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Supplementary Material

This note contains proofs for the main results. The following two propo-
sitions play an important role in the proof. Proposition establishes the
uniform convergence rate of the derivatives of 49 up to order 2 to those of vy in
0. Proposition shows that the derivatives of the risk function up to order 2
are uniformly almost surely approximated by their empirical versions.

Proposition A.1. Under Assumptions A2-A6, with probability 1

sup sup |5 (1) 50 ()| = O { () logn+nt}, (A1)
965?71 uE[O,l]

o .. logn 3)
su sup max |—— Ugi) — Ug; =0 +h°), A2
s e |5 G () =0 U )| =o (e (A2)
0? ’ < logn 2)
su sup max |—— {99 (Up;) — Ugi)t =0 +hc). (A3
1§p,§)§d eesfp_l 1<i<n 89p89q {70 ( 0, ) Yo ( 0, )} /77’Lh5 ( )

Proposition A.2. Under Assumptions A2-A6, one has for k=0,1,2
8k

sup R

16-all<v1=c?

Proofs of Theorem 2, Propositions and are given in the following.
Wherever proofs are incomplete, it is referred to Wang and Yang (2007b).

{R* (0_4) — R* (ad)}‘ = o(1), a.5..

A1l. Preliminaries

In this section, we introduce some properties of the B-spline.

Lemma A.1. There exist constants ¢ > 0 such that for z;v:_kﬂ ok Bj g up
to order k = 4

4 N
et/ lall, < [[Sdie X s s Bk

4 N 1
'/ oll, < ||Shos TN e cinBia]| < G0 ol 0<r<1

<@ ) all,, 1= <00
\
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where a = (a—12,02, ..., AN 2, ..., aN4). In particular, under Assumption A2,

for any fized 0

4 N
b lall, <D0 Y aeBikl| < ChYVall,.

k=2 j=—k+1 2.0

Proof. It follows from the B-spline property on page 96 of de Boor (2001),
Zi:Q Zj»v:_kﬂ Bj i =3 on [0,1]. So the right inequality follows immediate for
r =00. When 1 <r < oo, Holder’s inequality implies that

1/r

4 N 4N
Z Z ajpBjg| <377 Z Z loj k|” Bj

k=2 j=—k+1 k=2 j=—k+1

Since all the knots are equally spaced, f_oooo Bj . (u) du < h, the right inequality
follows from

r
1| 4

N
LIS Y aubiw)] de<s il
O k=2 j=—k+1
When r < 1, we have

4 N " 4 N
Do D kB <D0 D s

k=2 j=—k+1 k=2 j=—k+1

T T
B; .-

Since [ Bl (u)du <tjip —t; = kh and

1| 4

N r o
/0 S Y Bl dus ol [ Bt du< 3ol

k=2 j=—k+1

the right inequality follows in this case as well. For the left inequalities, we
derive from Theorem 5.4.2, DeVore and Lorentz (1993), for any 0 < r < co

N T

i1
" < TR / S B ()| du
tj j=—kt1
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Since each u € [0,1] appears in at most k intervals (¢;t;4), adding up these
inequalities, we obtain that

T T

j+k
le|lh < C1h™ 12/ Z a;pBj (w)| du<3Ch || > ajBjk

j=—k+1 j=—k+1 r

The left inequality follows.
For any functions ¢ and ¢, define the empirical inner product and the
empirical norm as

(6,0 9—/ 6 () (u) fo (w)du, |6l1%,0 =n~ > 6% (Usy) .
=1

In addition, if functions ¢, ¢ are Ly [0, 1]-integrable, define the theoretical inner
product and its corresponding theoretical Lo norm as

|¢H29—/ 8% (u) fo (u) du, {9, ) 12¢> Usi) ¢ (Uas)

Denote by I' = TO UM UT®@ the space of all linear, quadratic and cubic
spline functions on [0, 1]. We establish the uniform rate at which the empirical

inner product approximates the theoretical inner product for all B-splines Bj
with k£ = 2,3, 4.

Lemma A.2. Under Assumptions A2, A5 and A6, with probability 1

<’Yl7 /)/2>n,6’ <f)/17 72>
171ll2,6 (12126

A, = sup sup
eSd~1 v1,72€l

4 N 4 N
Proof. Denote v1 = >/, Ej:,kﬂ ajkBjr, 72 = D op_s ijkarl BikBjk
without loss of generality. Then for fixed 6

(MsV2) g = Z Z Z Z a; kBj ke (Bjks Bjik) g

k= 2]-—k+1 k'= 23/:—k+1

Imlse = Z Z Z Z ki (Biks By i)y

k= 237—k+1 k'= 23/:—k+1

ally = Z Z Z Z BikBir e (Bjks By w )y

—k+1k'=2 j'=—k+1

O{(nh) 1/2 logn} (A.4)
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Let a = (a—12,202,.,aN2,...;an4) and B = (612,802, N2, BN4)-
According to Lemma one has for any 6 € S9-1,

2 2 2 2 2 2
cihllally < lmllzg < c2hllally, b 18] < lallze < c2h 18113

cih ez [1Blly < Il 2lle < c2hllallz 151, -

2,0
Hence
1,72 — 71,72
A, = s sup 0127200 = (1 %2)e | lallog 181l
eSSt 11€7,72€0 H’Yl“zﬁ ||72||2,9 c1h ||O‘||2 ||5”2

X sup max
pegi-1 kk'=2,34
¢ 1<5'<N

)

1 n
~> {<Bj,k’ By g )g — (Biks Bj/,k'>9}

1=

1 n
=3 {(Bis By i) — (Biws By i)y }
=1

A, < coh™? sup  max
9cgi—1 k,k'=2,3,4
¢ 1<K5,5'<N

which, together with Lemma A.2 in Wang and Yang (2007b), imply (A.4).

9

A2. Proof of Proposition

For any fixed 0, we write the response Y7 = (Y7,...,Y,) as the sum of a
signal vector ~y, a parametric noise vector Eg and a systematic noise vector E,
i.e., Y = v+ Eg + E, in which the vectors ’Yg = {'YO (U971) sy Y0 (Ug}n>}7 Eg =
{m (Xl) -7 (U971) yeeey T (Xn) — Y (Ue,n)}v ET = {U (Xl) €1,..,0 (Xn) 5n},

Remark A.1. If m is a genuine single-index function, then Eg, = 0, thus the
proposed model given by (1.1) and (1.2) is exactly the single-index model.

We break the cubic spline estimation error 4y (ug) — 79 (ug) into a bias term
o (ug) — Yo (up) and two noise terms &g (ug) and g (up)

Yo (uo) — Yo (ug) = {Vo (uo) — Yo (uo)} + o (ug) + o (uo) , (A.5)

where N
o () = (Bya ()} s jon Vah {0 Biadg} - (A.6)
o () = {Bya (1)) ey Virh { B0, Bj,4>n79};i3 , (A7)

N

o (u) = {Bia (Y yjen Vah { B Biw)g -
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In the above, we denote by V,, g the empirical inner product matrix of the cubic
B-spline basis and similarly, the theoretical inner product matrix as Vy

N
j?j/:_S )

(A.9)

The next lemma provides the uniform upper bound of HV; ‘19H and HVG_ ! Hoo
oo

1_p N
Vn,@ = HBQ By = {<Bj'747ij4>n,0}

j)j/:_

, , Vo ={(Bj4,Bja),}

Lemma A.3. Under Assumptions A2, A5 and A6, there exist constants 0 <
cy < Oy such that cy N1 Hw”% <wlVyw < CyN—! ||w||§ and

cvNHw|3 < w!'V,ow < Cy N7 [wl3, as.,

with matrices Vg and V,, g in . Consequently, there exists a constant C > 0
such that

sup

V;é” < CN,a.s., sup HV;1HOO§CN. (A.10)
pesi Tl fesi

In the following, we denote by Q7 (m) the 4-th order quasi-interpolant of
m corresponding to the knots T', see equation (4.12), page 146 of DeVore and
Lorentz (1993).

Lemma A.4. Under Assumptions A2, A8, A5 and A6, there exists an absolute
constant C > 0, such that for function g (u) in (A.0

dk

sup W (% - ’70)

fesit

<C Hm(4>H WA a5, 0< k<2, (A.11)

o

Proof. According to Theorem A.1 of Huang (2003), there exists a constant
C > 0, such that

sup [[%0 — Vol < C sup inf |y =l <C Hm(‘l)H ht a.s., (A.12)
fesi~! pesi—t 7N o

which proves (A.11]) for the case k = 0. Applying Theorem 7.7.4 in DeVore and
Lorentz (1993), one has for 0 < k <2

dk
T {Q7r (70) —v0}|| < C sup

‘oo fesi—!

sup 7§4)Hoo Wik < ¢ Hm(4)HOO pik

fesi-t

As a consequence of (A.12) and (A.13]) for the case k = 0, one has

sup [|Q7 (v9) — Yol < C Hm(‘l)H ht a.s.,
9esd! oo

(A.13)
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which, according to the differentiation of B-spline given in de Boor (2001),
entails that

sup

dk
—— Q1 (70) — o}
fesi! du®

<C Hm<4>H Wik s, 0<k<2 (A.14)

’ o0

Combining (A.13]) and (A.14) proves (A.11)) for k =1, 2.

Lemma A.5. Under Assumptions A2, A4 and A5, there exists a constant C > 0
such that with probability 1

9 . n
sup - sup |\ =0 {7 (Uoi) =70 (Upa)tisy | =C Hm(‘”H h?,  (A.15)
1<p<dgesi—? P ) o0
2
sup  sup {39 Ue) —vo (Ugi)}iql| <C "m(4)” h%.  (A.16)
1<p,q<d ge i1 89}789(] 00 o0

Proof. According to the definition of 75 in (A.6)), and the fact that Qr () is
a cubic spline on the knots T', one has

G‘Zp {Qr () — A} (o)}, = af)pPe HQr () — 0} (s},

. n 0 n
= Py {@r () =0} (Vo) iy + Pogy- {{Qr (v) — 70} (Ui by -
P
Applying (A.14]) to the following decomposition

8(21, HOr (vo) — 76} (Vo) i, = {{QT <8§pw> - 321979} (Ue’i)};l

+ {di {Qr (v0) =70} (Us.i) Xip}

i=1

yields (A.15)). The proof of (A.16) is similar.

Lemma A.6. Under Assumptions A2, A5 and A6, there exists a constant C > 0
such that with probability 1

sup Hn_lBgHoo < Ch, sup sup n_lBZH <C, (A.17)
fesd 1<p<d pegi-? o0
sup |[Polly, <C, sup sup || <con (A.18)

fesdi—? 1<p<d gesi—
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Proof. To prove (A.17)), note that for any vector a € R™, with probability 1

n
—1npT —1
™" Bsal < llalle_pax, 107D Bia Wa)| < Chllalls,
1 n
—1pT ’
o Bhal,, < tall s, |5 D (P50 = Briaa) 000} Fa(Xa) Xip
< Clal

To prove (A.18]), one only needs to use (A.10]), (A.17).

Lemma A.7. Under Assumptions A2 and A4-A6, with probability 1

o) —o(222). am, e i (0] -0 (%)
Nl nN ’1§p1§)dees§p—1 9bp \ 0 nh/)’

sup
gesi—t
(A.19)
sup B9TE9 O(logn) sup  sup 8<BTE0>H O<logn>
9esi—t n o VnN ’1§p§deesf*1 90y Vnh)
(A.20)

Proof. We decompose the noise variable ¢; into a truncated part and a tail part
ei=c; +ers +ml", where D, =n" (1/3 <n < 2/5), el’r = e {|es| > D},

efg =l {|e;] < Dy} —mP mPr = Ele;I {|ei] < Do} X))

Note that the B-spline basis and the conditional variance function o2 are bounded,
so it is straightforward to verify that

sup ZBJ4 U@z 7,)

Sdln

=0 (D;z) =0 <n72/3) .

The tail part vanishes almost surely
o0 o0
> P{lea|l > Dp} <> D.? < o0,
n=1 n=1

So Borel-Cantelli Lemma implies that ’% Yo Bja(Ugy) o (X5) 551”’ =0 (n")
for any k£ > 0. For the truncated part, using Bernstein’s inequality and dis-
cretization method

n 123]4 (Up,i) 0 (Xs) zD2"

=1

sup sup
9eSi—1 1<j<N

=0 (logn/W) , .5
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Therefore with probability 1

9:;1331 :LBGTEHOO =0 (n_2/3) +0 (n_k> +0 <logn/\/rm> =0 (%) .

The proofs of the second part of (A.19) and the first part of (A.20) are similar
since the conditional expectation of m (X;) — 49 (Us,;) given Uy, is 0, but no
truncation is needed for the first part of ({A.20]) as

sup max |m (X;) — 9 (Up,)| < C < 0.
fegi—t 1<i<n

Meanwhile, to prove the second part of (A.20)), note that for any p =1, ...,d

N

a?p BTE9 {Z 89 ] 4 U9 ’L) {m ( ) Yo (UQ,Z)}]}

j==3

By (2.6), 79 (Up) = E{m (X) |Up}, hence E [Bj4 (Up) {m (X) — 9 (Up)}] = 0,
for any § € S9!, -3 < j < N. Applying Assumptions A2 and A3, one can
differentiate through the expectation, thus

B {8‘3 (B4 (Us) fm (X) — 70 (Ue)}]} —0,

for any § € S71 1 <p<d, -3 < j < N. Applying the Bernstein’s inequality,
with probability 1

N

289 Bja (Upi) {m (X;) — We(Ue,i)}]} :O{(nh)_l/Qlogn},

thus the desired result follows.

Lemma A.8. Under Assumptions A2 and A4-AG, for ég (u) and £g (u) in
ond
sup sup [|ég(u)] =0 {(nh) 12)0g n} , .S, (A.21)
0€S: ™ uel0,1]

sup sup [ép(u)] =0 {(nh) 1/210g n} ,0.8.. (A.22)
965571 UG[O,H
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Proof. Denote

~ A o -1 — —

a= (a3 ,any) = (BfBs) BJE=V,;(n 'BJE).
By Theorem 5.4.2 in DeVore and Lorentz (1993)

sup sup |ép(u)| < sup [|a]|, < CN sup |n~ 1BTEH
9eSi—* uel0,1] fesSit feSit

where the last inequality follows from (A.10) of Lemma Applying (A.19)
of Lemma [A.7| we have established (A.21). Similarly, (A.22)) can be proved.

The next result evaluates the uniform size of the noise derivatives.

Lemma A.9. Under Assumptions A2-A6, one has with probability 1

0
sup sup max |[—¢&p(Up;)| = O{ nh?) 121 n}, A.23
1<PI<)dGES‘P 1 1<i<n 89p 9( % ) ( ) & ( )
0
sup sup max |—¢&p(Up;)| = O{ nh3 —1/21, n} (A.24)
1<pgd€€S£) 11<i<n 89p 9( 9 ) 5
sup sup max 872A 0 (Ugs)| = O{ (nh®) 1/210gn} (A.25)
1<p,q<d ge5i-* 1<i<n 89 89 ’
62
su sup max |——& (Ug;)| = O{ nh5 “1/214 n} (A.26)
1<p, f<d665‘£)1 1<i<n 89 6«9 ( g ) &

Proof. Note that {80 €9 (Uy z)}:;l is equal to

(I-Py)B, (BIBy) 'BIE+By (B{By) Bl (I-Py)E.

Applying Lemmas [A.3] [A.6| and [A.7] one derives (A.23]). To prove (A.24)), note
that

9 g ) : 9
U — — {PyEg} =P,Eg+Py—Ey =T, + T
{ao 0 92)}1.:1 aep{ oBo} = PyE Y00, — 1T

in which

7 = {1-Py) B, - By (BfBs) ' BIBy} (BfBs) ' BIEy,

BTB,\ ' & /BIE,
T, =B 9 — = )
= () g ()
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By (A.10), (A.17)), (A.18) and (A.19)), one derives

sup ||Ti|l,, =O (n*1/2N3/2 logn) ,@.S.,
9esSe

while (A.20) of Lemma[A.7 (A.10) of Lemma[A.3]

sup [Tzl =N x O (n_1/2h_1/2 logn) =0 (n_1/2h_3/2 logn) ,0.8..
gesi

Thus (A.24)) has been established. The proof for (A.25)) and (A.26]) are similar.
Proof of Proposition According to the decomposition (A.5]), one has

d 0 d 0

= {30 — ) Uss)} = — (30 — v0) (Uss) + ——0 (Uss) + ——29 (Uy.:) -

o, (90 —0) (Us) } a0, (%6 —9) (Us.i) + agpw( 0i) + 891,89( 0,i)
It is clear from (A.15)), (A.23) and (A.24]) that with probability 1

0
sup sup max |—— (Y — Us .
1§p1§)d9€5‘;£1 1<i<n |00, (Yo —0) (Us,i)

~o().

0 .
+ ‘8%60 (Ugﬂ)

0 . —-1/2
su sup max < |=—=¢€g (Ug, :O{ nh? lo n}
1S11>I§)deeSfp*1 Isisn {‘a‘gp o (Us) } (nf) :
Putting together all the above yields (A.2)). The proofs of (A.3]) are similar.
A.3. Proof of Proposition

Lemma A.10. Under Assumptions A2-A6, sup

R(0) —R<9)] = o(1), a.5..

geset
Proof. Let
L= sup |n™" > {40 (Uns) — 0 (Uﬁ,i)}2| :
gesi! i—1
Iy= sup 207> {49 (Uns) — 70 (Ua.i)} {10 (Uss) —m (Xi) — o (Xi) &},
fesi—t i=1
Iy= sup |n™" > {y0 (Uss) —m (Xi)}* = E{e (Ug) — m (X)}?|,
fesi—t i=1
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Iy = sup
gesi?

% Zn: o2 (X;)e? — E [0 (X)] '
=1

2 n
1 > A Ups) —m(Xi)} o (Xi) e } ;
=1
then
sup |R(0) —R(H)‘ <h+L+I+ 1
gecsd—t

Bernstein inequality and strong law of large number for a-mixing sequence imply
that with probability 1, Is + I4 = o(1). Now (A.1)) of Proposition provides
that

sup sup |[Jg (u) — 9 (u)| = O (n*1/2h*1/2 logn + h4> ,.5.,
965?71 “e[ovl}

which entail that I; = O { (rfl/Qifl/2 log n)2 + (h4)2} almost surely. On the
other hand

I, <O {(nh)_l/2 logn + h4} x sup 2n" ! Z 170 (Ugi) —m (X;) — o (X;) €] -
9eSd! i=1

Hence I, < O (n_l/ 2p-1/2 logn + h4) almost surely. The lemma follows from
Assumption AG6.

Lemma A.11. Under Assumptions A2 - A6, for k = 1,2, with probability 1
ak
o {

sup
fesi—t

RO)-R (9)}‘ 0 (nfl/%*l/?*k logn + hH) . (A27)

Proof. Note that for any p=1,2,...,d

n

10 - _ . 0 .
5879,,}2 0 = nt ; {90 (Uy;) — Y3} 879,)79 (Uo.i) »
L9 Ry = B |{(Us) = m(X) -0 (X) 2} -2 (Us)
9 8910 = Yo (Vg aepw 0)| -
Denote 5 9
in =2 Up;)— Y} — Up;) — —R(0),
507 Y {70 ( 0, ) } aap Yo ( 0, ) aep ( )
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then E (&.:,) = 2F [{79 (Uni) — Y} 0 (Ug,i)} — 5 R(6) =0 and

10

58791, {R (9) - R (9)} = (Qn)_l Z ge,i,p + J1797p + J279’p + J3’97p7 (A.28)

i=1

with
IR )
Jigp = n E:{W(Um)—ﬁvﬂ%ﬂ}ae(Ve—VM(Mu%
e o .
Bap = 'Y {20 Und) = m(X:) =0 (Xi) e} - (o = 0) (Un)
1 p
1N d
Jsop = n j{:{ﬁv(ﬁ@¢)‘*7@(6@¢f}55*79(Ub¢)-
i— P
Bernstein inequality implies that
sup sup

—1
n E :5971,11
Pesi—1t 1<p<d

Meanwhile, applying (A.1)) and (A.2)) of Proposition one obtains that

sup  sup |Jigp| = O (n 'h ?log’n + h), a.s.. (A.29)
fesi—! 1<p<d

= ( *1/210gn>,a.s..

Note that
1 0 .
Joop = 'Y {0 (Ups) —m (Xi) — o (Xi) i} 59 (0 =) (Vi)
; p
0
—n T N E+E) = {Py(E+Ey)}.
a0,

Applying (A.1), one gets

sup sup
fesi—! 1<p<d

0
J2,9,p + n_l (E + EG)T % {Pg (E + Eg)}‘ — O (h3) ,a.8
P
while Lemmas and entail that with probability 1

sup  sup
fesd—t 1<p<d

n~ ' (B +Eg)” 53 {Py (E + Eg)}‘ =0 {n'Nlog’n},
p
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thus
sup sup |Jogp| = O (h* +n ' Nlog?n),a.s.. (A.30)
9esd~! 1<p<d
Lastly
1on . 0 1 r— (BIBy\ 'BT o
- — ) = )=-(E+Ey)"B =0 2
Jaop = ; (%0 — 70) 70,7 (Up,i) = — (E+Eg)” By ( - n 98,7

Applying Lemmas and [A77) again, one has with probability 1

sup sup
feSd—t 1<p<d

= 0 {n_l log® n + (nN)_l/2 logn} ,

BjB)\ ' Bj 0
n 00,

(nlBgE+n1B}EQT<

n

while by applying (A.11)) of Lemma one has

n

_ - 0
Y (B —v9) 50 (Ugi)
2 20,

=1

sup sup =0 (h4) ,a.S.,

9esé—' 1<p<d

together, the above entail that

sup sup |J3g,/ =0 {h4 +n log?n + (nN)"?1og n} ,a.s..  (A.31)
9esd—* 1<p<d

Therefore, (A.28), (A.29), (A.30]), (A.31) and Assumption A6 lead to

O (RO - RO} -1 Y6,
p i=1

which establishes (A.27)) for k¥ = 1. Note that the second order derivative of

~

R (0) and R (#) with respect to 6, 6, are

sup sup
fesi—1 1<p<d

=o(n 1?2 a.s.
(n712) - e

2 n

0 . 0 R o A
90,00, (Uo.i) + D 55~ (o) 5% (Un.i)

on 1
P 00, 00,

)

> {56 (Uy,) — Vi)
=1

2
2 [E {70 (Ug) —m (X)} 69?8{%79 (Ug) + E {5(17@ (Up) aip%) (Ue)}] :

The proof of (A.27)) for k = 2 follows from (A.1]), (A.2) and (A.3).
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Proof of Proposition The result follows from Lemma [A.10] Lemma
ATl

A.4. Proof of Theorem 2

For any p =1,2,....d — 1, let 5% (§_y) be the p-th element of S* (§_4), and for
any t € [0,1], let f, (t) = S (té_d +(1—1) 90,_d), then

U

_18A

B O=3 55 5 (t0-a+ (1= 1) 80-a) (04— 04) -
g=1

4
dt

Note that S* (6_4) attains its minimum at 6_g, i.e., S; (é,d) = 0. Thus, for
any p=1,2,...,d —1, t, € [0,1], one has

—S (Bo—a) = fp(1) = f,(0)

O . 4 T )
= *(t,0_ 1—1,)0p_ 0_4—00 _
{09q9pR (p a+( ») 0o, d) }q_l,...,d—l ( a—"bo, d> ;
then
R 92 . R R
—S5*(0o,—q) = {R* tpf_q+ (1 —1tp)00—d } 0_qg—060_aq)-
aeqaep < P ! ) p,q=1,...,d—1 ( )

Now Theorem 1 and Proposition with & = 2 imply that

2 .
96,00, <tp9*d+ (1=1) 9077d> — lypra.s., pg=12,..,d—1 (A32)

where [, 4 is given in Theorem 2. Noting that \/n (é_d—007_d> is represented
as

0 (s

d-1
v For ~p in (2.6), denote

p,g=1...,

where §* (f,_q) = {S;; (00,_d)}

p=

Nip = 2 {% - 90479(7,31%} (Ubo.i) {10, (Ugoi) — Yi},
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where 7, is value of %’yg taking at 8 = 0, for any p,q = 1,2, ...,d—1. According
to Lemma A.16 in Wang and Yang (2007b), with probability 1, one has

S5 (Bo—a) =n""Y mpito (Tfl/Q) » E(npi) = 0.
=1

Let W (6p) = (wpq)z:]l:l be the covariance matrix of \/H{S’; (90,_(1)}1;1 with

Ypg given in Theorem 2. Cramér-Wold device and central limit theorem for o
mixing sequences entail that /n.5* (6p,_q) N {0, ¥ (0y)}. Let

2 (60) = {H" (o.-a)} ™ ¥ (60) [{H" (Go-a)}"] .

with H* (0y,—4) being the Hessian matrix defined in (2.3). The above limiting
distribution of /nS* (6o,—q), ) and Slutsky’s theorem imply the desired

result.



