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Supplementary Material

This supplementary material provides the proofs of Proposition 1 and Theorems 1-2 of the main

manuscript. The references cited in this report are listed in the main manuscript.

S1 Technical Lemmas

To facilitate our proofs, we first introduce a few technical lemmas. Specifically, let G be an
arbitrary set of functions (function space). We use N:(G,v) to denote the covering number of

G by balls of radius € with respect to a measure v. The lemmas are presented as follows.

Lemma 1. Let G be a function space defined on a random variable Z. Suppose that, for some
constants C1,C2 > 0, we have |g(Y) — E[g(Y)]| < C1 and E[g(Y)?] < C2E[g(Y)] for any g € G.
Then, for any € > 0,

Elg(Z)] — 3 3i1 9(zi) B ne
Y {ffég El(2)] + < >*/E} SN ""m)exp{ 2C; + 2 } ’

where {z1,...,2,} is an i.i.d sample from Z and ||.||« is the function L°° norm.

Lemma [ is a direct result from Lemma 2 of Zhou and Jetter (2006), which provides a

useful probability concentration inequality to bound a function of random variable.

Lemma 2. Let Vi be a k-dimensional function space defined on X. Suppose that there exists
a constant T such that |v(x)| < T for any v € V, and @ € X. Then

T
log Ne(V, ||.ll2) < cklog =

where ¢ is a positive constant and ||.||2 denotes the function L? norm.
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Lemma B is implied by Corollary 2 of Mendelson and Vershinin (2003) together with
Property 1 of Maiorov and Ratsaby (1999). It shows that the covering number of a bounded

functional space can be also bounded properly.

Lemma 3. Lety = (y1,... ,yn)T and fk be the k-step estimator defined in Algorithm 1. Then,
for any h € span{D}} and k € N,

4[n]7,

Iy = Full2 < lly = Bli2 + =
where [[hll, = inf {37, 16:] + b= S5y 0K (s, )/ i, ) o}

)

The proof of Lemma B is similar to Theorem 2.3 of Barron et al. (2008). It shows a nice

property of the OGA estimator in terms of the empirical approximation error.

S2 Proof of Proposition 1
Recall that the generalization error of fk is defined as
L(fe) = E(fx) = (),

where £(f) = E(f(X) — Y[?) for f € F. Let £(f) = lly — fI2 = £ S0, (s — f())?. Then,
for an arbitrary h € span{D:}, £(fx) can be decomposed by

L(fi)=D+P+S, (S2.1)
where
D = Eh)—E(f)=Ih—f Iy, (52.2)
P o= Eufi) = Enlh),
S = En(h) —Eh) +E(fx) — Enlfr)

By Lemma B, we readily have
4|RI7,
P

P < (S2.3)

We proceed to prove the theorem by deriving a probability bound for S. Specifically, we further
decompose S by
S=8+ 82, (82.4)

where
St = {&u(h) = Ea(f)} — {E(R) — E(f)},
Ss {EFr) = EF)} = {&a(fi) — Ea(f)}-

Let us first work on S in (§824). Define

JY,X) = [V =h(X)]-[Y-f (X))
= [f7(X) = h(X)]2Y - h(X) — f(X)].
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Clearly, we have
L&
Si=— Z J(ys, i) — ELJ(Y, X)].
In our model setup, we assume |Y| < M, which implies that
[ T] < (M + [[Blloe) (BM + [[hlloc) < (3M +[|h|0)*.
Let € = (3M + ||h|loo)?. Tt is then easy to show that
|J— E(J)| <2 and E(J?) < D¢ (S2.5)

with D defined in (§8Zd). The bounds in (8ZH) together with Bernstein inequality (Shi, Feng,
and Zhou (2011)) imply that

4€log L 26Dlogt  7elog2
51 < €0g5+ [2€ %85 §0g5+2 ($2.6)
3n n 3n 2

with probability at least 1 — 6/2 for any § € (0,1).
We now turn to bound S; in (824). Recall that Vj, in Algorithm 1 is the active set formed
by the k basis functions from a k-step OGA procedure. Let F = {Tnm[v] : v € span{Vi}} and

g be an arbitrary element from

Gr = {9(X,Y) ={f(X) =YY = {f(X) =Y}, f€F}.

Since both |Y| and |f*| are bounded by M, it is straightforward to show that |g| < 8M? and
lg — E(g)| < 16M?>. Also, we have

E[{/(X) = FOPAUX) = V) + (£(X) = V)P
< 16M°E(g).

E(g%)

Thus, Lemma 0 becomes applicable to G, with C; = Cs = 16 M?. Note that
R .
Blg) = L) = £~ 7). 3 glynwe) = Eall) — Ea(7")

i=1

for some corresponding f € Fj. This together with Lemma 0 implies that

L(f) ={&(f) = Ea(f)}
fer, { OEE } < Ve (82.7)

with probability at least

3ne
1 —Ns/4 (gkv ”Hoo)exP {_W} '

Note that, for any f1, fo € Fj and the corresponding g1, g2 € Gi, we have
lgr = g2lleo = max|(fa(x) = 1)° = (fa(2) = v)°|
AM | fr = f2lloo,

IA
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where (z,y) denotes an arbitrary realization from (X,Y). This implies that
Neja (Grs o) < Nejaeany (F, |l-lloo)
< Nejaemny (Frs |l-ll2)

2
exp {ck log 162‘4 }, (S2.8)

IN

where the last inequality follows from Lemma B with T'= M. By (§Z1) and (EZJ), we have

(52.9)

2
P{Sg < %L(fk) +5} >1—exp {cklog 16M 3ne }

e 128M?
To further specify (824), let

16 M2 3ne

h(e) = cklog —— ~ TosM?

and g¢ be the value of ¢ such that h(eg) = log(d/2) for the same ¢ used in (§E2ZH). It can be

shown that, by choosing
klogn + log %
e " T o5
n

€1 =

with some constant w > 0, we have h(e1) < h(eo). Since h(.) is a decreasing function, this

implies €1 > ¢g, and therefore

N =

P {52 < =L(fx) +51} >1-6/2. (S2.10)

Combining the results from (§Z8) and (8210), we have

f 7¢log 2
P{S§D+§(fk)+ ggjlgéﬂl}zl—a. (S2.11)

Inequality (EZ) together with (§23) and (E23) further implies that, with probability at least
1-4,

: . 8lal3  14€log 2
L(f) < 31 = hloy + =+ =5 = + 26
. 8||hlZ  28log 2||h|% = 2wklogn + 6M? + log 2
< BT Rl T o -

Noting 21log(2/6) > 1, we then have, for a sufficiently large n,

; = - 161og 3 [A]l7 28log 2||h||2,  4dwlog 2klogn
C(fk) < 3||f — h||ix + ls 1 35 2
> Y- 2 HhH2 h io klogn
< C|If h||iX + log 5 ( kh + I T! ng

with probability at least 1 —4, where C' = max{16, 4w}. This completes the proof of Proposition
1.
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S3 Proof of Theorem 1

Let Hoo = limn— o0 span{ D} }. For an arbitrary h € Ho, we decompose E(fk) by
L(fx) = B1 + By + B3 + By, (83.1)
where

Bi=|h—yl5 - &), B2=E(fr) = Ifi —yln
Bs = E(h) = &(f), Ba=|fi —ylln —Ilh -yl

Since L',(fk) > 0, the theorem is proved if

P{ lim B; <0} =1 (S3.2)

n—r00

for j = 1,2,3,4. By the strong law of large numbers, (832) readily holds for B;. Thus, it
suffices to show (83d) for Bs, B3, and Ba.
We first show (E33) for Bs. Let

¢ ={9(X,Y)=[f(X) - Y]": f € Fi}

with Fi same defined as in the proof of Proposition 1. Since |Y| < M, it is straightforward to
show that, for any g € G,

lg| <AM?, |g— E(g)| <8M*, E(¢°) <4M’E(g).

Thus, by applying Lemma 0 to G’ with C; = C> = 8M? and some arbitrary ¢ > 0, we have

) —IIf —yla
fS;J'Pk { GOEE } > /e (S3.3)

with probability at most

/ 3
N (@ ) exw { i |-

Following the same arguments in (EZR), we have

16M?
NE/4(g'7||,Hoo)Sexp{cklog E }

for some positive constant c. This together with (§8333) implies that

1/2

E(fe) = Ifw — yliZ > [e(4M” + €)] (S3.4)
with probability at most
16 M2 3ne
P, = 1 - . .
% exp{ck 08— 64M2} (S3.5)
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By setting k = k* = T'\/n/logn with some constant T' > 0, we have > >7 | Py~ < oo. Thus, by
Borel-Cantelli lemma, (834) and (833) imply that

P{lim By < [s(aM? +6)] 7} = 1. (83.6)
Since ¢ is arbitrary, (§838) further implies that (§32) holds for B,.

We now proceed to show (§332) for Bs and By. Since |f*(X)| < M, we have || f*||,x < M.
By Theorem A.1 of Gyérfy et al. (2002), for any &’ > 0, there exists a f' € C(X) such that
lf = fllox <€ Also, Condition C1 implies that Hoo is dense in Hx. These results together
with Condition C2 imply that, for any € > 0, there exists a he € Hoo such that

lhe = f*II5 <e. (S3.7)

By choosing h = h. in (§31), we have (833) holds for Bz due to the arbitrariness of e.
Meanwhile, by setting k& = k*, Lemma B implies that

4||he||?
B, < er*Hzl.

(S3.8)

Since D7 is a normalized dictionary, (837) implies that ||he||;; < oo. Thus, the right hand
side of (83R) goes to zero as n — oo, which implies that (832) holds for Bs. The theorem is

therefore proved.

S4 Proof of Theorem 2

Proposition 1 implies that, for any h € span{D}} and n large enough,

; , 2 [ |IhlIZ Rl|2, + k1
C(fk)SC{IIf —h||ix+1og5(' s, bl + g”)}

n

with probability at least 1 — ¢ for § € (0,1). When Condition C3 is satisfied with » > 0.5, we
have ||A'|;, < B and ||f* — B ||lpx < |If* = B'||ec < Bn~'/? for some h' € span{D}}. Since
K(.,.) is continues and X is compact, Condition C3 also implies that ||A’||%, is bounded by some

positive constant B’. Based on these results, we have

2 ’
£ < o {Boa viog? (B0 4 ZotHosn) ]

with probability at least 1 — §. By setting k = k* = T'(n/ log n)l/z, we have

P{E(fk) > c’logﬁ,/l"i”} <6
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for some generic positive constant ¢’ with a sufficiently large n. Let t = C’log 2 (logn/n)'/2,
g 5

we then have

EIL(f)] = /OOOP{E(fk)>t}dt
= /0 %Xp{_@ logn}dt
< 2 1°$,

The theorem is therefore proved.
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