares

n∑
i=1

{Yi − a− b(βTXi − u)}2Kh(β
TXi − u) (2.2)

with respect to a and b. Specifically, the local linear estimators of η(u) and η′(u)

are η̂(u;β) = â and η̂′(u;β) = b̂ for the given β. Let η(u) = (η(u), hη′(u))T ,

η̂(u) = (η̂(u;β), hη̂′(u;β))T , and

W = diag
(
Kh(β

TX1 − u), . . . ,Kh(β
TXn − u)

)
, Xh =


1 βTX1−u

h
...

...

1 βTXn−u
h

 .

By least squares, we have

η̂(u) = (XT
hWXh)

−1XT
hWY = Sn(u;β)

−1Vn(u;β), (2.3)

where Sn(u;β) =

(
Sβ
n,0 S

β
n,1

Sβ
n,1 S

β
n,2

)
and Vn(u;β) = (V β

n,0, V
β
n,1)

T with

Sβ
n,l =

1

n

n∑
i=1

(
βTXi − u

h

)l

Kh(β
TXi − u), l = 0, 1, 2, (2.4)

V β
n,l =

1

n

n∑
i=1

(
βTXi − u

h

)l

Kh(β
TXi − u)Yi, l = 0, 1. (2.5)
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With some straightforward algebra, we have

η̂(u) = η(u) + (XT
hWXh)

−1(
An

2
+ Cn) + oP

( 1√
nh

)
,

where An = XT
hWr(u, h) · h2η′′(u), Cn = XT

hWε, and

r(u, h) =

((βTX1 − u

h

)2
, . . . ,

(βTXn − u

h

)2)T

.

To construct SCBs for η and η′, we need
√
n−consistent estimators of the

index vector β0 and the variance σ2. There are different methods for estimating

β0 consistently. See, for example, Härdle and Stoker (1989), Härdle, Hall, and

Ichimura (1993), Weisberg and Welsh (1994), Carroll et al. (1997), and Wang

et al. (2010). We employ the profile least squares method (Liang et al. (2010);

Wang et al. (2010)) and that results in

β̂0 = argmin
β:∥β∥=1

n∑
i=1

{Yi − η̂(βTXi;β)}2. (2.6)

The Newton-Raphson iterative method can be used to update the estimators of

β0 and η. In addition, the efficiency of the estimation can be improved by using

the re-parametrization technique under the constraint ∥β0∥ = 1. The resulting

estimator is
√
n−consistent and asymptotically normal (Liang et al. (2010); Wang

et al. (2010); Cui, Härdle, and Zhu (2011)). Finally, with the plug-in estimator

β̂0 in (2.3), we have the estimator

η̂(u; β̂0) = (η̂(u; β̂0), hη̂′(u; β̂0))
T = Sn(u; β̂0)

−1Vn(u; β̂0). (2.7)

2.2. Asymptotic properties

Let δn =
√

log n/(nh), µl =
∫
tlK(t)dt, and νl =

∫
tlK2(t)dt for l = 0, 1, 2.

Let ∥g∥∞ = supu∈[b1,b2] |g(u)| for any function g(u), and ∥A∥∞ = (
∑p

i=1

∑p
j=1

∥aij∥2∞)1/2 for any square matrix A(u) = (aij(u)) of size p. To achieve the

asymptotic results, we need the following regularity conditions.

C1. {Xi, εi}, i ≥ 1, are independent, and E(ε) = 0,Var(ε) = σ2 < ∞, E(ε4) <

∞ and E∥Xi∥2+τ <∞ for some τ > 0.

C2. The function η(·) is differentiable on the compact set U = [b1, b2] of β
TX.

C3. The function η(βTX) and the density function of βTX, f(u), are three

times continuously differential with respect to u. The third derivatives are

uniformly Lipschitz continuous over A ⊂ Rp for all u ∈ {u = βTx : β ∈
A,x ∈ X ⊂ Rp}.
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C4. The kernel function K(·) is a symmetric density function, absolutely con-
tinuous on its support set [−c0, c0].
C4a. K(c0) ̸= 0 or

C4b. K(c0) = 0,K(z) is absolutely continuous and K2(z), (K ′(z))2 are
integrable on (−∞,∞).

C5. The bandwidth h satisfies nh3/ log n→∞ and

C5a. nh5 log n→ 0 as n→∞;

C5b. nh7 log n→ 0 as n→∞.

C6. There exists an integer n0 such that{ n

(log log n)4

}−1
n/(log logn)4∑

i=n0

X∗2
ij = OP (1), j = 1, . . . , p,

where X∗
ij is the jth element of the vector X∗

i , and X∗
i is the ith row of the

n× p matrix X∗ = ΓX.

C2 and C3 are standard smoothness conditions. C4 is a set of mild conditions
on the kernel function that have been used by many authors (see Fan and Zhang
(2000); Zhang, Fan, and Sun (2009)). The bandwidth condition C5a and C5b
were used in Claeskens and Van Keilegom (2003). C6 is a mild condition that can
be found in Fan and Huang (2001); it holds almost surely for designs generated
from a random sample.

Theorem 1. Under C1−C5a, for all u ∈ [b1, b2] we have

∥β̂0 − β0∥ = OP (n
−1/2), (2.8)

√
nh
{
η̂(u; β̂0)− η(u)− b(u)

}
D−→ N

(
0,

ν0
f(u)

σ2
)
, (2.9)

where
D−→ denotes the convergence in distribution, and b(u) = h2µ2η

′′(u)/2.

Theorem 2. Suppose that h = O(n−ρ) with 1/5 < ρ < 1/3 for all u ∈ [b1, b2].
If B = (−2 log{h/(b2 − b1)})1/2, under C1−C5a, we have

P
{
B
(
(σ2ν0)

−1/2 sup
u∈[b1,b2]

∣∣∣(nhf(u))1/2(η̂(u; β̂0)− η(u)− b(u)
)∣∣∣− dn0

)
< x

}
−→ exp

(
− 2 exp(−x)

)
, as n→∞,

where

dn0 =

B +B−1
{
log K2(c0)

ν0π1/2 + 1
2 log log

(
b2−b1

h

)}
, if K(c0) ̸= 0,

B +B−1 log
{

1
4ν0π

∫
(K ′(t))2dt

}
, if K(c0) = 0.
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Theorem 2 gives the asymptotic distribution of the maximum absolute de-

viation between the estimated link function and the true link function when the

estimator of the index parameter is
√
n−consistent. The convergence rate of

η̂′(·) can be relatively slow, is usually sensitive to the choice of bandwidth, and

thus requires a larger weight on the support set. Therefore, we only present the

asymptotic distribution of the maximum absolute deviation for η̂′(·) under C4b.

Theorem 3. Under C1−C5a, for all u ∈ [b1, b2] we have

P
{
B
(
(σ2ν2)

−1/2 sup
u∈[b1,b2]

∣∣∣(nh3f(u)µ2
2)

1/2
(
η̂′(u; β̂0)− η′(u)

)∣∣∣− dn1

)
< x

}
−→ exp

(
− 2 exp(−x)

)
, as n→∞,

where B is defined in Theorem 2 and if K(c0) = 0,

dn1 = B +B−1 log
{ 1

2π
√
ν2

(∫
t2(K ′(t))2dt

)1/2}
.

2.3. Estimation of bias and variance

To derive the bias and variance of η̂, we need the estimates of the unknown

f(u) and σ2. For f(u), we propose

f̂(u) =
1

nh

n∑
i=1

K
( β̂T

0 Xi − u

h

)
,

where β̂0 is the profile least squares estimator defined by (2.6).

We employ the least squares estimator in Tong and Wang (2005) to estimate

σ2 without estimating the mean function in the model. For single-index models

there are many methods to efficiently estimate β0 without estimating the link

function η(·). As shown in Section 3, if σ2 can be estimated efficiently without

estimating the link function η(·), our adaptive Neyman test for the link function

η(·) avoids estimating η(·) directly. Hence the proposed method is computation-

ally efficient and the results are stable.

Let β̂0 be a consistent and efficient estimate of β0. We reorder Yi as

Y ∗
i according to the monotonic order of XT

i β̂0, i = 1, . . . , n, and let sk =∑n
i=k+1(Y

∗
i −Y ∗

i−k)
2/{2(n−k)} be the average of (n−k) lag-k differences, where

1 ≤ k ≤ m. Tong and Wang (2005) observed that E(sk) = σ2 + Jζk + o(ζk)

where J =
∫ 1
0 {η

′(x)}2dx/2 and ζk = k2/n2. They proposed to regress sk on ζk
by a simple linear model and then to estimate σ2 as the intercept. The fitted

intercept was shown to be a consistent and optimally efficient estimator of σ2

as long as m → ∞ and m/n → 0. While m serves as a tuning parameter and
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the optimal value can be selected by the data-driven V−fold cross validation,

when m = n
1
2 such least squares estimator of σ2 performs well as long as the

link function or mean function in the model is smooth enough, see Section 3.1 in

Tong and Wang (2005) for more details.

Theorem 1 gives the asymptotic bias and variance of η̂(u; β̂0) and, with

the consistent estimators f̂(u) and σ̂2, we estimate the variance of η̂ by

V̂ar{η̂(u; β̂0)|D} = ν0σ̂
2/[nhf̂(u)], where D = (XT

1 , . . . ,X
T
n )

T . We estimate the

bias of η̂(u; β̂0) by

b̂ias(η̂(u; β̂0)|D) =
h2µ2η̂

′′(u; β̂0)

2
, (2.10)

where the estimate η̂′′(u; β̂0) is obtained by using the local cubic fit with an

appropriate pilot bandwidth. We choose h∗ = O(n−1/7) since it is optimal for

estimating η′′(u) and it can be chosen by the residual squares criterion (Fan and

Gijbels (1996)).

2.4. SCBs for the link function

Theorem 4. Suppose that h = O(n−ρ) with 1/5 < ρ < 1/3 for all u ∈ [b1, b2],

η(3)(·) is continuous on [b1, b2], and the pilot bandwidth h∗ is of order n−1/7.

Under C1−C5a, for all u ∈ [b1, b2] we have

P

{
B
(

sup
u∈[b1,b2]

∣∣∣ η̂(u; β̂0)− η(u)− b̂ias(η̂(u; β̂0)|D)
[V̂ar{η̂(u; β̂0)|D}]1/2

∣∣∣− dn0

)
< x

}
→ exp

(
− 2 exp(−x)

)
, as n→∞,

where B and dn0 are as defined in Theorem 2.

By Theorem 4, we have a 100(1− α)% confidence band for η(u),(
η̂(u; β̂0)− b̂ias(η̂(u; β̂0)|D)±∆1,α(u)

)
, (2.11)

where ∆1,α(u) = (dn0 +B[log 2− log{− log(1− α)}])[V̂ar{η̂(u; β̂0)|D}]1/2.
An application of Theorem 4 addresses the graphical questions about the

link function. Thus, if the 100(1 − α)% SCB for η(u) over the set [b1, b2] does

not contain a linear function, we conclude that the link function η(·) is non-

linear. An appropriate choice of [b1, b2] is important to the performance of

the proposed method for constructing the SCB of the link function. By The-

orems 2−4, such interval can be treated as the compact support of XT
i β0. In

practice when β0 is unknown, we can take b1 = min{XT
i β̂0, i = 1, . . . , n} and

b2 = max{XT
i β̂0, i = 1, . . . , n} if the link function is smooth and the boundary
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effect of the nonparametric estimation for the link function is negligible. Other-

wise, to remove the boundary effect, b1 and b2 can be set as 5% to 10 % and 90%

to 95% quantiles of {XT
i β̂0, i = 1, . . . , n}, respectively. In our numerical study in

Section 4, the estimated link function is quite smooth, and the boundary effect is

automatically corrected when the local polynomial regression is used to estimate

the link function. We thus take b1 and b2 to be the minimum and maximum of

{XT
i β̂0, i = 1, . . . , n} in our simulation studies.

3. The Adaptive Neyman Test

Consider the testing problem

H0 : η(u) = γ0 + γ1u←→ H1 : η(u) ̸= γ0 + γ1u, (3.1)

where γ0 and γ1 are two unknown parameters. Under H0, η
′(u) is a constant and

the test is equivalent to testing

H0 : η
′(u) = γ1 ←→ H1 : η

′(u) ̸= γ1. (3.2)

By Theorem 3, a natural test statistic is(
− 2 log

{ h

b2 − b1

})1/2{
sup

u∈[b1,b2]

∣∣∣ η̂′(u; β̂0)− γ̂1

[V̂ar{η̂′(u; β̂0)|D}]1/2

∣∣∣− dn1

}
. (3.3)

We reject H0 when the test statistic exceeds the asymptotic critical value cα =

− log{−0.5 log(1 − α)}. The estimators of γ0 and γ1 can be obtained by the

two-stage estimation procedure in Fan and Zhang (2000). We treat γ0 and γ1
as functions. For a given β, we can obtain the estimators γ̂0(β

TXi;β) and

γ̂1(β
TXi;β) for γ0 and γ1 at βTXi(i = 1, . . . , n) using weighted as at least

squares (2.2). Updating the estimator of β0 by the profile least squares method

(2.6) leads to estimators γ̂0(β̂
T
0 Xi; β̂0) and γ̂1(β̂

T
0 Xi; β̂0) over i = 1, . . . , n. We

take the average of γ̂0(β̂
T
0 Xi; β̂0) and γ̂1(β̂

T
0 Xi; β̂0) over i = 1, . . . , n to get

γ̂0 =
1

n

n∑
i=1

γ̂0(β̂
T
0 Xi; β̂0), γ̂1 =

1

n

n∑
i=1

γ̂1(β̂
T
0 Xi; β̂0). (3.4)

This two-steps estimation uses a smaller bandwidth in the first step to control

the bias, and then averages in the second step to reduce the variance. The test

statistic (3.3) is, however, difficult to implement due to the sensitive choice of an

appropriate bandwidth.

Here is an alternative method for the test problem (3.1). Let (γ̃0, γ̃1) be

the least squares estimators, Ŷi = γ̃0 + γ̃1(β̂
T
0 Xi) be the fitted value under H0,

with residuals ε̂i = Yi − Ŷi, i = 1, . . . , n. To improve power, Fan and Huang
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(2001) suggested using the discrete Fourier transform of the residual vector ε̂ =

(ε̂1, . . . , ε̂n)
T to compress useful signals into low frequencies. Let Γ be the n× n

orthonormal matrix generated by the discrete Fourier transform, and ε̂∗ = Γε̂ =

(ε̂∗1, . . . , ε̂
∗
n)

T be the residual vector through the discrete Fourier transform with

the elements

ε̂∗2j−1 =
( 2
n

)1/2 n∑
i=1

cos
(2πij

n

)
ε̂i,

ε̂∗2j =
( 2
n

)1/2 n∑
i=1

sin
(2πij

n

)
ε̂i, j = 1, . . . ,

[n
2

]
.

When n is odd, an additional term ε̂∗n = (1/
√

n/2)
∑n

i=1 ε̂i is needed. Let σ̂
2 be a√

n-consistent estimate of σ2 under both the null and the alternative hypotheses.

Following Fan (1996), we propose the adaptive Neyman test statistic

T ∗
AN = max

1≤m≤n

1√
2mσ̂4

m∑
i=1

(ε̂∗2i − σ̂2). (3.5)

We normalize the test statistic as

TAN =
√

2 log log nT ∗
AN − {2 log log n+ 0.5 log log log n− 0.5 log(4π)}.

Theorem 5. If C1−C6 hold, under H0 we have

P (TAN < x)→ exp(− exp(−x)) as n→∞.

Fan and Huang (2001) suggested that the range of maximization over m

taken as [1, n/(log log n)4] for convenience. By Theorem 5, the critical region

TAN > − log{− log(1− α)} has an asymptotic significance level of α.

When the single-index model is not a linear model, the residuals need to

be ordered according to the monotonic order XT
i β̂0 before using the adaptive

Neyman test so that large Fourier coefficients of η(XT
i β̂0)− Ŷi, i = 1, . . . , n, are

concentrated on low frequencies. Such ordering does not affect the size of the

proposed adaptive Neyman test.

4. Numerical Studies

4.1. Bandwidth selection

By (2.9), the asymptotic integrated mean squared error of η̂(u) is

h4
∫

1

4
µ2
2(η

′′(u))2ω(u)du+
σ2
∫
(ν0/f(u))ω(u)du

nh
,
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and the optimal global bandwidth is

hopt = C(K)

[
σ2
∫
(1/f(u))ω(u)du∫
{η′′(u)}2ω(u)du

]1/5
n−1/5,

where C(K) = (ν0/µ
2
2)

1/5 and ω(u) is a weight function. With the form of

optimal bandwidth, the plug-in method (Ruppert, Sheather and Wand (1995))

can be applied to estimate the bandwidth for implementatio, but this may not

be appropriate for testing and for other statistical inference. We use minimizing

cross validation (CV) for choosing the bandwidth,

CV(h) =
1

n

n∑
i=1

(
Yi − η̂−i,h(β̂

T
−i,0Xi; β̂0)

)2
, (4.1)

where η̂−i,h(·) and β̂−i,0 are the estimates of η(·) and β with the bandwidth h and

without the sampleXi, respectively. For constructing SCBs, we note that a much

smaller bandwidth is needed for reducing the bias effect. In numerical study,

we use ĥopt, the bandwidth that minimizes (4.1) for the nonparametric testing

problem, but the bandwidth ĥ = ĥoptn
1/5n−1/3 = ĥoptn

−2/15 for constructing

SCBs to nearly satisfy the conditions in the theorems.

4.2. Simulation studies for SCBs

In this section, we report on simulation studies to evaluate the proposed

method for constructing SCBs. Throughout, we consider the Epanechnikov ker-

nel K(t) = 0.75(1− t2)+ for estimating the link function.

Example 1. We consider the SIM,

Yi = (βT
0 Xi)

2 + σεi, i = 1, . . . , n, (4.2)

where β0 = (2, 1)T /
√
5, the Xi are bivariate N

(
(2, 2)T , I2

)
, and the εi are

standard normal.

Example 2. We generated data (Yi,Xi), i = 1, . . . , n, from a “sine-bump” model

by ignoring the linear part in Carroll et al. (1997),

Yi = sin
{π(βT

0 Xi −A)

B −A

}
+ σεi, i = 1, . . . , n, (4.3)

where β0 = (1, 1, 1)T /
√
3, A =

√
3/2−1.645/

√
12, B =

√
3/2+1.645/

√
12, theXi

were 3-dimensional vectors with each component independently Uniform(0, 1),

and the εi were from the standard normal distribution.
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Table 1. Coverage probabilities based on 2,000 simulations.

1− α = 0.90 1− α = 0.95
Example n σ = 0.1 σ = 0.5 σ = 0.1 σ = 0.5
Example 1 100 0.8890 0.8820 0.9245 0.9200

200 0.8990 0.8935 0.9500 0.9470
300 0.9030 0.8985 0.9575 0.9550

Example 2 100 0.8905 0.8855 0.9135 0.9060
200 0.8960 0.8910 0.9490 0.9320
300 0.9090 0.9065 0.9510 0.9405

Figure 1. The solid lines are the estimated link function, and the dashed
lines are the 95% confidence bands for model (4.2) with σ = 0.1 and with a
sample size at 100, 200, and 300 from left to right.

Figure 2. The solid lines are the estimated link function, and the dashed
lines are the 95% confidence bands for model (4.3) with σ = 0.1 and with a
sample size at 100, 200, and 300 from left to right.

For the simulations, we took n = 100, 200 and 300, and σ = 0.1 and 0.5,

respectively. We conducted 2,000 simulations to compute the average probability

of the SCB for the link function in Table 1, and give the 95% pointwise confidence

bands of the link function with σ = 0.1 in Figures 1 and 2. The proposed method

works well in these simulated studies.
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4.3. Test for SIM

Consider the model

Y = X1 +X2 + ρ · exp{−(X1 +X2)
2}+ σε, (4.4)

where X1, X2, and ε are independent standard normals. This is a SIM with link

function η(u) =
√
2u + ρ · exp(−2u2) and β10 = β20 =

√
2/2. We took n = 100

and 200, and σ = 0.5 and 0.8. Based on 1,000 simulations, the scatter plots of Y

versus X1β̂1 +X2β̂2, the true link functions η(·) (solid lines) and the estimated

link functions η̂(·) (dashed lines) with σ = 0.5 and n = 200 are shown in Figure

3 for ρ = 0, 0.5, 1 and 1.5. Here (β̂1, β̂2)
T is the profile least squares estimator of

(β1, β2)
T .

We report the power functions of our proposed test in Figure 4 for all settings

at the significance level 0.05. When ρ = 0, the simulated power is the type I

error. The proposed Neyman test provides a good control on the type I error,

and achieves good power. For comparison, Figure 4 gives the power functions of

the generalized likelihood ratio test proposed in Fan, Zhang, and Zhang (2001).

Our method works better than the generalized likelihood ratio test under most

model settings.

5. Application to Data

5.1. Bank data

We consider the bank data in Albright, Winston, and Zappe (1999). The

Fifth National Bank of Springfield faced a gender discrimination suit assessment

female employees received substantially smaller salaries than male employees.

This was a 1995 case with only the bank name changed. These were of 208

employees with complete information on 8 variables. The data set has been

analyzed for some high dimensional semiparametric models by Fan and Peng

(2004), Lam and Fan (2008), and Li, Lin, and Zhu (2012). To illustrate the

proposed method, we consider the SIM,

Salary = η
(
β1Age + β2YrsExp + β3Female + β4PCJob

+

4∑
i=1

β4+iEdui +

5∑
i=1

β8+iJobGrdi

)
+ ε, (5.1)

where the variable PCJoB indicates computer related, and the others have evi-

dent meaning.

We used the estimation method in Cui, Härdle, and Zhu (2011). The CV

method was employed to select the bandwidth, which resulted in hCV = 1.435.
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ρ=0 ρ=0.5

0.7073X1 + 0.7065X2 0.7031X1 + 0.7111X2

ρ=1 ρ=1.5

0.7117X1 + 0.7024X2 0.7117X1 + 0.7024X2

Figure 3. The scatter plots of Y versus X1β̂1+X2β̂2. The solid lines denote
the true link function η(·), and the dashed lines denote the estimated link
function η̂(·) with σ = 0.5 and n = 200 for ρ = 0, 0.5, 1, and 1.5.

Based on the profile least squares, the estimated coefficients and the correspond-

ing standard errors are shown in Table 2. Using the proposed method, we ob-

tained the estimated curve and the 95% confidence band for the link function

η(·) that are shown in Figure 5(a). Based on the proposed Neyman test, we get

the p-value of the proposed test statistic as 0.031;the p-value of the generalized

likelihood ratio statistic was 0. This suggests that we reject the null hypothe-

sis that the linear model is the link function. From the residual figure Figure

6(a), there is no special trend for the residuals, suggesting that the SIM is an

appropriate model here.

We used all 208 samples to fit (5.1), whereas Fan and Peng (2004) deleted

the samples with age over 60 or working experience over 30 and used only 199

samples to fit linear regression model. They did not find strong evidence for
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(a) n=100, σ=0.5 (a) n=100, σ=0.8

ρ ρ

(c) n=200, σ=0.5 (d) n=200, σ=0.8

ρ ρ

Figure 4. The plots of the estimated power functions for significance level
α = 0.05. Solid line: Adaptive Neyman test statistic, Dot-dash line: Gener-
alized likelihood ratio test statistic.

discrimination. We believe that the SIM is an appropriate model by using all of

the data in view of the residual, Figure 6(a). Figure 5(a) indicates that the link

function is a decreasing nonlinear function and, from Table 2, the coefficient of

the predictor Female is significant. There is strong evidence of discrimination.

5.2. Car price data

We considered the car price data in Naik and Tsai (2001) and Li, Zhu, and

Zhu (2010). There are 25 brands of family sedans in the United States. These

brands differ on nine attributes measured by the United States Consumers Union:
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Table 2. The estimated coefficients and standard errors for model (5.1).

Variables Estimator SE
Age 0.060959239 0.01046973

YrsExp -0.800956166 0.06471459
Female 0.416505407 0.13657645
PCJob -0.015036591 0.24988014
Edu1 0.108489189 0.27227410
Edu2 0.250099943 0.26133544
Edu3 -0.009204456 0.15759227
Edu4 -0.022231789 0.37445128

JobGrd1 0.221958888 0.37358015
JobGrd2 0.125374153 0.32750750
JobGrd3 0.134480046 0.28990072
JobGrd4 -0.072627564 0.30559367
JobGrd5 -0.133444393 0.29998355

(a) (b)

Figure 5. The scatter plot of Y versus XT β̂. (a) The solid line is the
estimated link function, and the dashed lines are the 95% confidence bands
for model (5.1). (b) The solid line is the estimated link function, and the
dashed lines are the 95% confidence bands for model (5.2).

mileage per gallon X1, horsepower X2, length X3, width X4, weight X5, height
X6, satisfaction X7, reliability X8, and overall evaluation X9. The response
variable Y is the non-negotiable transaction price. We applied the Box-Cox
transformations on the predictor variables, and consider the following model,

Y = η
( 9∑

i=1

βiXi

)
+ ε. (5.2)

The estimation method by Cui, Härdle, and Zhu (2011) was used. The
CV method was employed to select the bandwidth, resulting in hCV = 1.097.
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Table 3. The estimated coefficients and standard errors for model (5.2).

Parameter Estimator SE
β1 0.034478025 0.0001509354
β2 0.508355909 0.0001417804
β3 -0.569947159 0.0001150935
β4 -0.009204028 0.0002873957
β5 0.565855995 0.0002455099
β6 0.068772020 0.0001465410
β7 0.297566323 0.0002295497
β8 -0.040345005 0.0001121568
β9 0.019105593 0.0001655526

Residuals Standardized residuals

(a) (b)

Figure 6. (a) Residuals after fitting the single-index model (5.1). (b) Stan-
dardized residuals after fitting the single-index model (5.2).

We report the estimated coefficients and the corresponding standard errors in

Table 3. Using our method, the scatter plots of the response Y versus β̂TX, the

estimated link function and the 95% confidence band are shown in Figure 5(b),

and the scatter plot of the standardized residuals is shown in Figure 6(b). From

Table 3, we see that horsepower X2, length X3, weight X5 and satisfaction X7

affect the car price significantly, and length X3 has a negative effect on the car

price. The p-value of the proposed test statistic was 0.660, and the p-value of

the generalized likelihood ratio test statistic was 0.221. This, together with the

estimated link function in Figure 5(b), suggests that the link function can be

approximated by the linear model here.

6. Concluding Remarks

We have derived asymptotic distributions for the link function and its deriva-

tive in single-index models and illustrated its usefulness for statistical inference.

We have also constructed SCBs for the link function and its derivative in the
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presence of a nuisance index parameter. We have conducted simulation studies

and analyzed two data examples to illustrate the proposed method and the theo-

retical findings. The methodology in this paper is general and widely applicable.

It can be applied to construct SCBs for other functional objects as well. For

instance, it can be adapted to the estimation of regression functions in the func-

tional linear model. We expect further research along these lines to yield results

with interesting applications.
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Cui, X., Härdle, W. K. and Zhu, L. X. (2011). The EFM approach for single-index models. Ann.

Statist. 39, 1658-1688.

Eubank, R. L. and Speckman, P. L. (1993), Confidence bands in nonparametric regression. J.

Amer. Statist. Assoc. 88, 1287-1301.

Fan, J. (1996). Test of significance based on Wavelet thresholding and Neyman’s truncation. J.

Amer. Statist. Assoc. 91, 674-688.



954 GAORONG LI, HENG PENG, KAI DONG AND TIEJUN TONG

Fan, J. and Gijbels, I. (1996). Local Polynomial Modeling and Its Applications. Chapman &

Hall, London.

Fan, J. and Huang, L.-S. (2001). Goodness-of-fit tests for parametric regression models. J.

Amer. Statist. Assoc. 96, 640-652.

Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of pa-

rameters. Ann. Statist. 32, 928-961.

Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phe-

nomenon. Ann. Statist. 29, 153-193.

Fan, J. and Zhang, W. Y. (2000). Simultaneous confidence bands and hypothesis testing in

varying-coefficient models. Scand. J. Statist. 27, 715-731.

Faraway, J. and Sun, J. (1995). Simultaneous confidence bands for linear regression with het-

eroscedastic errors. J. Amer. Statist. Assoc. 90, 1094-1098.
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