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Abstract: For the past two decades, the single-index model, a special case of pro-

jection pursuit regression, has proven to be an efficient way of coping with the

high-dimensional problem in nonparametric regression. In this paper, based on a

weakly dependent sample, we investigate a robust single-index model, where the

single-index is identified by the best approximation to the multivariate prediction

function of the response variable, regardless of whether the prediction function is

a genuine single-index function. A polynomial spline estimator is proposed for

the single-index coefficients, and is shown to be root-n consistent and asymptoti-

cally normal. An iterative optimization routine is used that is sufficiently fast for

the user to analyze large data sets of high dimension within seconds. Simulation

experiments have provided strong evidence corroborating the asymptotic theory.

Application of the proposed procedure to the river flow data of Iceland has yielded

superior out-of-sample rolling forecasts.

Key words and phrases: B-spline, geometric mixing, knots, nonparametric regres-

sion, root-n rate, strong consistency.

1. Introduction

Let
{

XT
i , Yi

}n

i=1
= {Xi,1, . . . ,Xi,d, Yi}n

i=1 be a length n realization of a

(d+1)-dimensional strictly stationary process following the heteroscedastic model

Yi = m (Xi) + σ (Xi) εi,m (Xi) = E (Yi|Xi) , (1.1)

in which E (εi |Xi ) = 0, E
(

ε2i |Xi

)

= 1, 1 ≤ i ≤ n. The d-variate func-

tions m, σ are the unknown mean and standard deviation of the response Yi

conditional on the predictor vector Xi, often estimated nonparametrically. In

what follows, we let
(

XT , Y, ε
)

have the stationary distribution of
(

XT
i , Yi, εi

)

.

When the dimension of X is high, one unavoidable issue is the “curse of di-

mensionality”, which refers to the poor convergence rate of nonparametric es-

timation of a general multivariate function. Much effort has been devoted to

circumventing this difficulty. In the words of Xia, Tong, Li and Zhu (2002),

there are essentially two approaches: function approximation and dimension

reduction. A favorite function approximation technique is the generalized ad-

ditive model advocated by Hastie and Tibshirani (1990); see also, for example,
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Mammen, Linton and Nielsen (1999), Huang and Yang (2004), Xue and Yang

(2006a,b) and Wang and Yang (2007a). An attractive dimension reduction

method is the single-index model, similar to the first step of projection pursuit

regression, see Friedman and Stuetzle (1981), Huber (1985) and Chen (1991).

The basic appeal of the single-index model is its simplicity: the d-variate func-

tion m (x) = m (x1, . . . , xd) is expressed as a univariate function of xT θ0 =
∑d

p=1 xpθ0,p. Over the last two decades, many authors have devised intel-

ligent estimators of the single-index coefficient vector θ0 = (θ0,1, . . . , θ0,d)
T ,

for instance, Hall (1989), Powell, Stock and Stoker (1989), Härdle and Stoker

(1989), Ichimura (1993), Klein and Spady (1993), Härdle, Hall and Ichimura

(1993), Horowitz and Härdle (1996), Carroll, Fan, Gijbels and Wand (1997),

Xia and Li (1999) and Hristache, Juditski and Spokoiny (2001). More recently,

Xia, Tong, Li and Zhu (2002) proposed the minimum average variance estima-

tion (MAVE) for several index vectors.

All these methods assume that the d-variate regression function m (x) is

a univariate function of some xT θ0 and obtain a root-n consistent estimator

of θ0. If this model is misspecified (m is not a genuine single-index function),

however, a goodness-of-fit test then becomes necessary and the estimation of θ0
must be rethought, see Xia, Li, Tong and Zhang (2004). In this paper, instead

of presuming that the underlying true function m is a single-index function, we

estimate a univariate function g that optimally approximates the multivariate

function m in the sense that

g (ν) = E
[

m (X)|XT θ0 = ν
]

. (1.2)

Here the unknown parameter θ0 is the single-index coefficient, used for simple

interpretation once estimated, XT θ0 is the single-index variable, and the link

function g is a smooth but unknown function used for further data summary.

Our method therefore is interpretable regardless of the goodness-of-fit of the

single-index model, making it more relevant in applications.

We propose estimators of θ0 and g based on a weakly dependent sam-

ple, which includes many existing nonparametric time series models, estimates

that are (i) computationally expedient and (ii) theoretically reliable. Estima-

tion of both θ0 and g has been done via kernel smoothing in existing litera-

ture, while we use polynomial spline smoothing. The greatest advantages of

spline smoothing, as pointed out in Huang and Yang (2004) and Xue and Yang

(2006b), are its simplicity and fast computation. Our proposed spline estimation

procedure for the single-index model involves two stages: estimation of θ0 by

some
√
n-consistent θ̂, minimization of an empirical version of the mean squared



SINGLE-INDEX MODEL 767

error, E{Y − E(Y |XT θ)}2, and cubic spline smoothing of Y on XT θ̂ to ob-

tain an estimator ĝ of g. The best single-index approximation to m(x) is then

m̂(x) = ĝ
(

xT θ̂
)

.

Yu and Ruppert (2002) proposed penalized spline estimation for partially

linear single-index models. In this paper, further theoretical results of spline

estimation are investigated. Specifically, under a geometric strong mixing condi-

tion, strong consistency and
√
n-rate asymptotic normality of the estimator θ̂ of

the coefficient θ0 in (1.2) are obtained.

Practical performance of the spline estimators is examined via Monte Carlo

examples. The estimator of the single-index coefficient performs very well for data

of moderate dimension and for sparse data of high dimension, see Tables 1 and

2, Figures 1 and 2. By taking advantage of the spline smoothing and iterative

optimization routines, one reduces the computational burden considerably for

massive data sets. Table 2 reports the computing time of one simulation example

on an ordinary PC, which shows that for a massive data set, the proposed spline

estimation method is much faster than the MAVE method. Thus, the spline

estimation of a 200-dimensional θ0 from a sparse data set of size 1, 000 takes on

average a mere 2.84 seconds, while the MAVE method needs 2, 432.56 seconds

on average to obtain comparable estimates. Applying the proposed procedure to

the river flow data of Iceland, we have obtained superior forecasts, based on a

9-dimensional index selected by BIC, see Figure 5. Hence on criteria (i) and (ii),

our method is indeed appealing.

The rest of the paper is organized as follows. Section 2 gives details of the

model specification, proposed methods of estimation, and main results. Sec-

tion 3 describes the actual procedure to implement the method. Section 4 re-

ports our findings in an extensive simulation study. The proposed spline es-

timation procedure is applied in Section 5 to the river flow data of Iceland.

All technical proofs are contained in Appendix in the Supplement, available at

http://www.stat.sinica.edu.tw/statistica.

2. The Method and Main Results

2.1. Identifiability and definition of the index coefficient

It is obvious that without constraints, the coefficient vector θ0 = (θ0,1, . . .,

θ0,d)
T is identified only up to a constant factor. Typically, one requires that

‖θ0‖ = 1, which entails that at least one of the coordinates θ0,1, . . . , θ0,d be

nonzero. One could assume without loss of generality that θ0,d > 0, and the can-

didate θ0 would then belong to the upper unit hemisphere Sd−1
+ = {(θ1, . . . , θd) |

∑d
p=1 θ

2
p = 1, θd > 0}.

http://www.stat.sinica.edu.tw/statistica
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For a fixed θ = (θ1, . . . , θd)
T , let Xθ = XT θ, Xθ,i = XT

i θ, 1 ≤ i ≤ n, and

write

mθ (Xθ) = E (Y |Xθ) = E {m (X) |Xθ} . (2.1)

Define the risk function of θ as

R (θ) = E
[

{Y −mθ (Xθ)}2
]

= E {m (X) −mθ (Xθ)}2 + Eσ2 (X) , (2.2)

which is uniquely minimized at θ0 ∈ Sd−1
+ , i.e., θ0 = arg minθ∈Sd−1

+
R (θ).

Remark 2.1. Note that Sd−1
+ is not a compact set, so we introduce a cap shape

subset of Sd−1
+ , Sd−1

c =
{

(θ1, . . . , θd) |
∑d

p=1 θ
2
p = 1, θd ≥

√
1 − c2

}

, c ∈ (0, 1).

Clearly, for an appropriate choice of c, θ0 ∈ Sd−1
c .

Write θ−d = (θ1, . . . , θd−1)
T , and since R (θ) depends only on the first d− 1

values in θ, we can take R∗ (θ−d) = R

(

θ1, . . . , θd−1,
√

1 − ‖θ−d‖2
2

)

with well-

defined score and Hessian matrices

S∗ (θ−d) =
∂

∂θ−d
R∗ (θ−d) , H∗ (θ−d) =

∂2

∂θ−d∂θ
T
−d

R∗ (θ−d) . (2.3)

Assumption A1. The Hessian matrix H∗ (θ0,−d) > 0, the risk function R∗ is

locally convex at θ0,−d: ∀ε > 0,∃δ > 0 such that ‖θ−d − θ0,−d‖2 < ε if R∗ (θ−d)−
R∗ (θ0,−d) < δ.

The local Assumption A1 follows directly from global positive definiteness

of H∗ (θ−d).

2.2. Variable transformation

Throughout, we write Bd
a =

{

x ∈ Rd |‖x‖ ≤ a
}

and Vold
(

Bd
a

)

as the volume

of Bd
a. Let

C(k)
(

Bd
a

)

=
{

m
∣

∣

∣
the kth order partial derivatives of m are continuous on Bd

a

}

be the space of kth order smooth functions.

Assumption A2: The density function of X, f (x) ∈ C(4)
(

Bd
a

)

, and there are

positive constants cf ≤ Cf such that cf/Vold
(

Bd
a

)

≤ f (x) ≤ Cf/Vold
(

Bd
a

)

, if

x ∈ Bd
a, and f (x) = 0 otherwise.

For a fixed θ, let

Uθ = Fd (Xθ) , Uθ,i = Fd (Xθ,i) , 1 ≤ i ≤ n, (2.4)



SINGLE-INDEX MODEL 769

in which Fd is the rescaled centered Beta {(d+ 1) /2, (d+ 1) /2} cumulative dis-

tribution function,

Fd (ν) =

∫ ν
a

−1

Γ (d+ 1)

Γ
{

d+1
2

}2
2d

(

1 − t2
)

d−1
2 dt, ν ∈ [−a, a] . (2.5)

Remark 2.2. For any fixed θ, the transformed variable Uθ in (2.4) has a quasi-

uniform [0, 1] distribution, so it is reasonable if we use equally-spaced knots

when we do the spline smoothing with respect to {Uθ,i, Yi}n
i=1 in Subsection 2.3.

If fθ (u) is the probability density function of Uθ, then for any u ∈ [0, 1], fθ (u)=
{

F
′

d (v)
}

fXθ
(v), where v=F−1

d (u) and fXθ
(v)=lim△ν→0 P (ν ≤ Xθ ≤ ν + △ν).

Noting that xθ is exactly the projection of x on θ, let Dν ={x|ν ≤ xθ ≤ ν + △ν}∩
Bd

a so that P (ν ≤ Xθ ≤ ν + △ν) = P (X ∈ Dν) =
∫

Dν
f (x) dx. According to

Assumption A2,

cfVold(Dν)

Vold (Bd
a)

≤ P (ν ≤ Xθ ≤ ν + △ν) ≤ CfVold(Dν)

Vold (Bd
a)

.

On the other hand, Vold(Dν) = Vold−1(Jν)△ν+o (△ν), where Jν = {x|xθ = v}∩
Bd

a. Note that Vold
(

Bd
a

)

= πd/2ad/Γ (d/2 + 1) and Vold−1(Jν) = π(d−1)/2(a2 −
ν2)(d−1)/2/Γ{(d + 1)/2}, thus 0 < cf ≤ fθ(u) ≤ Cf <∞ for all θ and u ∈ [0, 1].

In terms of Uθ in (2.4), we rewrite the regression function mθ in (2.1) for

fixed θ as

γθ (Uθ) = E {m (X) |Uθ} = E {m (X) |Xθ} = mθ (Xθ) , (2.6)

then the risk function R (θ) in (2.2) can be expressed as

R (θ) = E
[

{Y − γθ (Uθ)}2
]

= E {m (X) − γθ (Uθ)}2 + Eσ2 (X) . (2.7)

2.3. Estimation method

Estimation of both θ0 and g requires a degree of statistical smoothing, and

all estimation here is carried out via cubic splines. We seek estimators θ̂ of θ0
and ĝ of g.

To introduce the space of splines, we pre-select an integer n1/6 ≪ N =

Nn ≪ n1/5 (log n)−2/5, see Assumption A6 below. Divide [0, 1] into (N + 1)

subintervals Jj = [tj , tj+1), j = 0, . . . , N − 1, JN = [tN , 1], where T := {tj}N
j=1 is

a sequence of equally-spaced points, called interior knots. Augment these so that

t1−k = · · · = t−1 = t0 = 0 < t1 < · · · < tN < 1 = tN+1 = · · · = tN+k, in which

tj = jh, j = 0, . . . , N + 1, h = 1/ (N + 1) is the distance between neighboring
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knots. The jth B-spline of order k for the knot sequence T denoted by Bj,k

is recursively defined by de Boor (2001). Equally-spaced knots are used in this

paper for simplicity of proof, but other regular knot sequences can also be used,

with similar asymptotic results.

Denote by Γ(k−2) = Γ(k−2) [0, 1] the space of all C(k−2) [0, 1] functions that

are polynomials of degree k − 1 on each interval. For fixed θ, the cubic spline

estimator γ̂θ of γθ and the related estimator m̂θ of mθ are

γ̂θ (·) = arg min
γ(·)∈Γ(2)[0,1]

n
∑

i=1

{Yi − γ (Uθ,i)}2 , m̂θ (ν) = γ̂θ {Fd (ν)} . (2.8)

Define the empirical risk function of θ by

R̂ (θ) = n−1
n

∑

i=1

{Yi − γ̂θ (Uθ,i)}2 = n−1
n

∑

i=1

{Yi − m̂θ (Xθ,i)}2 , (2.9)

and let R̂∗(θ−d) = R̂(θ1, . . . , θd−1,
√

1 − ‖θ−d‖2
2). The estimator of the coefficient

θ0 is then θ̂ = arg minθ∈Sd−1
c

R̂ (θ), and the cubic spline estimator of g is m̂θ with

θ replaced by θ̂, i.e.

γ̂ (·) =

{

arg min
γ(·)∈Γ(2)[0,1]

n
∑

i=1

{

Yi − γ
(

Uθ̂,i

)}2
}

, ĝ (ν) = γ̂ {Fd (ν)} . (2.10)

2.4. Asymptotic results

Before stating the main theorems, we need some other assumptions.

Assumption A3. The regression function m ∈ C(4)
(

Bd
a

)

for some a > 0.

Assumption A4. The noise ε satisfies E (ε |X) = 0, E
(

ε2 |X
)

= 1, and

there exists a positive constant M such that supx∈Bd E
(

|ε|3 |X = x
)

< M . The

standard deviation function σ (x) is continuous on Bd
a, 0 < cσ ≤ infx∈Bd

a
σ (x) ≤

supx∈Bd
a
σ (x) ≤ Cσ <∞.

Assumption A5. There exist positive constants K0 and λ0 such that α (n) ≤
K0e

−λ0n holds for all n, with the α-mixing coefficient for
{

Zi =
(

XT
i , εi

)}n

i=1
defined as

α (k) = sup
B∈σ{Zs,s≤t},C∈σ{Zs,s≥t+k}

|P (B ∩C) − P (B)P (C)| , k ≥ 1.

Assumption A6. The number of interior knots N satisfies: n1/6 ≪ N ≪
n1/5 (log n)−2/5

.
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Remark 2.3. Assumptions A3 and A4 are typical in the nonparametric

smoothing literature, see for instance, Härdle (1990), Fan and Gijbels (1996),

and Xia, Tong, Li and Zhu (2002). By the result of Pham (1986), a geometri-

cally ergodic time series is a strongly mixing sequence. Therefore, Assumption A5

is suitable for (1.1) as a time series model under the aforementioned assumptions.

We now state our main results in the next two theorems.

Theorem 1. Under Assumptions A1−A6, one has θ̂−d−→ θ0,−d, a.s..

Proof. Denote by (Ω,F ,P) the probability space on which all
{(

XT
i , Yi

)}∞
i=1

are defined. By Proposition A.2 in the Supplement

sup
‖θ−d‖2≤

√
1−c2

∣

∣

∣
R̂∗ (θ−d) −R∗ (θ−d)

∣

∣

∣
−→ 0, a.s.. (2.11)

So for any δ > 0 and ω ∈ Ω, there exists an integer n0 (ω), such that when

n > n0 (ω), R̂∗ (θ0,−d, ω) − R∗ (θ0,−d) < δ/2. Note that θ̂−d = θ̂−d (ω) is the

minimizer of R̂∗ (θ−d, ω), so R̂∗(θ̂−d(ω), ω) − R∗ (θ0,−d) < δ/2. Using (2.11),

there exists n1 (ω) such that, when n > n1 (ω), R∗(θ̂−d(ω), ω)− R̂∗(θ̂−d(ω), ω) <

δ/2. Thus, when n > max (n0 (ω) , n1 (ω)),

R∗
(

θ̂−d (ω) , ω
)

−R∗ (θ0,−d) <
δ

2
+ R̂∗

(

θ̂−d (ω) , ω
)

−R∗ (θ0,−d) <
δ

2
+
δ

2
= δ.

According to Assumption A1, R∗ is locally convex at θ0,−d, so for any ε > 0 and

any ω, if R∗(θ̂−d(ω), ω) − R∗(θ0,−d) < δ, then ‖θ̂−d(ω)−θ0,−d‖ < ε for n large

enough. Strong consistency follows.

Theorem 2. Under Assumptions A1−A6, one has
√
n

(

θ̂−d−θ0,−d

)

d−→ N{0,

Σ (θ0)}, where Σ (θ0)={H∗ (θ0,−d)}−1 Ψ (θ0) {H∗ (θ0,−d)}−1
, Ψ (θ0)={ψpq}d−1

p,q=1,

and H∗ (θ0,−d) = {lpq}d−1
p,q=1, with

lp,q = −2E [{γ̇pγ̇q + γθ0 γ̈p,q} (Uθ0)] + 2θ0,qθ
−1
0,dE [{γ̇pγ̇d (Uθ0) + γθ0 γ̈p,d} (Uθ0)]

+2θ−3
0,dE [(γθ0 γ̇d) (Uθ0)]

{(

θ2
0,d+θ2

0,p

)

I{p=q}+θ0,pθ0,qI{p 6=q}
}

+2θ0,pθ
−1
0,dE [{γ̇pγ̇q + γθ0 γ̈p,q} (Uθ0)]−2θ0,pθ0,qθ

−2
0,dE

[{

γ̇2
d + γθ0 γ̈d,d

}

(Uθ0)
]

,

ψpq = 4E
[{(

γ̇p − θ0,pθ
−1
0,dγ̇d

) (

γ̇q − θ0,qθ
−1
0,dγ̇d

)}

(Uθ0) {γθ0 (Uθ0) − Y }2
]

,

in which γ̇p and γ̈p,q are the values of ∂
∂θp

γθ,
∂2

∂θp∂θq
γθ taking at θ = θ0, for any

p, q = 1, . . . , d− 1 and γθ is given in (2.6).

Remark 2.4. Consider the Generalized Linear Model (GLM): Y = g
(

XT θ0
)

+

σ (X) ε, where g is a known link function. Note that under our assumptions,
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the conditional variance var (Y |X) = σ2 (X) is not necessarily a function of the

conditional mean E (Y |X) = g
(

XT θ0
)

, so the commonly used quasi-maximum

likelihood estimator (QMLE) for GLM is unavailable. The only feasible estimator

of θ0 is the nonlinear least squared estimator, which we denote by θ̃. Standard

theory shows that, under Assumptions A1-A6, the asymptotic distribution of the

“oracle” estimator θ̃ is the same as that of θ̂ given in Theorem 2. This implies

that our proposed spline estimator θ̂ is as efficient as if the true link function g

were known.

3. Implementation

In this section, we describe the actual procedure to implement the estimation

of θ0 and g. We first introduce some new notation. For fixed θ, we write the

B-spline matrix as Bθ = {Bj,4 (Uθ,i)}n, N
i=1,j=−3, and Pθ = Bθ

(

BT
θ Bθ

)−1
BT

θ as the

projection matrix onto the cubic spline space Γ
(2)
n,θ. For any p = 1, . . . , d, write

Ḃp = ∂
∂θp

Bθ, Ṗp = ∂
∂θp

Pθ as the first order partial derivatives of Bθ and Pθ with

respect to θ.

Let Ŝ∗(θ−d) be the score vector of R̂∗ (θ−d), that is, Ŝ∗(θ−d) = ∂
∂θ−d

R̂∗ (θ−d).

The next lemma provides the exact form of Ŝ∗(θ−d), see Wang and Yang (2007b)

for the proof.

Lemma 3.1. For Ŝ∗(θ−d), the score vector of R̂∗ (θ−d), one has

Ŝ∗ (θ−d) = −n−1
{

YT ṖpY − θpθ
−1
d YT ṖdY

}d−1

p=1
, (3.1)

in which for any p=1, . . . , d, one has YT ṖpY=2YT (I−Pθ) Ḃp

(

BT
θ Bθ

)−1
BT

θ Y,

and Ḃp = {{Bj,3 (Uθ,i) −Bj+1,3 (Uθ,i)}Ḟd (Xθ,i)h
−1Xi,p}n, N

i=1,j=−3, with

Ḟd (x) =
d

dx
Fd =

Γ (d+ 1)

aΓ
{

d+1
2

}2
2d

(

1 − x2

a2

)

d−1
2

I (|x| ≤ a) .

In practice, the estimation is implemented via the following procedure.

Step 1. Standardize the predictor vectors {Xi}n
i=1 and, for each fixed θ ∈

Sd−1
c , obtain the CDF transformed variables {Uθ,i}n

i=1 of the single-index variable

{Xθ,i}n
i=1 through (2.5), where the radius a is taken to be the 95% percentile of

{‖Xi‖}n
i=1.

Step 2. Compute the quadratic and cubic B-spline basis at each value Uθ,i, where

the number of interior knots N is

N = min
{

c1

[

n
1

5.5

]

, c2

}

. (3.2)
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Step 3. Find the estimator θ̂ of θ0 by minimizing R̂∗ through the port optimiza-

tion routine in the technical report of Gay (1990), with (0, 0, . . . , 1)T as the initial

value and the score vector Ŝ∗ in (3.1). If d < n, one can take the simple LSE

(without the intercept) for {Yi,Xi}n
i=1 with its last coordinate set positive.

Step 4. Obtain the spline estimator ĝ of g by plugging θ̂, obtained in Step 3, into

(2.10).

Remark 3.1. In (3.2), c1 and c2 are positive integers and [ν] denotes the integer

part of ν. The choice of the tuning parameter c1 makes little difference for a

large sample and, according to our asymptotic theory, there is no optimal way to

set these constants. We recommend using c1 = 1 to save computing for massive

data sets. The first term ensures Assumption A6. The additional constraint c2
can be taken from 5 to 10 for smooth monotonic or smooth unimodal regression,

and larger than 10 if there are many local minima and maxima, which is very

unlikely in applications.

4. Simulations

In this section, we report on two simulations that illustrate the finite-sample

behavior of our spline estimation method. The number of interior knots N was

taken from (3.2) with c1 = 1, c2 = 5. All of our codes were written in R.

Example 1. Consider the model in Xia, Li, Tong and Zhang (2004)

Y = m (X)+σ0ε, m (x) = x1 +x2 +4exp
{

− (x1 + x2)
2
}

+ δ
(

x2
1 + x2

2

)
1
2 , (4.1)

where X = (X1,X2)
T i.i.d.∼ N(0, I2), truncated by [−2.5, 2.5]2 , and ε

i.i.d.∼ N(0, 1),

σ0 = 0.3, 0.5. If δ = 0, then the underlying true function m is a single-index

function, i.e., m (X) =
√

2XT θ0 + 4exp
{

−2
(

XT θ0
)2

}

, where θT
0 = (1, 1) /

√
2.

When δ 6= 0, m is not a genuine single-index function. An impression of the

bivariate function m for δ = 0 and δ = 1 can be gained in Figure 1 (a) and (b),

respectively.

For δ = 0, 1, we drew 100 random realizations of each sample size n =

50, 100, 300 respectively. To demonstrate the closeness of our spline estimator to

the true index parameter θ0, Table 1 lists the sample mean (MEAN), bias (BIAS),

standard deviation (SD), the mean squared error (MSE) of the estimates of θ0,

and the average MSE of both directions. From this table, we find that the spline

estimators are very accurate for both δ = 0 and δ = 1, which suggests that our

proposed method is robust against deviations from the single-index model. As

we expected, when the sample size increases, the coefficient is more accurately

estimated. Moreover, for n = 100, 300, the total average is inversely proportional

to n.
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Figure 1. Example 1. (a) and (b) are plots of the actual surface m in model
(4.1) with respect to δ = 0, 1; (c) and (d) are plots of various univariate
functions with respect to δ = 0, 1: {XT

i θ̂, Yi}, 1 ≤ i ≤ 50 (dots); the uni-
variate function g (solid line); the estimated function of g using the true
index coefficient θ0 (dotted line); the estimated function of g using the esti-
mated index coefficient (dashed line) θ̂ = (0.69016, 0.72365)T for δ = 0 and
θ̂ = (0.72186, 0.69204)T for δ = 1.

Example 2. Consider the heteroscedastic regression model (1.1) with

m (X) = sin
(π

4
XT θ0

)

, σ (X) = σ0
5 − exp(‖X‖/

√
d)

5 + exp(‖X‖/
√
d)
, (4.2)

in which Xi = {Xi,1, . . . ,Xi,d}T and εi, i = 1, . . . , n, are
i.i.d.∼ N (0, 1), σ0 = 0.2.

In our simulation, the true parameter θT
0 = (1, 1, 0, . . . , 0, 1)/

√
3 for different

sample sizes n and dimensions d. For these sparse data sets, the superior per-

formance of spline estimators is borne out in comparison with the MAVE of
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Table 1. Report of Example 1 (Values out/in parentheses: δ = 0/δ = 1).

σ0 n θ0 BIAS SD MSE Average MSE

0.3

100

θ0,1
5e− 04 0.00825 7e− 05

(−0.00236) (0.02093) (0.00044) 7e− 05

θ0,2
−6e− 04 0.00826 7e− 05 (0.00043)

(0.00174) (0.02083) (0.00043)

300
θ0,1

−0.00124 0.00383 2e− 05
(−0.00129) (0.01172) (0.00014) 2e− 05

θ0,2
−0.00124 0.00383 2e− 05 (0.00014)

(0.00110) (0.01160) (0.00013)

0.5

100

θ0,1
0.00121 0.01346 0.00018

(−0.00137) (0.02257) (0.00051) 0.00018

θ0,2
−0.00147 0.01349 0.00018 (0.00051)
(0.00062) (0.02309) (0.00052)

300

θ0,1
−0.00204 0.00639 4e− 05

(−0.00229) (0.01205) (0.00015) 4e− 05

θ0,2
0.00197 0.00637 4e− 05 (0.00015)

(0.00208) (0.01190) (0.00014)

Xia, Tong, Li and Zhu (2002). We also investigated the behavior of spline esti-

mators in the previously unexplored cases that the sample size n is smaller than

or equal to d, for instance, n = 100, d = 100, 200 and n = 200, d = 200, 400.

The average MSEs for d dimensions are listed in Table 2, from which we see

that the performance of the spline estimators is quite reasonable and, in most of

the scenarios in which n ≤ d, the spline estimators still work quite well even as

the MAVEs become unreliable. For n = 100, d = 10, 50, 100, 200, the estimates

of the link function from model (4.2) are plotted in Figure 2; they are rather

satisfactory for the above simulated sparse data, even when dimension d exceeds

sample size n.

Theorem 1 indicates that θ̂−d is strongly consistent for θ0,−d. To see the

convergence, we ran 100 replications and, in each replication, the value of ‖θ̂ −
θ0‖/

√
d was computed. Figure 3 plots the kernel density estimations of the

100‖θ̂ − θ0‖/
√
d in Example 2, in which dimension d = 10, 50, 100, 200. As sam-

ple size increases, the squared errors decreased toward 0, with narrower spread,

confirming the conclusions of Theorem 1.

Lastly, we report the average computing time of Example 2 to generate

one sample of size n and to perform the spline estimation procedure or MAVE

procedure done on the same ordinary Pentium IV PC. From Table 2, one sees that

our proposed spline estimator is much faster than the MAVE. The computing

time for MAVE is extremely sensitive to sample size, as we expected. For very
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Table 2. Report of Example 2

Sample Size n Dimension d
Average MSE Time

MAVE SPLINE MAVE SPLINE

50

4 0.00020 0.00018 1.91 0.19

10 0.00031 0.00043 2.17 0.10

50 0.00031 0.00043 3.29 0.10
100 0.00681 0.00620 5.94 0.31

200 0.00529 0.00407 27.90 0.49

100

4 0.00008 0.00008 3.28 0.09

10 0.00012 0.00017 3.93 0.13

50 0.00032 0.00127 8.48 0.16

100 — 0.00395 — 0.44
200 — 0.00324 — 0.73

200

4 0.00004 0.00003 5.32 0.17

10 0.00005 0.00007 7.49 0.24

50 0.00007 0.00030 15.42 0.24

100 0.00015 0.00061 40.81 0.54

200 — 0.00197 — 1.44

500

4 0.00002 0.00001 14.44 0.76
10 0.00002 0.00003 24.54 0.79

50 0.00002 0.00010 52.93 0.89

100 0.00003 0.00012 143.07 0.99

200 0.00004 0.00020 386.80 1.96

400 — 0.00054 — 4.98

1, 000

4 0.00001 0.00001 33.57 1.95
10 0.00001 0.00001 62.54 3.64

50 0.00001 0.00003 155.38 2.72

100 0.00001 0.00005 275.73 1.81

200 0.00008 0.00006 2432.56 2.84
400 — 0.00010 — 9.35

large d, MAVE becomes unstable to the point of the breaking down in four cases.

5. An Application

In this section we apply the proposed spline estimation procedure to the river

flow data of Jökulsá Eystri River of Iceland, from January 1, 1972 to December

31, 1974. There are 1,096 observations, see Tong (1990). The response variables

are the daily river flow (Yt), measured in meters cubed per second of Jökulsá

Eystri River. The exogenous variables are temperature (Xt), in degrees Celsius,

and daily precipitation (Zt), in millimeters, collected at the meteorological station

at Hveravellir.
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Figure 2. Example 2. Plots of the spline estimator of g with the estimated

index parameter θ̂ (dotted curve), spline estimator of g with the true index

parameter θ0 (dashed curves), the true function m (x) in (4.2) (solid curve),

and the data scatter plots (dots).

This data set was analyzed earlier through threshold autoregressive (TAR)

models by Tong, Thanoon and Gudmundsson (1985) and Tong (1990), and

through nonlinear additive autoregressive (NAARX) models by Chen and Tsay

(1993). Figure 4 shows the plots of the three time series, from which some nonlin-

ear and non-stationary features of the river flow series are evident. To make these

series stationary, we removed the trend by a simple quadratic spline regression,

these trends (dashed lines) are shown in Figure 4. By an abuse of notation, we

continue to use Xt, Yt, Zt to denote the detrended series.
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Figure 3. Example 2. Kernel density estimators of the 100 ‖θ̂ − θ0‖/
√
d.

In the analysis, we pre-selectd all the lagged values in the last seven days, i.e.,

the predictor pool is {Yt−1, . . . , Yt−7,Xt,Xt−1, . . . ,Xt−7, Zt, Zt−1, . . . , Zt−7, }.
Using BIC similar to Huang and Yang (2004) for our model with three inte-

rior knots, the following nine explanatory variables were selected from the above

set {Yt−1, . . . , Yt−4,Xt,Xt−1,Xt−2, Zt, Zt−1}. Based on this selection, we fit the

single-index model and obtained the spline estimate of the single-index coefficient

θ̂ = {−0.877, 0.382,−0.208, 0.125,−0.046,−0.034, 0.004,−0.126, 0.079}T . Figure

5 (a) and (b) display the fitted river flow series and the residuals against time.

Next we examined the forecasting performance of our method. We started

by estimating the spline estimator using only observations of the first two years,

then we performed the out-of-sample rolling forecast for the entire third year.
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Figure 4. Time plots of the daily Jökulsá Eystri River data: (a) river flow

Yt (solid line) with its trend (dashed line); (b) temperature Xt (solid line)

with its trend (dashed line); (c) precipitation Zt (solid line) with its trend

(dashed line).
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Figure 5. (a) The scatter plot of the river flow (“+”) and the fitted plot of

the river flow (line); (b) residuals of the fitted single-index model; (c) out-

of-sample rolling forecasts (line) of the river flow for the entire third year

(“+”) based on the first two years’ river flow.
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The observed values of the exogenous variables were used in the forecast. Figure

5 (c) shows the out-of-sample rolling forecasts. For the purpose of comparison,

we also tried the MAVE method, in which the same predictor vector was selected

by using BIC. The mean squared prediction error is 60.52 for our method, 61.25

for MAVE, 65.62 for NAARX, 66.67 for TAR and 81.99 for the linear regression

model, see Chen and Tsay (1993). Among the above five methods, our method

produces the best forecasts.

6. Conclusion

In this paper we propose a robust single-index model for stochastic regres-

sion under weak dependence regardless of whether the underlying function is a

single-index function or not. The proposed spline estimator of the index coeffi-

cient possesses not only the usual strong consistency and
√
n-rate asymptotically

normal distribution, but also is as efficient as if the true link function g were

known. By taking advantage of the spline smoothing and the iterative methods,

the proposed procedure is much faster than the MAVE method. This procedure

is especially powerful for sparse data with large sample size n and high dimension

d and, unlike the MAVE method, performance remains satisfactory in the case

d > n. The significance of semiparametric dimension reduction methods for mod-

erately large sample size and very high dimension sparse data (i.e., d ≥ n→ ∞),

remains to be further explored, as in Fan and Li (2006). Our method has made

such exploration computationally more feasible.
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