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Abstract: Penalized least squares procedures that directly penalize the number of

variables in a regression model (L0 penalized least squares procedures) enjoy nice

theoretical properties and are intuitively appealing. On the other hand, L0 penal-

ized least squares methods also have significant drawbacks in that implementation

is NP-hard and not computationally feasible when the number of variables is even

moderately large. One of the challenges is the discontinuity of the L0 penalty. We

propose the seamless-L0 (SELO) penalty, a smooth function on [0,∞) that very

closely resembles the L0 penalty. The SELO penalized least squares procedure is

shown to consistently select the correct model and is asymptotically normal, pro-

vided the number of variables grows more slowly than the number of observations.

SELO is efficiently implemented using a coordinate descent algorithm. Since tun-

ing parameter selection is crucial to the performance of the SELO procedure, we

propose a BIC-like tuning parameter selection method for SELO, and show that it

consistently identifies the correct model while allowing the number of variables to

diverge. Simulation results show that the SELO procedure with BIC tuning param-

eter selection performs well in a variety of settings – outperforming other popular

penalized least squares procedures by a substantial margin. Using SELO, we an-

alyze a publicly available HIV drug resistance and mutation dataset and obtain

interpretable results.

Key words and phrases: BIC, coordinate descent, oracle property, penalized least

squares, tuning parameter selection.

1. Introduction

Penalized least squares procedures provide an attractive approach to the

variable selection and estimation problem, simultaneously identifying predictors

associated with a given outcome and estimating their effects. An important class

of PLS procedures rely on the L0 penalty function (Cp (Mallows (1973)), AIC

(Akaike (1974)), BIC (Schwarz (1978)), and RIC (Foster and George (1994)),

for instance). Here, potential estimators are penalized according to the num-

ber of non-zero parameter estimates; thus, model complexity is penalized in a

straightforward and intuitive way. In addition to their intuitive appeal, these

methods arise naturally in prediction error and risk minimization (Cp and RIC,
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respectively), information theoretic (AIC), and Bayesian (BIC) approaches to

the variable selection and estimation problem. One drawback is instability of

the resulting estimators (Breiman (1996)) due to the fact that the L0 penalty

is not continuous at 0. Another perhaps more significant drawback is that im-

plementing L0 PLS procedures is NP-hard and can involve an exhaustive search

over all possible models that is not computationally feasible when the number of

potential predictors is even moderately large.

Penalized least squares methods based on continuous penalty functions have

been proposed as alternatives. These methods are based on the now well-known

fact that non-smooth (but continuous) penalty functions can lead to variable

selection. The LASSO (Tibshirani (1996)), the L1 PLS procedure, is perhaps

the most popular. However, it may not consistently select the correct model and

is not necessarily asymptotically normal (Knight and Fu (2000); Zou (2006)).

Notable procedures that remedy this are the adaptive LASSO (Zou (2006)),

SCAD (Fan and Li (2001)), and the recently proposed MC+ (Zhang (2010)).

SCAD and MC+ replace the L1 penalty of LASSO with a quadratic spline penalty

function designed to reduce bias. In this paper, we propose the seamless L0

(SELO) penalty that, unlike other continuous penalty functions, is explicitly

designed to mimic the L0 penalty. In addition to possessing good theoretical

properties, we have found that substantial performance gains may be realized by

using the SELO penalty.

The SELO penalty very closely approximates the L0 penalty function while

addressing the stability of estimates and computational feasibility. Theoreti-

cal properties enjoyed by SELO estimators include the oracle property and our

asymptotic framework allows the number of predictors, d, to tend to infinity,

along with the number of observations n, provided d/n → 0.

The practical performance of PLS procedures depends heavily on the choice

of a tuning parameter, λ. Here, we propose a BIC tuning parameter selector

that performs well when used in conjunction with SELO. This SELO/BIC pro-

cedure consistently identifies the correct model if d/n → 0 and other regularity

conditions are met.

We demonstrate that the SELO/BIC and SELO with data validation-based

tuning parameter selection procedures perform well in a variety of simulation set-

tings – outperforming the popular LASSO, adaptive LASSO, and SCAD proce-

dures, especially in terms of model selection criteria. We also compare SELO/BIC

to MC+ and find that SELO/BIC performs very favorably. Finally, we show that

SELO/BIC gives concise and interpretable results when applied to the HIV drug

resistance and mutation dataset described by Rhee et al. (2006); these results

are supported by previous work on the subject.
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2. Variable Selection and Estimation with the Seamless-L0 Penalty

2.1. Linear models and penalized least squares

Consider the linear model

y = Xβ∗ + ϵ, (2.1)

where y = (y1, . . . , yn) ∈ Rn is a vector of n observed outcomes, X is an n ×
d matrix of predictors, β∗ = (β∗

1 , . . . , β
∗
d) ∈ Rd is the unknown parameter of

interest, and ϵ ∈ Rn is a vector of iid additive noise with mean 0 and variance σ2.

Denote the columns of X by X1, . . . , Xd ∈ Rn and the rows of X by x1, . . . , xn ∈
Rd. Let A = {j; β∗

j ̸= 0} be the true model and suppose that d0 = |A| is the

size of the true model, where |A| denotes the cardinality of A.

When discussing variable selection, it is convenient to have concise notation

for referring to sub-vectors and sub-matrices. For S ⊆ {1, . . . , d}, let βS =

(βj)j∈S ∈ R|S| be the |S|-dimensional sub-vector of β containing entries indexed

by S and let XS be the n × |S| matrix obtained from X by extracting columns

corresponding to S. Given a d × d matrix C and subsets S1, S2 ⊆ {1, . . . , d},
let CS1,S2 be the |S1| × |S2| sub-matrix of C with rows determined by S1 and

columns determined by S2.

All of the variable selection and estimation procedures that we consider in

this paper are PLS procedures. A generic PLS estimator minimizes the objective

1

2n
||y −Xβ||2 +

d∑
j=1

p(βj), (PL)

where || · || denotes the L2 norm and p(·) is a penalty function that generally

depends on some tuning parameter, often denoted by λ. Note that we may

penalize different coefficients in different ways by allowing p(·) to depend on j in

(PL).

LASSO is the PLS procedure with the L1 penalty p(βj) = pλ(βj) = λ|βj |
and is perhaps the most popular and widely studied non-L0 penalized procedure.

However, LASSO estimates may be biased (Fan and Li (2001)) and inconsistent

for model selection (Zou (2006)). This implies that the LASSO does not have

the oracle property of Fan and Li (2001) (a variable selection and estimation

procedure is said to have the oracle property if it selects the true model, A, with

probability tending to one, and if the estimated coefficients are asymptotically

normal, with the same asymptotic variance as the least squares estimator based

on the true model).

The adaptive LASSO is a weighted version of LASSO that has the oracle

property (Zou (2006)). Slightly abusing notation, the adaptive LASSO penalty
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is defined by p(|βj |) = λwj |βj |, where wj is a data-dependent weight. A typical

weight, if d < n, is wj = |β̂(0)
j |−1, where β̂(0) is the ordinary least squares (OLS)

estimator of β∗.
SCAD is another popular PLS procedure. The SCAD penalty is the contin-

uous function defined by

p′SCAD(βj) = λsgn(βj)

[
I{|βj | ≤ λ}+ max{aλ− βj , 0}

(a− 1)λ
I{|βj | > λ}

]
,

for βj ̸= 0, and pSCAD(0) = 0, where a > 2 is another tuning parameter; Fan
and Li (2001) recommend taking a = 3.7 and we follow this recommendation
throughout. Notice that the SCAD penalty is a quadratic spline with knots at
±λ and ±aλ. Fan and Li (2001) showed that the SCAD procedure has the oracle
property when λ = λn satisfies certain conditions as n → ∞.

The last penalty we introduce is the minimax concave penalty (Zhang (2010)).
We refer to this penalty and the associated PLS procedure as MC+ (“+” refers
to the algorithm used for implementing MC+). The MC+ penalty is

pMC+(βj) = λ

[
|βj | −

|βj |2

2γλ

]
I{0 ≤ |βj | < γλ}+ λ2γ

2
I{|βj | ≥ γλ}.

Like the SCAD penalty, the MC+ penalty is a quadratic spline. The parameter
γ > 0 determines the concavity of pMC+. Zhang (2010) proved that the MC+
procedure can select the correct model with probability tending to 1 and that
MC+ estimators have good properties in terms of Lp-loss, provided λ and γ
satisfy certain conditions. Zhang’s results in fact allow for d ≫ n.

2.2. The seamless-L0 penalty

L0 penalties have the form

pλ(βj) = λI{βj ̸= 0} =

{
λ if βj ̸= 0,

0 if βj = 0

and directly penalize non-zero parameter estimates. These penalties determine
an important class of PLS procedures that includes AIC, BIC, and RIC. L0 penal-
ties have a strong intuitive appeal and desirable theoretical properties. However,
the associated variable selection and estimation procedures tend to be unstable
(Breiman (1996), especially when the data contains only a weak signal, and are
not computationally feasible for even moderately large d, as implementations
generally require a combinatorial search. This is largely due to the fact that the
L0 penalty is discontinuous. We introduce a continuous approximation to the L0

penalty,

pSELO(βj) = pSELO,λ,τ (βj) =
λ

log(2)
log

(
|βj |

|βj |+ τ
+ 1

)
.
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There is a tuning parameter τ > 0, in addition to λ, and when τ is small,

pSELO(βj) ≈ λI{βj ̸= 0}. In practice, we have found that when the data are

standardized so that XT
j Xj = n, taking τ = 0.01 gives good results. Since the

SELO penalty is continuous, the associated PLS procedure is more stable than

L0 procedures. Furthermore, we will see that approximate minima of the SELO

penalized objective,

1

2n
||y −Xβ||2 +

d∑
j=1

pSELO(βj), (SELO)

can be rapidly computed using a coordinate descent algorithm.

The SELO penalty function is plotted in Figure 1, along with the SCAD,

L1 (LASSO), and L0 penalties (left panel), and the MC+ penalty for various

values of γ (right panel). Notice that the seamless-L0 penalty mimics the L0

penalty much more closely than the L1 or SCAD penalties. We point out that

the L1 penalty is unbounded and this may lead to estimation bias (Fan and

Li (2001)). The SCAD penalty is bounded and, like the SELO method, enjoys

the oracle property; however, in Section 5, we will see that the SELO method

offers substantial performance gains over SCAD in a variety of simulated settings.

The MC+ penalty is plotted for values of γ ranging from γ = 1.01 (which has

the greatest concavity and most closely resembles the SELO penalty) to γ = 5.

The adaptive LASSO penalty is not plotted in Figure 1; the penalty varies with

the weights wj and, for each wj , the adaptive LASSO penalty resembles the

LASSO penalty with differing slope. As shown in Section 5, the SELO estimator

outperforms the adaptive LASSO estimator in various settings.

2.3. Theoretical properties of the SELO estimator

The main results in this section show that the SELO estimator consistently

selects the correct model A and the SELO estimator is asymptotically normal

with the same asymptotic variance as the OLS estimator based on A, when λ

and τ are chosen appropriately. We consider an asymptotic regime in which d

may tend to infinity with n. The following conditions play a role in our analysis.

(A) n → ∞ and dσ2/n → 0.

(B) ρ
√

n/(dσ2) → ∞, where ρ = minj∈A |β∗
j |.

(C) There exist positive constants r0, R0 > 0 such that r0 ≤ λmin(n
−1XTX) <

λmax(n
−1XTX) ≤ R0, where λmin(n

−1XTX) and λmax(n
−1XTX) are the

smallest and largest eigenvalues of n−1XTX, respectively.

(D) λ = O(1), λ
√

n/(dσ2) → ∞, and τ = O[d−1(dσ2/n)3/2].

(E) limn→∞ n−1max1≤i≤n
∑d

j=1 x
2
ij = 0.
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Figure 1. Left: SELO, λ = 1, τ = 0.01; SCAD, a = 3.7, λ =
√
2/(a+ 1);

L1, λ =
√
2/(a+ 1); L0, λ = 1. Right: SELO, λ = 1, τ = 0.01; MC+,

with λ =
√
2/γ and γ taking various values between 1.01 (most concavity –

closest to SELO) and 5 (least concavity).

(F) E
(
|ϵi/σ|2+δ

)
< M for some δ > 0 and M < ∞.

Since d may vary with n, it is implicit that β∗ may vary with n. Additionally, we

allow the model A and the distribution of ϵ (in particular, σ2) to change with n.

Condition (A) limits how d and σ2 may grow with n; it is substantially weaker

than required by Fan and Peng (2004) who require d5/n → 0, and slightly weaker

than required by Zou and Zhang (2009) who require log(d)/ log(n) → ν ∈ [0, 1).

Other authors have studied PLS methods in settings where d > n with growth

conditions on d weaker than (A), but when it is relaxed, additional stronger

conditions are needed to obtain desirable theoretical properties. Condition (B)

gives a lower bound on the size of the smallest nonzero entry of β∗; it is allowed

to vanish asymptotically, provided it does not do so faster than
√
dσ2/n. Sim-

ilar conditions are found in Fan and Peng (2004) and Zou and Zhang (2009).

Condition (C) is an identifiability condition. Condition (D) restricts the rates

of the tuning parameters λ and τ , but does not constrain the minimum size of

τ . In practice, we have found that one should not take τ too small in order to

preserve stability of the SELO estimator. Conditions (E) and (F) are used to

prove asymptotic normality of SELO estimators and are related to the Lindeberg

condition of the Lindeberg-Feller CLT (Durrett (2005)). A proof of Theorem 1

is in the Appendix.

Theorem 1. Suppose that (A)−(F) hold. There exists a sequence of
√

n/(dσ2)-

consistent local minima of (SELO), β̂, such that:
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(i) limn→∞ P ({j; β̂j ̸= 0} = A) = 1.

(ii)
√
nBn(n

−1XT
AXA/σ

2)1/2(β̂A − β∗
A) → N(0, G) in distribution, where Bn is

an arbitrary q × |A| matrix such that BnB
T
n → G.

Remark 1. If d, β∗, and σ2 are fixed, then Theorem 1 (ii) implies that β̂A has

the same asymptotic distribution as the ordinary least squares estimator of β∗
A,

given knowledge of the model A in advance.

Remark 2. Though SELO and other PLS methods for variable selection and

estimation are primarily useful when β∗ is sparse, we make no assumptions about

the sparsity level of β∗ in Theorem 1.

Remark 3. In any implementation of SELO, concrete values of the tuning pa-

rameters λ and τ must be selected. In Section 3 we propose a BIC tuning

parameter selection procedure and prove that when SELO is implemented with

BIC tuning parameter selection, the resulting estimator consistently selects the

correct model.

2.4. A standard error formula

Let β̂ = β̂(τ, λ) be a local minimizer of SELO. Following Fan and Li (2001)

and Fan and Peng (2004), standard errors of β̂ may be estimated by using

quadratic approximations to SELO. Indeed, the approximation

pSELO(βj) ≈ pSELO(βj0) +
1

2|βj0|
p′SELO(βj0)(β

2
j − β2

j0), for βj ≈ βj0,

suggests that SELO may be replaced by

minimize
1

n
||y −Xβ||2 +

d∑
j=1

p′SELO(βj0)

|βj0|
β2
j ,

at least for the purposes of obtaining standard errors. Using this expression,

we obtain a sandwich formula for the estimated standard error of β̂Â, where

Â = {j; β̂j ̸= 0}:

ĉov(β̂Â) = σ̂2
{
XT

Â
XÂ + n∆Â,Â(β̂)

}−1
XT

Â
XÂ

{
XT

Â
XÂ + n∆Â,Â(β̂)

}−1
, (2.2)

where ∆(β) = diag{p′SELO(|β1|)/|β1|, . . . , p′SELO(|βd|)/|βd|}, σ̂2 = (n− d̂0)
−1||y−

Xβ̂||2, and d̂0 = |Â| is the number of elements in Â. Under the conditions of

Theorem 1,

BnX
T
AXAĉov

(
β̂Â

) BT
n

σ2
→ G.
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3. Tuning Parameter Selection

Tuning parameter selection is an important issue in most PLS procedures.

One often proceeds by finding estimators that correspond to a range of tuning

parameter values (referred to as a solution path). The preferred estimator is then

identified along the solution path as one corresponding to a tuning parameter

value that optimizes some criteria, such as GCV (Breiman (1995); Tibshirani

(1996); Fan and Li (2001)), AIC (Zou, Hastie and Tibshirani (2007)), or BIC

(Wang, Li, and Tsai (2007); Wang and Leng (2007); Zou, Hastie and Tibshirani

(2007); Wang, Li, and Leng (2009)). It is well known that GCV and AIC-based

methods are not consistent for model selection in the sense that, as n → ∞, they

may select irrelevant predictors with non-vanishing probability (Shao (1993);

Wang, Li, and Tsai (2007)). BIC-based tuning parameter selection (Schwarz

(1978)) has been shown to be consistent for model selection in several settings

(Wang, Li, and Tsai (2007); Wang and Leng (2007); Zou, Hastie and Tibshirani

(2007)). Thus, if variable selection and identification of the true model, A, is the

primary goal, then BIC tuning parameter selection may be preferred over GCV

and AIC. We propose a BIC tuning parameter selector for the SELO procedure

and show that the SELO/BIC procedure is consistent for model selection, even

if d → ∞.

BIC procedures are often implemented by minimizing

BIC0 = BIC0(β̂) = log(σ̂2) +
log(n)

n
D̂F (3.1)

over a collection of estimators, β̂, where σ̂2 is an estimator of the residual vari-

ance and D̂F is an estimator of the degrees of freedom corresponding to β̂. We

propose estimating the degrees of freedom for the SELO estimator by the num-

ber of selected coefficients: D̂F = d̂0, where d̂0 = |{j; β̂j ̸= 0}|. This estima-

tor of DF is partially motivated by Zou, Hastie and Tibshirani (2007), where

connections between the degree of freedom for LASSO and Stein’s unbiased

risk estimation theory are discussed. To estimate the residual variance, we use

σ̂2 = (n− d̂0)
−1||y−Xβ̂||2; here, n− d̂0 is used to account for degrees of freedom

lost to estimation. Additionally, in order to account for a diverging number of

parameters, we allow for additional flexibility in our BIC criterion by replacing

log(n) in BIC0 with a positive number kn that depends on the sample size n.

This follows Wang, Li, and Leng (2009), who showed that if d → ∞, then it may

be necessary to choose kn > log(n) to obtain model selection consistency with

BIC. Thus, our BIC criterion is

BICkn = BICkn(β̂) = log

(
||y −Xβ̂||2

n− d̂0

)
+

kn
n
d̂0.
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With d → ∞, Wang, Li, and Leng (2009) proved that if kn/ log(n) → ∞
and ϵi is Gaussian then, under certain additional conditions, BIC is consistent

for model selection. Our Theorem 2 below is a model selection consistency result

for BIC when used in conjunction with SELO, and it extends Wang, Li, and

Leng’s (2009) results in two directions. First, it allows for a broader class of

errors distributions; Theorem 2 (a) applies to ϵi with a (2 + δ)th moments; The-

orem 2 (b)−(c) applies to sub-Gaussian ϵi. Secondly, Theorem 2 (c) delineates

circumstances under which the classical BIC (with kn = log(n)) is consistent for

model selection, even when d → ∞.

Modified version of (A), (B), and (F) are required for the different parts of

Theorem 2.

(A2) n → ∞, dkn/n → 0 and σ2 = O(1).

(B2) ρ
√

n/(dkn) → ∞, where ρ = minj∈A |β∗
j |.

(F2) The errors ϵ1, . . . , ϵn are subgaussian in the sense that there exists σ0 > 0

such that E(etϵi) ≤ eσ
2
0t

2/2 for all t ∈ R.

Note that (A2), (B2), and (F2) are stronger than conditions (A), (B), and (F),

respectively. However, (A2)−(B2) are required for Wang, Li, and Leng’s (2009)

results on model selection consistency and BIC when the number of predictors

diverges (see condition 4 in their paper). Furthermore, condition (F2) is only

required in parts (b)−(c) of Theorem 2. A proof of Theorem 2 is found in the

Appendix.

Theorem 2. Suppose that (A2)−(B2), (C), and (E) hold. Suppose further that

Ω ⊆ R2 is a subset which contains a sequence (λ, τ) = (λ∗
n, τ

∗
n) such that (D)

holds. Let β̂∗ = β̂(λ∗
n, τ

∗
n) be the local minima of SELO described in Theorem 1

and let BIC−
kn

= inf{BICkn{β̂(λ, τ)}; (λ, τ) ∈ Ω, Â ̸= A}.

(a) If (F) holds and lim infn→∞ kn/n
2/(2+δ) > 0, then

lim
n→∞

P
[
BIC−

kn
> BICkn

{
β̂(λ∗

n, τ
∗
n)
}]

= 1. (3.2)

(b) If (F2) holds and kn/ log(n) → ∞, then (3.2) holds.

(c) Suppose that (F2) holds. Let R1 ∈ R be a constant such that max1≤j≤d

n−1||Xj ||2 ≤ R1 and recall from (C) that r0 is a constant satisfying 0 < r0 ≤
λmin(n

−1XTX). If there is a constant ζ > 0 such that

d = o
{
nσ2r0/(2σ2

0R1)−ζ
}

(3.3)

then (3.2) holds with kn = log(n).
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Remark 1. Theorem 2 implies that if β̂(λ̂, τ̂) is chosen to minimize BIC with

an appropriately chosen kn, then β̂(λ̂, τ̂) is consistent for model selection.

Remark 2. In (a), if kn = n2/(2+δ), then the SELO/BIC procedure is consistent

for model selection under the given conditions. Under (A2)−(B2), smaller kn is

generally desirable because this allows for larger d and smaller ρ.

Remark 3. In (b), consistent model selection is ensured if kn satisfies kn/ log(n) →
∞. Part (c) implies that if (3.3) holds, then one can take kn = log(n) to achieve

consistent model selection with SELO/BIC; in this case, the BIC penalty is the

same as in the classical (fixed d) BIC criterion (3.1). It is important to note

that (3.3) for Theorem 2 (c) limits the size of d (though d → ∞ is still allowed).

However, if d, n are given and they satisfy (3.3), then choosing a smaller kn for

the BIC criterion is still desirable because (B2) is less restrictive for smaller kn.

Remark 4. The constant R1 in Theorem 2 (c) exists by condition (C).

Remark 5. In Theorem 2 (c), notice that if kn = log(n), then (3.3) implies (A2).

Roughly speaking, (3.3) allows for larger d if the predictor matrix X is “well-

behaved” and if σ2
0 is close to σ2 (recall σ2

0 from (F2); it follows that σ2
0 ≥ σ2

and if ϵi is gaussian, then σ2
0 = σ2). In any event, (3.3) implies d/n1/2 → 0.

In Section 5, we describe the results of several simulation studies and a data

analysis where SELO with BIC tuning parameter selection was implemented. In

all of our implementations we took kn = log(n) so

BIC(β̂) = BIClog(n)(β̂) = log

(
||y −Xβ̂||2

n− d̂0

)
+

log(n)

n
d̂0. (3.4)

Broadly speaking, Theorem 2 (c) provides justification for using this criterion in

settings where X is well-behaved, the errors ϵi are not too extreme, and d is large,

but significantly smaller than n. In addition to performing effectively in all of the

settings considered in this paper, the BIC criterion with kn = log(n) is appealing

because of its similarity to the classical BIC criterion (3.1). Furthermore, we

have found that using a larger kn in BICkn , which Theorem 2 suggests may be

necessary to ensure consistent model selection in certain situations, can lead to

underfitting; this, in turn, may yield estimators with relatively poor prediction

and estimation error.

4. Implementation: Coordinate Descent

In this section, we describe a simple and efficient algorithm for obtaining

SELO estimators for finding a SELO solution path. This is necessary for ef-

fectively implementing any of the SELO tuning parameter selection procedures
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described above. An associate editor pointed out that this algorithm was also

recently proposed for a very general class of penalized likelihood methods by Fan

and Lv (2011), who refer to it as “iterative coordinate ascent” (ICA). Coordinate

descent algorithms for L1 and L2 penalized likelihood methods have also been

described by Friedman, Hastie, and Tibshirani (2010).

The idea of the coordinate descent algorithm is to find local optima of a mul-

tivariate optimization problem by solving a sequence of univariate optimization

problems. This can be very effective if the univariate optimization problems are

simple. Let

Q(β) =
1

2n
||y −Xβ||2 +

d∑
j=1

pSELO(βj)

and, for fixed β−k = (β1, . . . , βk−1, βk+1, . . . , βd), take Qk(βk;β−k) = Q(β).

Given β−k, it is straightforward to minimize Qk( · ;β−k). Indeed, differenti-

ating, one observes that finding critical points of Qk( · ;β−k) amounts to finding

the roots of cubic equations, which may be done very rapidly using Cardano’s for-

mula or some other procedure. The coordinate descent algorithm is implemented

by minimizing Qk( · ;β−k) and using the solution to update β; at the next step,

Qk+1( · ;β−(k+1)) is minimized and the minimizer is again used to update β.

In this way, we cycle through the indices k = 1, . . . , d; this can be performed

multiple times until some convergence criterion is met. More precisely, for an

integer k, define k̄ ∈ {1, . . . , d} so that k − k̄ is divisible by d; the coordinate

descent algorithm is as follows.

Algorithm 1 (SELO-CD).

(1) Let β(1) ∈ Rd be some initial value and set k = 1.

(2) Let β̃ = argminβ Qk̄(β;β
(k)

−k̄
).

(3) Define β(k+1) by β
(k+1)

−k̄
= β

(k)

−k̄
and β

(k+1)

k̄
= β̃.

(4) If |β(k+1)−β(k)| is small or k is very large, exit and return β(k+1); otherwise,

increment k by 1 and go to step (2).

In general, determining theoretical convergence properties of algorithms for

non-convex minimization problems is difficult. However, it is clear that Q(β(k+1))

≤ Q(β(k)). Furthermore, if β̂ minimizes Q(·) and β(1) lies in some ball centered

about β̂ on which Q(·) is convex, then it is easy to see that β̂(k) → β̂. In practice,

we have found that numerical convergence of β(k) generally occurs rapidly, when

a reasonable initial value is chosen.

Assuming convergence, SELO-CD returns the minimum of SELO, for a fixed

pair of tuning parameters, (λ, τ). To obtain a SELO solution path, we repeatedly



940 LEE DICKER, BAOSHENG HUANG AND XIHONG LIN

implement SELO-CD for a range of values of (λ, τ). To speed up the implemen-

tation, we utilize warm starts. This means that given the output of SELO-CD,

β̂ = β̂(λ, τ), for some fixed pair of tuning parameters (λ, τ), we use β̂ as the

initial estimate for implementing SELO-CD at nearby tuning parameter values.

We have found that using warm starts dramatically decreases computing time.

The first step in finding a SELO solution path involves determining values

of (λ, τ) for which SELO estimators will be obtained. For each τ , we consider a

wide range of values for λ: λmax = λ0 > · · · > λM = 0, for some large number

M (M = 100 in our implementations), where

λmax :=
||y||2

2n
log(2)

{
log

(
||y||2

||y||2 + 2nτ ||XT y||∞
+ 1

)}−1

.

Our choice of λmax is motivated by the fact that

argmin
β

1

2n
||y −Xβ||2 +

d∑
j=1

pSELO(βj ;λ, τ) = 0

whenever λ ≥ λmax. Thus, β̂(λ0, τ) = 0 and β̂(λk, τ) grows with k; in other

words, given τ , the value λ0 = λmax tells us where the solution path begins.

For each τ and λmax = λ0 > · · · > λM = 0, SELO estimators may be rapidly

obtained with the following algorithm.

Algorithm 2 (SELO-CD-PATH).

(1) Let β̂(m) = 0 ∈ Rd and set m = 0.

(2) Run Algorithm 1, with initial value β(1) = β̂(m) and λ = λm+1; let β̂(m+1)

equal the output of Algorithm 1.

(3) If m ≥ M − 1, exit and return {β̂(m)}Mm=0; otherwise, increment m by 1 and

go to step (2).

Remark 1. Implementing SELO-CD-PATH for each value of τ and each sequence

λmax = λ0 > · · · > λM = 0 to be considered gives the entire SELO solution path.

Remark 2. In practice, we have found that if the columns of X are standardized

so that ||Xj ||2 = n for j = 1, . . . , p, then taking τ = 0.01 or selecting τ from a

relatively small range of possible values works well.

5. Simulation Studies and a Data Example

5.1. Simulation methodology

All of our simulations were based on datasets of independent observations,

(yi, x
T
i ), i = 1, . . . , n, where yi = xTi β

∗ + ϵi. Throughout, xi ∼ N(0,Σ) and
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ϵi ∼ N(0, σ2) were drawn independently. We took Σ = (σij), where σij = 0.5|i−j|.

In addition to SELO, we considered the LASSO, adaptive LASSO (with weights

wj = |β̂(0)
j |−1, where β̂(0) is the OLS estimator), SCAD, and MC+ PLS proce-

dures. Covariates were standardized to have ||Xj || = n, j = 1, . . . , n, prior to ob-

taining estimates; however, all summary statistics discussed below pertain to esti-

mators transformed to the original scale. In our simulations, SELO solution paths

were found using SELO-CD-PATH. LASSO, adaptive LASSO, and SCAD solution

paths were also computed using coordinate descent algorithms. We used the

PLUS algorithm (implemented in the plus R library) to find MC+ estimators.

For SELO, LASSO, adaptive LASSO, and SCAD, tuning parameter selection was

performed with BIC and, alternatively, a prediction error minimization-based

procedure referred to as data-validation (DV) tuning parameter selection. For

MC+, we used data-validation based tuning parameter selection and a method

proposed by Zhang (2010) that involves estimating a specific value of λ with good

theoretical properties, in addition to BIC. For SELO tuning parameter selection,

we considered two types of solution paths: one where τ = 0.01 was fixed and

we tuned over λ ∈ {λ0, λ1, . . . , λM}, where λ0 = λmax, and a second where we

tuned over τ ∈ {0.001, 0.01, 0.1, 0.5} and λ ∈ {λ0, λ1, . . . , λM}. For selecting the

parameter γ when implementing MC+, we followed Zhang (2010) and, for each

simulated dataset, took γ = 2/(1−maxi ̸=j |XT
i Xj |/n).

BIC tuning parameter selection for SELO was discussed in Section 4. In all

of our SELO/BIC simulations, we used the BIC criterion (3.4). In addition to

using BIC tuning parameter selection with SELO, we used BIC tuning parame-

ter selection with LASSO, adaptive LASSO, SCAD, and MC+. For these PLS

methods, we used previously proposed versions of BIC that are special cases of

(3.1) with different values of σ̂2 and D̂F (where available). In particular, for

SCAD, we followed Wang, Li, and Tsai (2007) in using a BIC tuning parameter

selector with σ̂2 = n−1||y −Xβ̂||2 and

D̂F = tr

{
XÂ

(
XT

Â
XÂ + n∆SCAD

Â,Â

)−1
XT

Â

}
, (5.1)

where ∆SCAD = diag
{
p′SCAD(β̂1)/|β̂1|, . . . , p′SCAD(β̂d)/|β̂d|

}
. That is, for the

SCAD/BIC procedure, the tuning parameter λ was selected to minimize BIC0,

using the above values of σ̂2 and D̂F. For LASSO, there is less consensus in

the literature on how to implement BIC tuning parameter selection. We took

σ̂2 = n−1||y −Xβ̂||2 and, following Zou, Hastie and Tibshirani (2007), we took

D̂F = d̂0 (the BIC objective in Zou, Hastie and Tibshirani (2007) is derived

under the assumption that σ2 is known and takes a slightly different form than

BIC0); we used the same σ̂2 and D̂F for the adaptive LASSO/BIC procedure. To
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our knowledge, BIC tuning parameter selection for MC+ has not been discussed

in the literature. For MC+/BIC we mimicked the BIC procedure for SELO and

took σ̂2 = (n− d)−1||y−Xβ̂||2 and D̂F = d̂0. In Sections 5.4-5.5, we discuss the

results of a simulation study where we implemented BIC selection procedures for

LASSO, adaptive LASSO, and SCAD that mimic the BIC procedure proposed

for SELO more closely.

Data validation procedures may provide the simplest example of prediction

error minimization-based tuning parameter selection. We implemented DV tun-

ing parameter selection as follows. After obtaining a solution path of estimators,

we generated an independent validation dataset, (ỹi, x̃
T
i ), i = 1, . . . , n, under the

same conditions as the original data, (yi, xi), i = 1, . . . , n. The estimator in the

solution path that minimized

n∑
i=1

(ỹi − x̃Ti β̂)
2 (5.2)

was selected. The quantity (5.2) is a surrogate for the prediction error associated

with β̂; thus, we expect the prediction error of the selected estimator to be

relatively low. Notice that DV tuning parameter selection requires a validation

dataset and utilizes more data than BIC tuning parameter selection. Thus, we

should not be surprised if the DV selector outperforms BIC by some metrics,

especially metrics related to prediction error. In fact, the simulation results below

indicate that BIC generally outperforms DV in terms of model selection metrics

and that, in a wide range of setting, the tuning parameter selection procedures

perform very similarly in terms of prediction error metrics.

In addition to DV and BIC, we implemented a third method for MC+ tuning

parameter selection that was proposed by Zhang (2010). This method, referred

to as universal tuning, or just λuniv, consists of taking λ = λ̂univ = σ̂
√

2 log(d)/n,

where σ̂2 = (n−d)−1||y−Xβ̂||2. Zhang (2010) showed that λuniv possesses good

theoretical properties, at least asymptotically, for both variable selection and

estimation.

5.2. Simulation study I: d = 8

Our first simulation study involved a modest number of predictors. We set

β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0)T ∈ R8. Thus, d = 8 and d0 = 3. We fixed σ2 = 9

and simulated datasets with n = 50 and n = 100 observations. For each value

of n, we simulated 1,000 independent datasets {(y1, xT1 ), . . . , (yn, xTn )} and, for

each dataset, we computed estimates of β∗. For each estimate, β̂, we recorded:

the model size, Â = {j; β̂j ̸= 0}; an indicator of whether or not the true model

was selected, I{Â = A}; the false positive rate, |Â \A|/|Â|, where A \ Â denotes
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Table 1. Simulation study I results (β∗ ∈ R8). “Model size,” “F+,” “F−,”
and “Model error” indicate the mean model size, false positive rate, false
negative rate, and model error over all 1,000 independent datasets. “Correct
model” indicates the proportion of times the correct model, A, was selected
over the 1,000 datasets.

Tuning n Method
Model
size

Correct
model

F+ F− Model
error

Data 50 LASSO 5.766 0.070 0.438 0.006 1.117
Validation Adaptive LASSO 4.695 0.209 0.306 0.013 1.083

SCAD 4.657 0.188 0.310 0.014 1.056
MC+ 4.687 0.201 0.312 0.015 1.090
SELO

τ = 0.01 3.742 0.540 0.147 0.023 1.102
τ ∈ {0.001, 0.01, 0.1, 0.5} 3.665 0.544 0.141 0.022 1.021

100 LASSO 5.791 0.058 0.439 0.000 0.521
Adaptive LASSO 4.472 0.307 0.264 0.001 0.430
SCAD 4.324 0.353 0.241 0.001 0.384
MC+ 4.530 0.304 0.272 0.000 0.401
SELO

τ = 0.01 3.669 0.709 0.113 0.005 0.394
τ ∈ {0.001, 0.01, 0.1, 0.5} 3.720 0.670 0.126 0.002 0.352

BIC 50 LASSO 4.191 0.276 0.249 0.009 1.278
Adaptive LASSO 3.315 0.518 0.120 0.037 1.277
SCAD 3.798 0.362 0.200 0.023 1.220
MC+ 3.244 0.495 0.113 0.042 1.333
SELO

τ = 0.01 2.913 0.605 0.061 0.056 1.310
τ ∈ {0.001, 0.01, 0.1, 0.5} 2.904 0.607 0.061 0.055 1.300

λuniv MC+ 3.088 0.557 0.088 0.045 1.991

BIC 100 LASSO 4.065 0.347 0.219 0.000 0.643
Adaptive LASSO 3.265 0.750 0.066 0.004 0.475
SCAD 3.645 0.548 0.142 0.002 0.458
MC+ 3.211 0.748 0.063 0.009 0.507
SELO

τ = 0.01 3.061 0.879 0.026 0.008 0.408
τ ∈ {0.001, 0.01, 0.1, 0.5} 3.052 0.881 0.024 0.008 0.394

λuniv MC+ 3.208 0.763 0.059 0.007 0.774

the set difference of A and Â; the false negative rate, |A \ Â|/(d− |Â|); and the

model error, (β̂ − β∗)TΣ(β̂ − β∗). Results for SELO, LASSO, adaptive LASSO,

SCAD, and MC+ are summarized in Table 1.

Table 1 indicates that SELO consistently selects a smaller model and the

correct model more frequently than any of the other procedures, regardless of

tuning method. These competing methods overfit the model considerably, when

compared with SELO. For instance, when n = 100 and DV tuning was used,

SELO with fixed τ = 0.01 selected models with average size 3.669 and the cor-
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rect model was selected in 70.9% of the simulated datasets; on the other hand,

LASSO, adaptive LASSO, SCAD, and MC+ selected models with average size

5.791, 4.472, 4.324, and 4.530 and selected the correct model in 5.8%, 30.7%,

35.3%, and 30.4% of simulated datasets, respectively. In terms of model error,

it appears that all the methods have similar performance when n = 50; when

n = 100, SELO performs comparably with adaptive LASSO, SCAD, and MC+,

and all of these methods outperform LASSO. For example, for n = 100 and DV

tuning, the mean model error for SELO with τ ∈ {0.001, 0.01, 0.1, 0.5} was 0.352;

the mean model error for LASSO, adaptive LASSO, SCAD, and MC+ was 0.521,

0.430, 0.384, and 0.401, respectively. Notice that when data validation tuning

parameter selection is used, SELO with tuning over τ ∈ {0.001, 0.01, 0.1, 0.5}
seems to give improved model error when compared to SELO with τ = 0.01

fixed, which is not surprising. However, the differences between results for fixed

τ and variable τ appear to be fairly small.

The bottom half of Table 1 contains results for BIC tuning parameter selec-

tion and, for MC+, universal tuning parameter selection (λuniv). It is reasonable

to compare the MC+/λuniv procedure to BIC procedures because they do not

utilize validation data. However, before taking a closer look at the BIC and

λuniv results, we make some general observations about how the BIC and λuniv

results compare to the DV results. Keeping in mind that the DV procedures

utilize more data than BIC and λuniv, note that for LASSO, adaptive LASSO,

MC+, and SELO, the correct model was selected considerably more often with

BIC and λuniv, while model error tended to be slightly lower when DV tuning

parameter selection was used (one notable exception was that the model error for

MC+/λuniv was substantially higher than for the other methods). For example,

for SELO with τ = 0.01 and n = 100, the correct model was selected 17% more

often when BIC tuning parameter selection was used, as opposed to DV tuning,

while average model error was decreased by 0.014 when DV tuning is used, as

opposed to BIC tuning. This is not surprising because BIC is consistent for

model selection, while data validation tuning is designed to minimize prediction

error. Focusing now on the BIC and λuniv results, it is apparent that SELO/BIC

outperformed all corresponding BIC and λuniv methods in terms of selecting the

correct model with the highest frequency. Furthermore, SELO/BIC performed

comparably to the other BIC procedures in terms of model error. As mentioned

above, MC+/λuniv appeared to perform rather poorly in terms of model error.

Overall, the results in Table 1 indicate that SELO performs very favorably

when compared with the other estimators, in selecting the correct model and in

model error. SELO simulation results were similar for fixed τ = 0.01 and for

tuning over τ ∈ {0.001, 0.01, 0.1, 0.5} . This suggests that tuning over different

values of τ may, in practice, offer only modest gains over a fixed τ approach.
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Table 2. Variability of SELO estimators in simulation study I (β∗ ∈ R8); BIC
tuning parameter selection. Mean estimated variance across 1,000 simulated
datasets and empirical variance of SELO estimates (in parentheses).

n Method β1 β2 β3 β4 β5 β6 β7 β8

50 τ = 0.01 0.237 0.185 0.012 0.009 0.186 0.011 0.010 0.007
(0.345) (0.711) (0.102) (0.089) (0.399) (0.088) (0.075) (0.055)

τ ∈ {0.001, 0.237 0.184 0.011 0.009 0.186 0.009 0.008 0.007
0.01, 0.1, 0.5} (0.346) (0.714) (0.103) (0.089) (0.398) (0.079) (0.061) (0.055)

100 τ = 0.01 0.123 0.121 0.003 0.003 0.096 0.002 0.002 0.001
(0.146) (0.199) (0.030) (0.022) (0.116) (0.019) (0.015) (0.011)

τ ∈ {0.001, 0.123 0.119 0.003 0.002 0.095 0.002 0.002 0.002
0.01, 0.1, 0.5} (0.140) (0.190) (0.027) (0.016) (0.109) (0.015) (0.014) (0.013)

For each of the 1,000 simulated datasets, we also estimated the variance of

the SELO estimators using (2.2). Results are reported in Table 2. When n = 100,

the variance estimates corresponding to non-zero entries in β∗ agreed well with

the empirical variances. However, the performance of variance estimators corre-

sponding to entries of β∗ equal to zero and the performance of variance estimators

when n = 50 was less reliable; in these situations, the variance estimates appeared

to underestimate the true variability of SELO estimators. Similar phenomena

were observed for the quadratic approximation-based standard error estimators

for the adaptive LASSO and SCAD estimators.

5.3. Simulation study II: d = 20

In our second study, we took β∗ ∈ R20, with β∗
1 = 3, β∗

2 = 1.5, β∗
5 = 2,

and β∗
j = 0, if j ̸= 1, 2, or 5. Thus d = 20 and d0 = 3. We fixed σ2 = 9

and for each value of n, with n ∈ {50, 100}, we simulated 1,000 independent

datasets {(y1, xT1 ), . . . , (yn, xTn )} and, for each dataset, we computed estimates of

β∗. Results are found in Table 3.

The results are similar to the results in Table 1, indicating that when data

validation was used for tuning parameter selection, SELO outperformed LASSO,

adaptive LASSO, SCAD, and MC+ in terms of model selection criteria (“Correct

model”); in terms of model error when n = 50, SELO performed comparably

to its competitors, while when n = 100, it performed comparably to adaptive

LASSO, SCAD, and MC+, and all the four methods outperformed LASSO. In

fact, in many settings, SELO selected the correct model far more frequently than

the other procedures. SELO and SCAD seemed to perform the best in terms of

model error – SELO with τ ∈ {0.001, 0.01, 0.1, 0.5} performed especially well.

When BIC and λuniv tuning parameter selection was used, Table 3 indicates

that SELO performed the best in terms of model selection criteria (except for

the n = 50 setting, where λuniv selected the correct model more frequently than
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Table 3. Simulation study II results (β∗ ∈ R20). “Model size,” “F+,”
“F−,” and “Model error” indicate the mean model size, false positive rate,
false negative rate, and model error over all 1,000 independent datasets.
“Correct model” indicates the proportion of times the correct model, A, was
selected over the 1,000 datasets.

Tuning n Method
Model
size

Correct
model

F+ F− Model
error

Data 50 LASSO 8.270 0.024 0.579 0.002 1.598
Validation Adaptive LASSO 5.711 0.104 0.413 0.010 1.559

SCAD 6.063 0.076 0.451 0.009 1.470
MC+ 6.125 0.106 0.458 0.007 1.503
SELO

τ = 0.01 3.289 0.521 0.093 0.018 1.502
τ ∈ {0.001, 0.01, 0.1, 0.5} 3.452 0.539 0.111 0.014 1.306

100 LASSO 8.474 0.020 0.583 0.000 0.766
Adaptive LASSO 5.543 0.174 0.363 0.001 0.583
SCAD 5.868 0.165 0.401 0.001 0.513
MC+ 6.133 0.126 0.427 0.001 0.589
SELO

τ = 0.01 3.544 0.765 0.079 0.003 0.488
τ ∈ {0.001, 0.01, 0.1, 0.5} 3.683 0.707 0.107 0.002 0.460

BIC 50 LASSO 5.001 0.208 0.331 0.003 1.928
Adaptive LASSO 4.198 0.275 0.258 0.015 1.922
SCAD 6.345 0.043 0.498 0.009 1.896
MC+ 3.675 0.348 0.191 0.015 1.954
SELO

τ = 0.01 3.361 0.411 0.156 0.019 1.939
τ ∈ {0.001, 0.01, 0.1, 0.5} 3.440 0.420 0.169 0.018 1.984

λuniv MC+ 3.242 0.464 0.126 0.016 2.689

BIC 100 LASSO 4.408 0.328 0.255 0.000 0.963
Adaptive LASSO 3.583 0.595 0.127 0.002 0.634
SCAD 5.478 0.154 0.390 0.000 0.567
MC+ 3.470 0.579 0.117 0.004 0.716
SELO

τ = 0.01 3.310 0.702 0.080 0.002 0.571
τ ∈ {0.001, 0.01, 0.1, 0.5} 3.263 0.696 0.076 0.003 0.578

λuniv MC+ 3.262 0.674 0.079 0.004 1.043

the other methods; however, in this setting, MC+/λuniv had the highest model

error) and performed well in terms of model error.

The comparison of BIC and DV tuning parameter selection in Table 3 is

more nuanced for the d = 20 simulations than for the d = 8 simulations in Table

1. Model error results for DV tuning are better than those for BIC tuning in

all settings, which is to be expected. For LASSO, adaptive LASSO, and MC+,

BIC consistently selected smaller models and selected the correct model more

frequently than DV tuning. On the other hand, for SCAD and SELO, data
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validation selected the correct model more frequently than BIC in some settings.

For instance, when n = 100 and SELO with τ = 0.01 was implemented, BIC

selected the correct model in 70.2% of all simulated datasets, while DV selected

the correct model in 76.5% of all simulated datasets. We point out that the

comparative performance gains of DV tuning in these settings may be related to

the fact that DV utilizes more data than the BIC procedures.

Standard error estimates were also computed for SELO estimates in this

simulation study. In the interests of brevity, these results are not fully reported

here. However, we mention that standard error estimates corresponding to non-

zero entries in β∗ (β∗
1 , β∗

2 , and β∗
5) agreed well with empirical standard errors

for n = 100, while the variance estimates for n = 50 were less reliable.

5.4. Simulation study III: common BIC criterion

Table 4 summarizes the results of a simulation study in which (3.4), the BIC

criterion used with for SELO, was used for each PLS method. Thus, results

for SELO and MC+ contained in Table 4 were also reported in Tables 1 and 3.

Results indicate that when this common BIC criterion is utilized, SELO performs

well when compared to the alternative methods. Indeed, SELO outperforms all

other methods in terms of model selection criteria and performs comparably in

terms of model error.

Comparing the results for the different BIC procedures implemented with

LASSO, adaptive LASSO, and SCAD, it appears that the common BIC criterion

(3.4) typically leads to improved model selection performance, at the expense of

a slight increase in model error for the simulation settings considered here. The

most substantial differences are for SCAD. For instance, in the d = 20, n = 50

results, the frequency with which that correct model was selected by SCAD/BIC

jumps from 0.043 in Table 2 to 0.251 in Table 4.

5.5. Simulation study IV: large d analysis

We examined the performance of the various PLS methods for d substantially

larger than in the previous studies. In particular, we took d = 339, n = 800,

σ2 = 36, and β∗ = (3JT
37,−2JT

37, 1J
T
37, 0J

T
228)

T ∈ R339, where Jk ∈ Rk is the vector

with all entries equal to 1. Thus, d0 = 111. We used BIC tuning parameter

selection in this study. For SELO and MC+, we used the BIC criterion (3.4).

For each of LASSO, adaptive LASSO, and SCAD, we implemented two BIC

selection procedures: the corresponding BIC procedure from simulations I-II and

the common BIC procedure (3.4) that was used for all estimation methods in

simulation III. For SELO, the tuning parameter τ = 0.01 was taken to be fixed.

We simulated 100 independent datasets {(y1, xT1 ), . . . , (yn, xTn )} and, for each

dataset, we computed estimates of β∗. Results are in Table 5.
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Table 4. Simulation study III (common BIC criterion). BIC tuning param-
eter selection used for all methods. “Model size,” “F+,” “F−,” and “Model
error” indicate the mean model size, false positive rate, false negative rate,
and model error over all 1,000 independent datasets. “Correct model” in-
dicates the proportion of times the correct model, A, was selected over the
1,000 datasets.

d n Method
Model
size

Correct
model

F+ F− Model
error

8 50 LASSO 3.940 0.361 0.992 0.052 1.360
Adaptive LASSO 3.119 0.567 0.354 0.235 1.289
SCAD 3.298 0.455 0.539 0.241 1.384
MC+ 3.244 0.495 0.113 0.042 1.333
SELO
τ = 0.01 2.913 0.605 0.061 0.056 1.310
τ ∈ {0.001, 0.01, 0.1, 0.5} 2.904 0.607 0.061 0.55 1.300

100 LASSO 3.830 0.411 0.830 0.000 0.677
Adaptive LASSO 3.168 0.791 0.203 0.035 0.474
SCAD 3.240 0.702 0.298 0.058 0.488
MC+ 3.211 0.748 0.063 0.009 0.507
SELO
τ = 0.01 3.061 0.879 0.026 0.008 0.408
τ ∈ {0.001, 0.01, 0.1, 0.5} 3.208 0.763 0.059 0.007 0.394

20 50 LASSO 4.090 0.329 1.181 0.091 2.020
Adaptive LASSO 3.466 0.370 0.796 0.330 1.793
SCAD 3.830 0.251 1.161 0.331 2.059
MC+ 3.675 0.348 0.191 0.015 1.954
SELO
τ = 0.01 3.361 0.411 0.156 0.019 1.939
τ ∈ {0.001, 0.01, 0.1, 0.5} 3.440 0.420 0.169 0.018 1.984

100 LASSO 4.032 0.403 1.033 0.001 1.030
Adaptive LASSO 3.331 0.658 0.394 0.063 0.645
SCAD 3.566 0.511 0.652 0.086 0.719
MC+ 3.470 0.579 0.117 0.004 0.716
SELO
τ = 0.01 3.310 0.702 0.080 0.002 0.571
τ ∈ {0.001, 0.01, 0.1, 0.5} 3.263 0.696 0.076 0.003 0.578

Perhaps the most striking aspect of the results is that no method ever selected

the correct model, but with d, d0, and σ2 substantially larger than in the previous

studies this is not surprising. On average, SELO selected the most parsimonious

models of all methods (average model size, 104.04) and had the smallest model

error (11.038). Since d0 = 111, it is clear that SELO underfit in some instances

(indeed, this is reported in Table 5: F− = 8.03). In fact, all of the methods in

this study underfit to some extent (i.e. F− > 0), perhaps due to the fact that
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Table 5. Simulation study IV (large d: β∗ ∈ R339). Recall that d0 = 111.
BIC tuning parameter selection used for all methods. For LASSO, adap-
tive LASSO, and SCAD, “Common BIC” indicates that the BIC criterion
(3.4) was used for tuning parameter selection; “BIC” indicates that the
corresponding BIC criterion discussed in Section 5.1 was used for tuning
parameter selection. For SELO and MC+, the common BIC criterion (3.4)
was used. “Model size,” “F+,” “F−,” and “Model error” indicate the mean
model size, false positive rate, false negative rate, and model error over all
100 independent datasets. “Correct model” indicates the proportion of times
the correct model, A, was selected over the 100 datasets.

d n Method
Model
size

Correct
model

F+ F− Model
error

339 800 LASSO
Common BIC 126.14 0 15.56 0.42 15.683
BIC 130.01 0 19.34 0.33 14.525

Adaptive LASSO
Common BIC 112.95 0 6.17 4.22 13.521
BIC 115.64 0 8.27 3.63 12.718

SCAD
Common BIC 114.53 0 10.94 7.41 16.970
BIC 137.17 0 29.26 3.09 11.856

MC+ 112.23 0 7.90 6.67 15.903
SELO, τ = 0.01 104.04 0 1.07 8.03 11.038

many of the non-zero entries in β∗ were small relative to the noise level σ2 = 36.

Comparing the different BIC criteria for LASSO, adaptive LASSO, and

SCAD, it is apparent that the common BIC criterion (3.4) (used in simula-

tion III) selected a more parsimonious model than the BIC procedures that were

described in Section 5.1 and used in simulations I-II at the cost of a somewhat

inflated model error. This is not unexpected, because the degrees of freedom

adjustment in the denominator of σ̂2 = (n − d̂0)
−1||y −Xβ̂||2, which is used in

the common BIC criterion (3.4), inflates the BIC of larger models. In the present

study, the diferences between the two BIC implementations for SCAD were es-

pecially notable. This may be related to the fact that for SCAD, the two BIC

criteria use different estimates of σ2 and different D̂F, while in the BIC criteria

for LASSO and adaptive LASSO, only the estimates of σ2 differ.

5.6. HIV-1 drug resistance and codon mutation

Rhee et al. (2006) describe a publicly available dataset that contains HIV-1

drug resistance and mutation information on 848 HIV-1 isolates. We investigated

the association between resistance to the drug Amprenavir, a protease inhibitor,

and the presence of mutations at various protease codons using SELO/BIC and



950 LEE DICKER, BAOSHENG HUANG AND XIHONG LIN

Table 6. HIV drug resistance and codon mutation analysis. BIC tuning pa-
rameter selection. “Model size” indicates the number of mutations selected
by each method; R2 is equal to one minus the residual sum of squares divided
the total sum of squares.

Method Model size R2 R2/R2
OLS

OLS 76 0.772 1
LASSO 23 0.719 0.931
Adaptive LASSO 14 0.724 0.937
SCAD 24 0.739 0.957
MC+ 24 0.723 0.936
SELO, τ = 0.01 16 0.740 0.958

other methods. Identifying codon mutations that effect drug resistance and es-

timating the magnitudes of these effects is clinically important. Our outcome of

interest was IC50, a continuous measure of HIV-1 drug resistance; higher IC50

corresponds to greater drug resistance. The dataset contains mutation informa-

tion for 99 protease codons. We used a binary predictor to indicate the presence

of a mutation at each codon location. After removing samples with missing data,

and codons with fewer than three observed mutations, the resulting dataset con-

tained n = 768 samples and d = 76 predictor codons. We analyzed this dataset.

After taking the logarithm of IC50, centering the data, and standardizing the

predictors to have length n, we found SELO, LASSO, adaptive LASSO, SCAD,

and MC+ (with γ = 2/(1 − maxi ̸=j |XT
i Xj |/n)) estimates. The BIC criterion

(3.4) was used to select tuning parameters. We also computed the OLS estimate

of the codon mutations’ effect on IC50. Results are summarized in Table 6. The

OLS estimator does not perform variable selection; estimated effects are non-

zero for all 76 codons. LASSO, adaptive LASSO, SCAD, and MC+ select 23, 14,

24, and 24 codon mutations associated with Amprenavir resistance, respectively,

out of 76 total codon mutations. SELO, selects 16 mutations associated with

Amprenavir resistance, a substantially simpler model than LASSO, SCAD, and

MC+, and only slightly more complex than the adaptive LASSO. Furthermore,

as indicated by the columns labeled R2 and R2/R2
OLS in Table 6, the SELO

estimator describes more variability in the data than any of the PLS alternatives,

and nearly as much as the OLS estimator.

The codons selected by the SELO procedure are displayed in Table 7, along

with the corresponding point estimates, standard errors, and p-values based on

a normal approximation (which is justified by Theorem 1). All of the codons

selected by SELO are selected by adaptive LASSO. SELO selects two codons

which are not selected by LASSO (codons 64 and 71) and one codon not selected

by SCAD or MC+ (codon 71). All of the codons selected by SELO are highly

significant. Furthermore, mutations at codons 10, 32, 46, 47, 50, 54, 76, 84,
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Table 7. Codons selected by SELO/BIC.

Codon Point estimate Standard error p-value
10 0.77 0.078 < 2.0× 10−16

30 0.89 0.14 5.3× 10−11

32 0.94 0.17 3.5× 10−8

33 0.64 0.095 1.3× 10−11

46 0.57 0.072 3.8× 10−15

47 1.1 0.22 6.4× 10−7

48 0.55 0.15 0.00035
50 0.68 0.15 8.4× 10−6

54 0.65 0.082 3.8× 10−15

64 -0.29 0.076 0.00014
71 -0.22 0.074 0.0032
76 1.1 0.16 6.7× 10−13

84 1 0.086 < 2.0× 10−16

88 -1.2 0.12 < 2.0× 10−16

90 0.67 0.074 < 2.0× 10−16

93 -0.23 0.062 0.00017

and 90 are known to be associated with Amprenavir resistance (Johnson et al.

(2008)). Overall, in this analysis, SELO leads to a relatively simple model of the

association between drug resistance and codon mutations that explains the data

very nearly as well as substantially more complex models.

6. Discussion

The concavity parameter. Both SELO and MC+ depend on λ and a concavity

parameter (τ for SELO and γ for MC+). In principle, when implementing these

PLS methods, one may tune over a fine two-dimensional grid comprised of differ-

ent values of λ and the concavity parameter. However, the computational cost

of two-dimensional tuning parameter selection may become burdensome. Our

numerical results suggest that the performance of SELO is fairly robust to the

choice of τ and we have found that τ = 0.01 seems to give reasonable results in

all of simulation settings considered here, along with the data analysis.

One-step methods. Following Zou and Li (2008), a one-step version of the

SELO procedure may be implemented. Like the SELO-CD-PATH procedure, the

one-step version has the oracle property of Fan and Li (2001). In simulations

we have found that SELO-CD-PATH outperforms the one-step procedure regard-

less of the tuning parameter selection method, perhaps because of the one-step

procedure’s dependence on an initial estimator. Thus, we recommend using

SELO-CD-PATH over one-step procedures, especially for relatively noisy data where

the initial estimator utilized by the one-step procedure may be unreliable.
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L2-regularization. Motivated by the elastic net (Zou and Hastie (2005)) and the

adaptive elastic net (Zou and Zhang (2009)), one could consider a mixed penalty

involving pSELO and an L2-norm penalty:

λ1||β||2 +
d∑

j=1

pSELO,λ2,τ (βj).

The elastic net and the adaptive elastic net have been observed to outperform

PLS methods that do not involve an L2 penalty in a variety of settings. Studying

the performance of PLS methods that utilize SELO and an L2 norm penalty is

a potentially interesting area for future research.

More predictors than observations. In this paper, we do not address the

situation where d > n. Existing theoretical results for PLS methods that utilize

other penalty functions and are valid for d > n typically require more stringent

conditions on the matrix n−1XTX, the sparsity level (d0 must not be too large),

and the distribution of the additive error ϵi. If one adopts additional assumptions

in this direction, it is plausible that results similar to those found in Kim, Choi,

and Oh (2008), Zhang (2010), and Fan and Lv (2011), which apply to other PLS

methods, may hold for SELO. Further research in this direction is needed. It is

worth pointing out that existing d > n results for PLS methods with a general

penalty function do not appear to apply directly to SELO.

GLMs. The SELO procedure may be extended to generalized linear models

(McCullagh and Nelder (1989)). As with linear models, one can prove that SELO

for GLMs is consistent for model selection and asymptotically efficient, provided

tuning parameters follow the appropriate rate. For GLMs, SELO estimators may

be found using a coordinate descent algorithm and tuning parameters may be

selected to minimize a BIC criteria based on the model deviance or negative log-

likelihood. Small scale simulation studies indicate that SELO for GLMs performs

well.
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Appendix

To prove Theorem 1, we argue as in Fan and Peng (2004). Lemmas 1 and 2

imply that there is a
√

n/(dσ2)-consistent local minimizer of the SELO objective

that consistently selects A, then Theorem 1 follows readily.
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Lemma A.1. Assume that conditions (A)−(D) hold and let

Qn(β) =
1

2n
||y −Xβ||2 +

d∑
j=1

pSELO(βj). (A.1)

Then for every r ∈ (0, 1), there exists a constant C0 > 0 such that

lim inf
n→∞

P

 argmin
||β−β∗||≤C

√
dσ2/n

Qn(β) ⊆

{
β ∈ Rd; ||β − β∗|| < C

√
dσ2

n

} > 1− r,

whenever C ≥ C0.

Proof. Let αn =
√

dσ2/n and fix r ∈ (0, 1). To prove the lemma, it suffices to
show that if C > 0 is large enough, then

Qn(β
∗) < inf

||u||=1
Qn(β

∗ + Cαnu)

holds for all n sufficiently large, with probability at least 1 − r. Take Dn(u) =
Qn(β

∗ + Cαnu)−Qn(β
∗) and note that

Dn(u) =
1

2n

(
C2α2

n||Xu||2 − 2Cαnϵ
TXu

)
+

d∑
j=1

[
pSELO(β

∗
j + Cαnuj)− pSELO(β

∗
j )
]

≥ 1

2n

(
C2α2

n||Xu||2 − 2Cαnϵ
TXu

)
+
∑

j∈K(u)

[
pSELO(β

∗
j + Cαnuj)− pSELO(β

∗
j )
]
,

where K(u) = {j; pSELO(β∗
j + Cαnuj)− pSELO(β

∗
j ) < 0}. Condition (B) and the

fact that pSELO is concave on [0,∞) imply that, for each C, pSELO(β
∗
j +Cαnuj)−

pSELO(β
∗
j ) ≥ −Cαn|uj |p′SELO(β∗

j + Cαnuj) for all ||u|| = 1 and j ∈ K(u), when
n is sufficiently large. Thus, for n large enough,

Dn(u) ≥
1

2n

(
C2α2

n||Xu||2 − 2Cαnϵ
TXu

)
−

∑
j∈K(u)

Cαn|uj |p′SELO(βj + Cαnuj)

≥ 1

2n

(
C2α2

n||Xu||2 − 2Cαnϵ
TXu

)
− Cdλταn

ρ2 log(2)
. (A.2)

By (C),

1

2n
C2α2

n||Xu||2 ≥ λmin(n
−1XTX)

2
C2α2

n, (A.3)

1

n
Cαn|ϵTXu| ≤ Cαn√

n

∣∣∣∣∣∣∣∣ 1√
n
XT ϵ

∣∣∣∣∣∣∣∣ = OP (Cα2
n). (A.4)
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Furthermore, (D) implies

Cdλταn

ρ2 log(2)
= o(Cα2

n). (A.5)

From (A.2)−(A.5), we conclude that if C > 0 is large enough, then inf ||u||=1Dn(u)

> 0 holds for all n sufficiently large, with probability at least 1− r. This proves

the lemma.

Lemma A.2. Assume that (A)−(D) hold, let Qn(β) be as at (A.1) and fix C > 0.

Then

lim
n→∞

P

 argmin
||β−β∗||≤C

√
dσ2/n

Qn(β) ⊆ {β ∈ Rd; βAc = 0}

 = 1,

where Ac = {1, . . . , d} \A is the complement of A in {1, . . . , d}.

Proof. Suppose that β ∈ Rd and that ||β − β∗|| < C
√

dσ2/n. Define β̃ ∈ Rd

by β̃Ac = 0 and β̃A = βA. Similar to the proof of Lemma 1, if Dn(β, β̃) =

Qn(β)−Qn(β̃), then

Dn(β, β̃) =
1

2n
||y −Xβ||2 − 1

2n
||y −Xβ̃||2 +

∑
j∈Ac

pSELO(βj)

=
1

2n
||y −Xβ̃ −X(β − β̃)||2 − 1

2n
||y −Xβ̃||2 +

∑
j∈Ac

pSELO(βj)

=
1

2n
(β − β̃)TXTX(β − β̃)− 1

n
(β − β̃)TXT (y −Xβ̃) +

∑
j∈Ac

pSELO(βj)

= OP

(
||β − β̃)||

√
dσ2

n

)
+
∑
j∈Ac

pSELO(βj). (A.6)

On the other hand, since the SELO penalty is concave,

pSELO(βj) ≥
λ

log(2)
log

[
C

C + τ
√

n/(dσ2)
+ 1

]
|βj |

for j ∈ Ac. Thus,

∑
j∈Ac

pSELO(βj) ≥
λ

log(2)
log

[
C

C + τ
√

n/(dσ2)
+ 1

]
||β − β̃||. (A.7)

By (D),

lim inf
n→∞

log

[
C

C + τ
√

n/(dσ2)
+ 1

]
> 0.
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It follows from (A.6)−(A.7) that there is a constant C̃ > 0 such that

Dn(β, β̃)

||β − β̃||
≥ C̃λ+OP (

√
dσ2

n
).

Since λ
√

n/(dσ2) → ∞ by condition (D), the result follows.

Proof of Theorem 1. Taken together, Lemmas 1 and 2 imply that there exists

a sequence of local minima β̂ of (SELO) such that ||β̂ − β∗|| = OP (
√
dσ2/n)

and β̂Ac = 0. Indeed one may take β̂ to be the element of Mn = {local minima

of (SELO)} ∩ {β ∈ Rd; βAc = 0} that is closest to β∗ in ℓ2-norm (β̂ may be

defined to be any local minima of (SELO) on the event the Mn = ∅). Part (i) of
the theorem follows immediately. To prove part (ii), observe that on the event

{j; β̂j ̸= 0} = A, basic calculus implies that we must have

β̂A = β∗
A + (XT

AXA)
−1XT

Aϵ− (n−1XT
AXA)

−1p′A(β̂),

where p′A(β̂) = (p′SELO(β̂j))j∈A. It follows that

√
nBn

(n−1XT
AXA

σ2

)1/2
(β̂A − β∗

A)

= Bn(σ
2XT

AXA)
−1/2XT

Aϵ− nBn(σ
2XT

AXA)
−1/2p′A(β̂)

whenever {j; β̂j ̸= 0} = A. Now note that conditions (B)−(D) imply that

||n(σ2XT
AXA)

−1/2p′A(β̂)|| = OP

(√
nd

σ2

λτ

ρ2

)
= oP (1). (A.8)

Thus,

√
nBn

(n−1XT
AXA

σ2

)1/2
(β̂A − β∗

A) = Bn(σ
2XT

AXA)
−1/2XT

Aϵ+ oP (1).

To complete the proof of (ii), we use the Lindeberg-Feller CLT (Durrett (2005))

to show that

Bn(σ
2XT

AXA)
−1/2XT

Aϵ → N(0, G) (A.9)

in distribution. Observe that

Bn(σ
2XT

AXA)
−1/2XT

Aϵ =

n∑
i=1

wi,n,
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where wi,n = Bn(σ
2XT

AXA)
−1/2xi,Aϵi. Fix δ0 > 0 and let ηi,n = xTi,A(X

T
AXA)

−1/2

BT
nBn(X

T
AXA)

−1/2xi,A. Then

E[||wi,n||2; ||wi,n||2 > δ0] = ηi,nE[
ϵ2i
σ2

; ηi,n
ϵ2i
σ2

> δ0]

≤ ηi,nE

(∣∣∣ϵi
σ

∣∣∣2+δ
)2/(2+δ)

P

{
ηi,n

ϵ2i
σ2

> δ0

}δ/(2+δ)

≤ η
1+δ/(2+δ)
i,n δ−1

0 E

(∣∣∣ϵi
σ

∣∣∣2+δ
)2/(2+δ)

.

Since
∑n

i=1 ηi,n = tr(BT
nBn) → tr(G) < ∞, and since (E) implies

max
1≤i≤n

ηi,n ≤ λmin(n
−1XTX)λmax(B

T
nBn) max

1≤i≤n

1

n

d∑
j=1

x2ij → 0,

we must have

n∑
i=1

E[||wi,n||2; ||wi,n||2 > δ0] ≤ δ−1
0 E

(∣∣∣ϵi
σ

∣∣∣2+δ
)2/(2+δ) n∑

i=1

η
1+δ/(2+δ)
i,n

≤ δ−1
0 E

(∣∣∣ϵi
σ

∣∣∣2+δ
)2/(2+δ)

tr(BT
nBn) max

1≤i≤n
η
δ/(2+δ)
i,n

→ 0.

Thus, the Lindeberg condition is satisfied and (A.9) holds.

Proof of Theorem 2. Our proof is similar to that of Wang, Li, and Leng

(2009): First, we study the BIC corresponding to estimators which fail to select

all of the significant variables (underfitting); second, we consider estimators that

select too many variables (overfitting). More specifically, we show that estimators

that underfit have BIC larger than the OLS estimator fit to the full model.

The overfit case is more delicate and requires bounds on the maximum of a

collection of random variables (see Lemmas 3−4). Wang, Li, and Leng’s (2009)

BIC consistency results only apply to gaussian ϵi and kn/ log(n) → ∞. We

provide a slightly more general analysis of the overfit case that enables us to

extend their results to non-gaussian ϵi and kn = log(n).

Without loss of generality, suppose kn ≥ 1 and suppose that there is a point

(λ0, τ0) ∈ Ω with λ0 = 0. Let β̂0 = β̂(λ0, τ0) = (XTX)−1XT y be the OLS

estimator and let β̂ = β̂(λ, τ) be a local minimizer of (SELO) with (λ, τ) ∈ Ω.

Define Â = Â(λ, τ) = {j; β̂j ̸= 0} to be the model selected by β̂(λ, τ). The first

order optimality conditions for SELO imply that

β̂Â = (XT
Â
XÂ)

−1XT
Â
y − n(XT

Â
XÂ)

−1p′
Â
(β̂Â) = β̃Â − n(XT

Â
XÂ)

−1p′
Â
(β̂Â),
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where p′
Â
(β) = (p′SELO(βj))j∈Â and β̃ is the OLS estimator corresponding to the

selected model Â; that is, β̃Âc = 0 and β̃Â = (XT
Â
XÂ)

−1XT
Â
y . Then

||y −Xβ̂||2 = ||y −Xβ̃||2 + n2p′
Â
(β̂)T (XT

Â
XÂ)

−1p′
Â
(β̂) (A.10)

= ||y −Xβ̂0||2 + ||X(β̂0 − β̃)||2 + n2p′
Â
(β̂)T (XT

Â
XÂ)

−1p′
Â
(β̂).

Our first goal is to find a lower bound for ||y−Xβ̂||2−||y−Xβ̂0||2 in cases where

A \ Â ̸= ∅. If A \ Â ̸= ∅,

||y−Xβ̂||2−||y−Xβ̂0||2 = ||X(β̂0 − β̃)||2 + n2p′
Â
(β̂)T (XT

Â
XÂ)

−1p′
Â
(β̂)

≥ nr0||β̂0 − β̃||2

= nr0

{
||β̂0−β∗||2−2(β̂0−β∗)T (β̃−β∗) + ||β̃−β∗||2

}
≥ nr0

{
||β̃ − β∗||2 − 2(β̂0 − β∗)T (β̃ − β∗)

}
≥ nr0||β̃ − β∗||

(
||β̃ − β∗|| − 2||β̂0 − β∗||

)
≥ nr0ρ

2

(
1− 2

||β̂0 − β∗||
ρ

)
,

where 0 < r0 < λmin(n
−1XTX) is defined in (C). We use this bound to obtain a

lower bound on BICkn(β̂)−BICkn(β̂0). Using the fact that log(x) ≥ 1− x−1 for

any x > 0, we have

BICkn(β̂)−BICkn(β̂0) =
kn
n
(|Â| − d) + log

{
(n− d)||y −Xβ̂||2

(n− Â)||y −Xβ̂0||2

}

≥ 1− knd

n
− n||y −Xβ̂0||2

(n− d)||y −Xβ̂||2

=
1

||y−Xβ̂||2

{(
1− knd

n

)
||y−Xβ̂||2− n

n− d
||y−Xβ̂0||2

}
≥ 1

||y −Xβ̂||2

{
nr0ρ

2

(
1− knd

n

)(
1− 2

||β̂0 − β∗||
ρ

)

−
(

d

n− d
+

knd

n

)
||y −Xβ̂0||2

}
,

whenever A \ Â ̸= ∅ and knd/n < 1. Thus, when knd/n < 1,

nr0ρ
2

(
1− knd

n

)(
1− 2

||β̂0 − β∗||
ρ

)
−
(

d

n− d
+

knd

n

)
||y−Xβ̂0||2 > 0 (A.11)
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implies

inf
{
BICkn{β̂(λ, τ)}; (λ, τ) ∈ Ω, A \ Â(λ, τ)

}
> BICkn(β̂0).

Since ||β̂0 − β∗|| = OP (
√

dσ2/n) and ||y − Xβ̂0||2 = OP (nσ
2), it follows from

(A2)−(B2) that (A.11) holds with probability tending to 1. We conclude that

P
[
inf
{
BICkn{β̂(λ, τ)}; (λ, τ) ∈ Ω, A \ Â(λ, τ)

}
> BICkn(β̂0)

]
→ 1.

Therefore, to prove the theorem it suffices to consider overfit models and show

that

P
[
inf
{
BICkn{β̂(λ, τ)}; (λ, τ) ∈ Ω, A ( Â(λ, τ)

}
> BICkn(β̂

∗)
]
→ 1,

where β̂∗ is a local minimizer of (SELO) with the properties described in

Theorem 1.

Recall from Theorem 1 that P ({j; β̂∗
j ̸= 0} = A) → 1. In the overfit case,

we compare the BIC of the estimator β̂, when A ( Â, to the BIC of β̂∗, when

{j; β̂∗
j ̸= 0} = A. Thus, assume that we are on the event {j; β̂∗

j ̸= 0} = A and

A ( Â. Since

log

{
||y −Xβ̂||2

||y −Xβ̂∗||2

}
≥ log

{
||y −Xβ̃||2

||y −Xβ̂∗||2

}

≥ ||y −Xβ̃||2 − ||y −Xβ̂∗||2

||y −Xβ̃||2

≥ −

∣∣∣||y −Xβ̃||2 − ||y −Xβ̂∗||2
∣∣∣

||y −Xβ̂0||2
,

it follows that

BICkn(β̂)− BICkn(β̂
∗) =

kn
n
(|Â| − |A|) + log

(
n− |A|
n− |Â|

)
+ log

{
||y −Xβ̂||2

||y −Xβ̂∗||2

}

≥ kn
n
(|Â| − |A|)−

∣∣∣||y −Xβ̃||2 − ||y −Xβ̂∗||2
∣∣∣

||y −Xβ̂0||2
.

We study the last term on the right-hand side above in more detail. By (C),

there exists a constant R1 ∈ R such that max1≤j≤d n
−1||Xj ||2 ≤ R1. Notice that
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by (A.8),

||y −Xβ̂∗||2 = ϵT
{
I −XA(X

T
AXA)

−1XT
A

}
ϵ+ n2p′A(β̂

∗)T (XT
AXA)

−1p′A(β̂
∗)

= ϵT
{
I −XA(X

T
AXA)

−1XT
A

}
ϵ+ oP (σ

2),∣∣∣||y −Xβ̃||2 − ||y −Xβ̂∗||2
∣∣∣

= ϵT
{
XÂ(X

T
Â
XÂ)

−1XT
Â
−XA(X

T
AXA)

−1XT
A

}
ϵ+ oP (σ

2)

≤ 1

nr0

∣∣∣∣∣∣XT
Â\A

{
I −XA(X

T
AXA)

−1XT
A

}
ϵ
∣∣∣∣∣∣2 + oP (σ

2)

≤ R1

r0
(|Â| − |A|)max

j /∈A
(ϵTu(j))2 + oP (σ

2),

where the unit vector u(j) ∈ Rn is defined by∣∣∣∣{I −XA(X
T
AXA)

−1XT
A

}
Xj

∣∣∣∣u(j) = {I −XA(X
T
AXA)

−1XT
A

}
Xj , j /∈ A.

Combining this with the fact that ||y−Xβ̂0||2 = σ2(n−d){1+oP (1)}, we obtain

BICkn(β̂)− BICkn(β̂
∗)

≥ |Â| − |A|
σ2(n− d){1 + oP (1)}

[
σ2kn

(
1− d

n

)
{1 + oP (1)} −

R1

r0
max
j /∈A

(ϵTu(j))2
]
.

Thus, (3.2) follows if we can prove

σ2kn

(
1− d

n

)
{1 + oP (1)} −

R1

r0
max
j /∈A

(ϵTu(j))2 > 0,

with probability tending to 1. This will follow if we can show that there is some

constant 0 < c < 1 such that

lim
n→∞

P
{ R1

knr0
max
j /∈A

(ϵTu(j)
σ

)2
≥ 1− c

}
= 0.

Lemma 3 below implies that if E|ϵi/σ|2+δ < C, then there is a constant K such

that

P
{ R1

knr0
max
j /∈A

(ϵTu(j)
σ

)2
≥ 1− c

}
≤ d
{ R1

(1− c)knr0

}1+δ/2
sup

||u||=1
E
∣∣∣uT ϵ
σ

∣∣∣2+δ

≤ d
{ R1

(1− c)knr0

}1+δ/2
K.
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Since the right-hand side above converges to 0 for any fixed 0 < c < 1, part (a)

of the theorem follows. If ϵi is subgaussian, then Lemma 4 below implies that

P
{ R1

knr0
max
j /∈A

(ϵTu(j)
σ

)2
≥ 1− c

}
≤ d sup

||u||=1
P
{ R1

knr0

(uT ϵ
σ

)2
≥ 1− c

}
≤ 2d exp

{
− (1− c)knσ

2r0
2σ2

0R1

}
.

Parts (b) and (c) of the theorem now follow readily.

Lemma A.3. Suppose that ϵ1, . . . , ϵn are iid, E(ϵi) = 0, and E|ϵi|2+δ ≤ C < ∞
for some constants C, δ > 0. Let ϵ = (ϵ1, . . . , ϵn)

T ∈ Rn. Then there is a constant

K such that

sup
||u||=1

E|uT ϵ|2+δ < K. (A.12)

Proof. This lemma is a modified version of the main result in Dharmadhikari,

Fabian, and Jogdeo (1968). Without loss of generality, assume that C ≥ 1. Now

fix K ≥
{
2δ(2 + δ)(1 + δ)C

}1+δ/2
. We prove that (A.12) holds by induction on

n. Clearly, (A.12) is true for n = 1. Now assume that (A.12) is true for some

n − 1 ≥ 1. Fix u1, . . . , un ∈ R such that u21 + · · · + u2n = 1. Without loss of

generality, assume that |un| < 1 and define ũi = (1− u2n)
−1/2ui, i = 1, . . . , n− 1.

Let

Sn =

n∑
i=1

uiϵi and Sn−1 =

n−1∑
i=1

ũiϵi.

Then Sn =
√
1− u2nSn−1+unϵn and, by assumption (the induction hypothesis),

E|Sn−1|2+δ ≤ K. By Taylor’s theorem

|Sn|2+δ =
∣∣∣√1− u2nSn−1

∣∣∣2+δ
+ (2 + δ)sign(Sn−1)

∣∣∣√1− u2nSn−1

∣∣∣1+δ
unϵn

+
1

2
(2 + δ)(1 + δ)

∣∣∣√1− u2nSn−1 + θunϵn

∣∣∣δ u2nϵ2n,
where 0 ≤ θ ≤ 1. Since∣∣∣√1− u2nSn−1 + θunϵn

∣∣∣δ ≤ 2δ
{
(1− u2n)

δ/2|Sn−1|δ + |un|δ|ϵn|δ
}
,

E|Sn−1|δϵ2n ≤
(
E|Sn−1|2+δ

)δ/(2+δ) (
E|ϵn|2+δ

)2/(2+δ)

≤Kδ/(2+δ)C2/(2+δ),
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it follows that

E|Sn|2+δ ≤ (1− u2n)
1+δ/2E|Sn−1|2+δ

+2δ−1(2 + δ)(1 + δ)u2n

{
E|Sn−1|δϵ2n + E|ϵn|2+δ

}
≤ (1− u2n)K + 2δ−1(2 + δ)(1 + δ)u2n

{
Kδ/(2+δ)C2/(2+δ) + C

}
≤ (1− u2n)K + 2δ(2 + δ)(1 + δ)CKδ/(2+δ)u2n

≤K
{
1− u2n + 2δ(2 + δ)(1 + δ)CK−2/(2+δ)u2n

}
≤ K.

This proves the lemma.

Lemma A.4. Suppose that ϵ1, . . . , ϵn are iid with Eϵi = 0. Suppose further

that the distribution of ϵi is subgaussian with scale σ2
0 > 0, in the sense that

Eetϵi ≤ eσ
2
0t

2/2, t ∈ R. Let ϵ = (ϵ1, . . . , ϵn)
T ∈ Rn. Then sup||u||=1 P (|uT ϵ| ≥

c) ≤ 2e−c2/(2σ2
0).

Proof. Fix u = (u1, . . . , un)
T ∈ Rn with ||u|| = 1. Then for t > 0,

P (|uT ϵ| ≥ c) = P (uT ϵ ≥ c) + P (uT ϵ ≤ −c)

≤ e−ct
(
Eetu

T ϵ + Ee−tuT ϵ
)
≤ 2e−cteσ

2
0t

2/2.

The lemma follows by taking t = c/σ2
0.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE T. Automat. Contr.

19, 716-723.

Breiman, L. (1995) Better subset regression using the nonnegative garrote. Technometrics 37,

373–384

Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Ann. Statist.

24, 2350-2383.

Dharmadhakiri, S.W., Fabian, V. and Jogdeo, K. (1968). Bounds on the moments of martingales.

Ann. Math. Statist. 39, 1719-1723.

Durrett, R. (2005). Probability: Theory & Examples. 3rd edition. Thomson, Brooks/Cole.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. J. Amer. Statist. Assoc. 96, 1348-1361.

Fan, J. and Lv, J. (2011). Non-concave penalized likelihood with NP-dimensionality. IEEE

Trans. Inform. Theory 57, 5467-5484.

Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of

parameters. Ann. Statist. 32, 928-961.

Foster, D. and George, E. (1994). The risk inflation criterion for multiple regression. Ann.

Statist. 22, 1947-1975.



962 LEE DICKER, BAOSHENG HUANG AND XIHONG LIN

Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw. 33, 1-22.

Johnson, V., Brun-Vezinet, F., Clotet, B., Gunthard, H., Kuritzkes, D., Pillay, D., Schapiro,
J. and Richman, D. (2008). Update of the Drug Resistance Mutations in HIV-1: Spring
2008. Top. HIV Med. 16, 62-68.

Kim, Y., Choi, H. and Oh, H. (2008). Smoothly clipped absolute deviation on high dimensions.
J. Amer. Statist. Assoc. 103, 1665-1673.

Knight, K. and Fu, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28, 1356-
1378.

Mallows, C. (1973). Some comments on Cp. Technometrics 15, 661-675.

McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. 2nd edition. Chapman &
Hall/CRC.

Rhee, S., Taylor, J., Wadhera, G., Ben-Hur, A., Brutlag, D. and Shafer, R. (2006). Genotypic
predictors of human immunodeficiency virus type 1 drug resistance. P. Natl. Acad. Sci.
USA 103, 17355.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461-464.

Shao, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88, 486-494.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser.
B 58, 267-288.

Wang, H. and Leng, C. (2007). Unified lasso estimation by least squares approximation. J.
Amer. Statist. Assoc. 102, 1039-1048.

Wang, H., Li, B. and Leng, C. (2009). Shrinkage tuning parameter selection with a diverging
number of parameters. J. Roy. Statist. Soc. Ser. B 71, 671-683.

Wang, H., Li, R., and Tsai, C. (2007). Tuning parameter selectors for the smoothly clipped
absolute deviation method. Biometrika 94, 553-568.

Zhang, C. (2010). Nearly unbiased variable selection under minimax concave penalty. Ann.
Statist. 38, 894-942.

Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101,
1418-1429.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. Roy.
Statist. Soc. Ser. B 67, 301-320.

Zou, H., Hastie, T., and Tibshirani, R. (2007). On the “degrees of freedom” of the lasso. Ann.
Statist. 35, 2173-2192.

Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models.
Ann. Statist. 36, 1509-1533.

Zou, H. and Zhang, H. (2009). On the adaptive elastic-net with a diverging number of param-
eters. Ann. Statist. 37, 1733-1751.

Department of Statistics and Biostatistics, Rutgers University, 501 Hill Center, 110 Frelinghuy-
sen Rd., Piscataway, NJ 08854, USA.

E-mail: ldicker@stat.rutgers.edu

Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China.

E-mail: hbaosheng@bit.edu.cn

Department of Biostatistics, Harvard School of Public Health, 655 Huntington Ave., Boston,
MA 02115, USA.

E-mail: xlin@hsph.harvard.edu

(Received March 2011; accepted August 2012)

ldicker@stat.rutgers.edu
hbaosheng@bit.edu.cn
xlin@hsph.harvard.edu

	1. Introduction
	2. Variable Selection and Estimation with the Seamless-L0 Penalty
	2.1. Linear models and penalized least squares
	2.2. The seamless-L0 penalty
	2.3. Theoretical properties of the SELO estimator
	2.4. A standard error formula

	3. Tuning Parameter Selection
	4. Implementation: Coordinate Descent
	5. Simulation Studies and a Data Example
	5.1. Simulation methodology
	5.2. Simulation study I: d = 8
	5.3. Simulation study II: d = 20
	5.4. Simulation study III: common BIC criterion
	5.5. Simulation study IV: large d analysis
	5.6. HIV-1 drug resistance and codon mutation

	6. Discussion
	Appendix

