
Statistica Sinica 35 (2025), 431-456
doi:https://doi.org/10.5705/ss.202022.0104

STATISTICAL INFERENCE FOR HIGH-DIMENSIONAL

LINEAR REGRESSION WITH BLOCKWISE MISSING DATA

Fei Xue, Rong Ma and Hongzhe Li∗

Purdue University, Harvard University and University of Pennsylvania

Abstract: Blockwise missing data occur frequently when we integrate multisource or

multimodality data, in which different sources or modalities contain complementary

information. In this study, we consider a high-dimensional linear regression model

with blockwise missing covariates and a partially observed response variable. Under

this framework, we propose a computationally efficient estimator for the regression

coefficient vector based on carefully constructed unbiased estimating equations and

a blockwise imputation procedure, and obtain its rate of convergence. Furthermore,

building on an innovative projected estimating equation technique that intrinsically

corrects any bias in the initial estimator, we propose a nearly unbiased estimator

for each individual regression coefficient, which is asymptotically normally dis-

tributed under mild conditions. Based on these debiased estimators, we construct

asymptotically valid confidence intervals and statistical tests for each regression

coefficient. The results of our numerical studies and an application to data from

the Alzheimer’s Disease Neuroimaging Initiative show that the proposed method

outperforms existing methods, and benefits more from unsupervised samples than

existing methods do.

Key words and phrases: Blockwise imputation, data integration, projected estimat-

ing equation.

1. Introduction

The problem of blockwise missing data arises when we integrate data from

multiple modalities, sources, or studies. For instance, the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) study collects data from magnetic resonance

imaging (MRI), positron emission tomography (PET) imaging, genetics, cere-

brospinal fluid, cognitive tests, and demographic information of patients (Mueller

et al., 2005). However, because some subjects do not have MRI or PET

images, the biomarkers related to the images can be completely missing for

these subjects. As a result, when we integrate data from multiple sources, and

group patients based on their missing patterns, blocks of values may be missing,

as illustrated in Figure 1(a), where white areas represent the missing blocks.

Multimodality data also appear in modern genomic studies of complex dis-

eases. For example, the Genotype-Tissue Expression (GTEx) study has collected

RNA-seq gene expression data from over 45 tissues of more than 800 donors
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Figure 1. White areas represent missing blocks, while shaded areas represent observed
blocks. (a) Missing structure for ADNI data. (b) A blockwise missing example.

(Lonsdale et al., 2013). In this case, the gene expression data in the GTEx study

are blockwise missing if a tissue sample is not available.

Many important scientific questions can be answered by using an association

or regression analysis. In this case, for data sets with blockwise missing covariates,

the response variable is often also partially missing across the samples, for

example, this situation could occur when the outcomes are expensive to collect,

such as in electronic health records databases, where labeling the outcome for each

individual is costly and time consuming (Kohane, 2011). In the GTEx study,

samples are collected only from non-diseased tissue samples across individuals

(GTEx Consortium, 2017), implying that the response is only partially observed

when we predict a gene expression in one tissue using gene expression levels in

other tissues.

Therefore, to make the most use of such data sets, it is essential to develop

methods that are adaptive and can effectively use extra unsupervised samples to

infer the underlying models.

In this study, we consider a linear regression model

Y = X⊤β + ϵ, (1.1)

where Y is the response variable, X is a p-dimensional random vector of regression

covariates, β is a p-dimensional regression sparse coefficient vector, and ϵ is a

centered sub-Gaussian random variable with variance σ2 and independent of X .

Let s be the number of relevant covariates with nonzero coefficients. Suppose

that X consists of covariates from S data sources. For instance, there are four

sources in Figure 1(a), and three sources in Figure 1(b). We further suppose that

all samples are drawn independently from (X ,Y) in (1.1) before going through

certain missingness mechanisms.
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Throughout, we allow the response variable to be missing. Specifically, we

let the index set of all samples be D = {1, . . . , N + n} = D1 ∪ D2, where D1 is

the index set of the samples for which the response variable is not observable,

D2 is the index set of the samples with observed responses, and N and n are the

numbers of samples in D1 and D2, respectively. For simplicity, we slightly abuse

the terminology, and refer to the samples in D1 as the “unsupervised samples,”

and refer to the samples in D2 as the “supervised samples.” We let y denote

the (N + n)-dimensional vector consisting of all samples of the response, and

let X denote the (N + n) × p design matrix, where y and X can both have

missing values. In Section S1 of the Supplementary Material, we provide a table

explaining all notation used in this paper.

We assume that the covariates are blockwise missing. Specifically, we assume

that there are R groups of samples in D, with the same missing covariate indices

within each group, and the missing covariates consist of variables in one or several

data sources. This gives rise to missing blocks in the design matrix, as shown in

Figure 1. There are R = 8 missing groups in Figure 1(a), and R = 5 missing

groups in Figure 1(b). For any i = 1, . . . , N + n, we let ξi be the group label of

the ith sample, which takes random values in {1, . . . , R}. For any r = 1, . . . , R,

we let S(r) ⊆ D be the index set of the samples in Group r. Our goal is to study

statistical inference for the high-dimensional regression vector β in (1.1) based

on such partially observed responses and blockwise missing covariates.

In general, there are three types of missingness mechanisms (Little and

Rubin, 2019). If the missingness of a missing variable is independent of the values

of both the missing variables and the observed variables, then we refer to this as

missing completely at random (MCAR). If the missingness can be fully accounted

for by observed variables for which we have complete information, then the

missing mechanism is missing at random (MAR). If the missingness depends on

the values of the missing variables, then the missing mechanism is called missing

not at random (MNAR). For blockwise missing covariates, the corresponding

missing mechanism depends on the relationship between ξi(1 ≤ i ≤ N) and the

covariates. For example, if ξi depends only on covariates observed in all groups,

then the missingness mechanism of the blockwise missing covariates is MAR.

We focus mainly on MAR, but do also investigate MNAR in simulations in

Section 5.

1.1. Related works

Several methods have been developed recently related to blockwise missing

data (Yuan et al., 2012; Xiang et al., 2014; Yu et al., 2020; Cai, Cai and

Zhang, 2016; Xue and Qu, 2021). In particular, Yuan et al. (2012) studied

the integration of large-scale brain imaging data sets from multiple imaging

modalities, where data are blockwise missing, because each modality contains

missing measurements. They propose dividing the blockwise missing data into
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several learning tasks, based on the availability of the data sources, and use

penalization to encourage the selection of a common set of features across all

tasks. Xiang et al. (2014) extended the method by letting feature-level parameters

be the same across all tasks, which is beneficial for the prediction of subjects

with new missing patterns. Moreover, they included parameters for source-level

weights to reflect the effectiveness of each source. Nevertheless, none of these

existing methods aim to construct confidence intervals or test hypotheses for the

regression models, nor do they incorporate a partially observed response with

blockwise missing data.

In general, the simplest approach to handle missing data is to restrict the

analysis to complete cases. However, this might induce bias if the missingness

mechanism is not completely at random. The inverse probability weighting (IPW)

is widely used to correct this bias (Little and Rubin, 2019) by modeling the

probability of being a complete case, given some predictors, and then reweighting

complete cases using the inverse of the estimated probability. The augmented

IPW methods improve the IPW by combining it with imputation of missing

values (Robins, Rotnitzky and Zhao, 1994; Qin, Zhang and Leung, 2017; Seaman

and Vansteelandt, 2018). However, these methods are not directly applicable or

easily extendable to blockwise missing data, without sacrificing efficiency. This

is because IPW-related methods usually only consider whether or not a subject

is completely observed, and cannot fully use the blockwise missing structure of

the blockwise missing covariates.

With regard to statistical inference for high-dimensional regression models

under fully observed settings, several studies employ a bias correction of regu-

larized estimators, including thos of Javanmard and Montanari (2014), van de

Geer et al. (2014), Zhang and Zhang (2014), Ning and Liu (2017), Javanmard

and Montanari (2018), and Neykov et al. (2018), among many others.

More recently, high-dimensional inference problems with partially observed

responses have been studied (Bellec et al., 2018; Zhang and Bradic, 2019; Cai

and Guo, 2020; Deng et al., 2020). However, none of these methods address the

problem of missing covariates. In particular, to the best of our knowledge, there

is no existing method that focuses on statistical inference for a high-dimensional

regression with blockwise missing data.

1.2. Main contributions

In this study, we build on a blockwise imputation (BI) procedure and

carefully constructed unbiased estimating equations to account for structural

missing covariates and a partially observed response variable. As such, we propose

a computationally efficient sparse estimator for a high-dimensional regression

coefficient vector, and obtain its theoretical properties under mild regularity

conditions. Importantly, unlike most existing methods, our method does not

require fully observed samples in the data, and benefit automatically from
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additional unsupervised samples, until achieving the optimal rate of convergence

of fully observed samples.

In addition, we develop an innovative projected estimating equation tech-

nique that leverages all available data, including the unsupervised samples, to

correct the bias in the initial sparse estimator, and to obtain nearly unbiased

estimators for the individual regression coefficients. These estimators are shown

to be asymptotically normally distributed, with a variance that is minimized

by construction. By carefully analyzing these debiased estimators, we can

construct asymptotically valid confidence intervals and statistical tests about

each regression coefficient accordingly. In particular, our theoretical analysis

provides important insights about the benefits of using unsupervised samples on

the proposed inference procedures, revealing their important role in constructing

estimators with competitive efficiency (see also the discussions after Theorems 1

and 2).

1.3. Notation

Throughout, for a vector a = (a1, . . . , an)
⊤ ∈ Rn, we define the ℓp-norm

∥a∥p =
(∑n

i=1 a
p
i

)1/p
, the ℓ0-norm ∥a∥0 =

∑n
i=1 1{ai ̸= 0}, and the ℓ∞-norm

∥a∥∞ = max1≤j≤n |ai|. For an index set E ⊂ {1, . . . , n}, we denote aE as the

subvector of a consisting of all the components aj, where j ∈ E . In addition,

a−j ∈ Rn−1 denotes the subvector of a without the jth component. For a matrix

A ∈ Rp×q, λi(A) denotes the ith largest singular value of A, and λmax(A) =

λ1(A) and λmin(A) = λmin(p,q)(A). For index sets S1 ⊆ [1 : p] and S2 ⊆ [1 : q], we

denote AS1S2
as the submatrix of A consisting of its entries in the rows indexed

by S1 and the columns indexed by S2. We denote ∥A∥∞ = maxi,j |Aij|. For any
positive integer n, we denote the set {1, 2, . . . , n} as [1 : n]. For sequences {an}
and {bn}, we write an = o(bn), an ≪ bn, or bn ≫ an if limn an/bn = 0, and write

an = O(bn), an ≲ bn, or bn ≳ an if there exists a constant C such that an ≤ Cbn,

for all n. We write an ≍ bn if an ≲ bn and an ≳ bn. For a set A, we denote |A| as
its cardinality.

2. Parameter Estimation using Blockwise Imputation

2.1. Blockwise imputation (BI)

The BI procedure is able to use more information from incomplete samples

(or cases) than traditional single regression imputation (SI) methods do, which

impute missing values via regression models using all the observed variables as

the predictors (Baraldi and Enders, 2010; Zhang, 2016; Campos et al., 2015).

For example, in Figure 1(b), the traditional SI method imputes missing values in

Group 2 by modeling the relationship between the variables in Source 3 and all

other variables. This relationship can be estimated based on complete samples
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in Group 1. However, Groups 3 and 4 also contain information about Source 3

variables, but are not used by the SI. In contrast, the BI imputes the missing

values in a group by using both the dependence between the missing variables

and all the observed variables in this group, and the dependence between the

missing variables and part of the observed variables, which could lead to several

imputations for each missing value. The additional imputations based on part of

the observed variables incorporate information from incomplete groups, that is,

Groups 3 and 4 in Figure 1(b), because these incomplete groups can be used to

estimate the latter dependence.

Specifically, for each missing group, the first step in BI is to determine the

groups that can be used to construct an association between the missing variables

and at least part of the observed variables in this group. For each Group r ∈ [1 :

R], we let G(r) ⊆ [1 : R] be the index set of the groups in which all the missing

variables of Group r and the variables in at least one of the other sources are

observed, and let a(r), a(r)c ⊆ [1 : p] be the index sets of the observed variables

and missing variables, respectively, in Group r. For example, when there are

three sources of data with R = 5 missing groups, as shown in Figure 1(b), then

G(2) = {1, 3, 4}, and a(2)c consists of indices of the covariates in Source 3. Group

5 is not in G(2), because it does not contain any information about the variables

in Source 3 that are missing in Group 2. If Group r is completely observed, that

is, there are no missing values in Group r, we let G(r) = {r}.
In this paper, we assume, without loss of generality, that |G(r)| ≥ 1, for each

r ∈ [1 : R], implying that each covariate is observed in at least one group. This

assumption is equivalent to that, for each missing variable in Group r, there is at

least one group of samples reflecting the association between this missing variable

and at least part of the observed variables in Group r. Note that this assumption

does not require the existence of complete samples, because incomplete groups

could also contain values for both missing variables and some observed variables

in Group r.

In the second step of BI, we impute missing values in Group r based on

each of the groups in G(r). Specifically, for any sample i in Group r ∈ [1 : R]

(i.e., i ∈ S(r)), if the variable Xij is missing (j ∈ a(r)c), then for any Group

k ∈ G(r), we impute Xij by E(Xij|Xia(r,k)), where Xij is the (i, j) element in the

design matrix X, and a(r, k) ⊆ [1 : p] is an index set of covariates observed in

both Groups r and k. Throughout, for each r ∈ [1 : R] and i ∈ S(r), we define

X
(k)
i = (X

(k)
i1 , . . . , X

(k)
ip )⊤ as the imputed random vector for sample i according

to Group k ∈ G(r), so that X
(k)
ij = E(Xij|Xia(r,k)) if the jth covariate Xij is

missing in the ith sample Xi, otherwise X
(k)
ij = Xij. Note that the superscript

(k) indicates the conditional expectation imputation based on Group k.

Often, we can estimate the conditional expectation E(Xij|Xia(r,k)) by fitting

a linear regression model between Xij and the random vector Xia(r,k) using the

samples in Group k. To account for high dimensionality, we consider the Dantzig
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selector (Candes and Tao, 2007), defined as

γ̂j,a(r,k) = argmin
γ∈R|a(r,k)|

∥γ∥1, subject to
∥∥XS(k)j −XS(k)a(r,k)γ

∥∥
∞ ≤ τ, (2.1)

where τ > 0 is a tuning parameter. Then, we can approximate the imputed

variable X
(k)
ij = E(Xij|Xia(r,k)) by γ̂⊤

j,a(r,k)Xia(r,k). The imputed values are

deterministic, given the data, and may be biased in the high-dimensional setting.

Below, we carefully analyze such an imputation error (Section 3), and propose

a bias-correction procedure to construct asymptotically unbiased estimators for

the components of β (Section 2.3).

For each r ∈ [1 : R] and i ∈ S(r), we define X̂
(k)
i = (X̂

(k)
i1 , . . . , X̂

(k)
ip )⊤ as the

actual imputed observations of sample i based on Group k ∈ G(r), where X̂
(k)
ij =

γ̂⊤
j,a(r,k)Xia(r,k) if the jth covariate is missing in the ith sample Xi, otherwise

X̂
(k)
ij = Xij. Importantly, because for each group r, G(r) could contain multiple

elements (e.g., |G(2)| = 3 in Figure 1(b)), there could be multiple imputations

for the missing blocks in this group, each associated with a distinct k ∈ G(r).
Finally, we obtain the theoretical value for the tuning parameter τ in (2.1) in

Section 3; in practice, τ can be determined using cross-validation (Section 5).

2.2. Construction of estimating equations and the proposed estimator

To construct unbiased estimating equations for estimating the unknown

regression coefficients, for each of these blockwise imputations, we consider their

corresponding moment conditions, as follows. For any r ∈ [1 : R], k ∈ G(r), and
i ∈ D2, we consider

hirk(β) = I(ξi = r){yi − (X
(k)
i )⊤β} ·X(k)

ia(k), (2.2)

where yi is the response of the ith sample, and X
(k)
ia(k) is a subvector of X

(k)
i

consisting of elements corresponding to all covariates observed in Group k. Under

the linear regression model, whenever ξi is independent of all the covariates

(MCAR), or depends only on the observed covariates (MAR), it can be shown

that E{hirk(β)} = 0 (Xue and Qu, 2021). Intuitively, the construction of hirk(β)

is inspired by the score function under the linear regression model, which is still

expected to be zero after the blockwise imputations. In addition, note that

for different k1, k2 ∈ G(r) or for different imputations, the dimension of their

corresponding equation (2.2) may be different, because the subset a(k) varies

with k.

Integrating all missing groups and imputations, we can define a system of

unbiased estimating equations as
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g(β) :=
1

|D2|
∑
i∈D2


θ̂−1
1 hi1(β)

...

θ̂−1
R hiR(β)

 = 0, (2.3)

where θ̂r = |D2 ∩S(r)|/|D2| is an estimate of the observed rate for the rth group

among D2, and hir(β) is a vector combining the components of the vectors in

{hirk(β)}k∈G(r), for r ∈ [1 : R]. In particular, g(β) is a vector of dimension

Mg =
∑R

r=1

∑
k∈G(r) |a(k)|, which may be larger than p. This overspecification is

helpful in terms of making full use of the information contained in all the missing

patterns and the available observations. Nonetheless, it is shown in Section S5

of the Supplementary Material (Lemmas 1 and 2) that, under a wide range of

settings, the above system of estimating equations leads to a feasible set that

contains the true coefficient vector β with high probability.

However, the random vectors X
(k)
i required by (2.2) and (2.3) are not fully

observed. Instead, we use the imputed observations X̂
(k)
i as an approximation.

Specifically, we define the imputed counterpart of hirk(β) as

ĥirk(β) = I(ξi = r){yi − (X̂
(k)
i )⊤β} · X̂(k)

ia(k), (2.4)

and define the imputed estimating function as

gn(β) =
1

|D2|
∑
i∈D2


θ̂−1
1 ĥi1(β)

...

θ̂−1
R ĥiR(β)

 , (2.5)

where n = |D2|, and ĥir(β) is a vector combining the components of the vectors

in {ĥirk(β)}k∈G(r), for each r ∈ [1 : R].

Finally, respecting the underlying sparsity of the coefficient vector β, we

define the proposed estimator as

β̂ = argmin
β∈Rp

∥β∥1, subject to ∥gn(β)∥∞ ≤ λ, (2.6)

where λ > 0 is a tuning parameter. In Section 3, we obtain the theoretical

value for λ up to a constant factor, such that the associated optimizer β̂ is

a consistent estimator. In practice, we recommend using cross-validation to

determine the optimal choice of λ. See Section 5 for more details about the

numerical implementation of (2.6).

2.3. Bias-correction based on the projected estimating equations

Although the proposed estimator β̂ performs well in terms of point esti-

mation, it is actually biased, and cannot be used directly to develop powerful

inference procedures, such as confidence intervals and statistical tests. In
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this subsection, we propose a novel projected estimation equation approach

incorporating both the unsupervised and the supervised samples, and construct

bias-corrected estimators that are asymptotically normally distributed around

the true coefficients.

From the imputed estimating function gn(β) in (2.5), we define g∗
n(β) as a

subvector of gn(β), where we replace each ĥirk(β) in (2.4) with its subvector

ĥ∗
irk(β) = I(ξi = r){yi− (X̂

(k)
i )⊤β} ·X(k)

ia(r,k) = I(ξi = r){yi− (X̂
(k)
i )⊤β} ·Xia(r,k).

The dimension of g∗
n(β) is thus

∑R
r=1

∑
k∈G(r) |a(r, k)|. Note that ĥ∗

irk(β) involves

only imputed values in X̂
(k)
i , whereas the remaining part in ĥirk(β) contains

imputed values in X̂
(k)
i and X̂

(k)
ia(k)\a(r,k), where X̂

(k)
ia(k)\a(r,k) is a subvector of X̂

(k)
i

consisting of the covariates indexed by a(k)\a(r, k). We have two reasons for using

g∗
n(β) instead of gn(β). First, from our theoretical analysis, g∗

n(β) contributes

less error caused by imputation to the final debiased estimator. Second, it

significantly simplifies our numerical implementation and improves the finite-

sample performance, especially in the optimization (2.9) below.

Based on the initial estimator β̂ and g∗
n(β), we propose a bias-corrected

estimator β̃j of βj for each j ∈ [1 : p], defined as the root of the projected

estimating function

Ŝj(β̂
∗
j ) = 0, (2.7)

where β̂∗
j = (β̂1, . . . , β̂j−1, βj, β̂j+1, . . . , β̂p)

⊤, βj and β̂j are the jth elements of β

and β̂, respectively, and

Ŝj(β) = v̂⊤
j g

∗
n(β). (2.8)

Here, the equation (2.7) is treated as a univariate equation of the scalar βj, and

the projection vector v̂j is defined as the solution to the following optimization

problem:

v̂j = argmin
v

v⊤Wnv, subject to ∥v⊤Gn − ej∥∞ ≤ λ′, (2.9)

where λ′ > 0 is a tuning parameter, ej ∈ Rp has 1 as its jth element and is zero

otherwise, Wn is a block-diagonal matrix consisting of the sub-matrices

|D2|2

|D2 ∩ S(r)|2
∑
i∈D2

I{ξi = r}Xia(r,k)X
⊤
ia(r,k),

ordered first by r ∈ [1 : R] and then by k ∈ G(r), and

Gn =
d

dβ
g∗
n(β) =

1

|D2|
∑
i∈D2


θ̂−1
1 dĥ∗

i1(β)/dβ
...

θ̂−1
R dĥ∗

iR(β)/dβ

 . (2.10)
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Here in (2.10), for each r ∈ [1 : R], we have dĥ∗
ir(β)/dβ ∈ Rm′

r×p with

m′
r =

∑
k∈G(r) |a(r, k)| consisting of submatrices {I(ξi = r)Xia(r,k)(X̂

(k)
i )⊤}k∈G(r)

combined by row. Importantly, in (2.10) and (2.9), the unsupervised samples are

implicitly used to construct the optimal projection direction v̂j using the imputed

variables. Moreover, in Section 3, we show that having a sufficiently large set of

unsupervised samplesD1, and being able to incorporate the information contained

in D1, is necessary to reduce the bias and to obtain the asymptotically normal

estimator β̃j.

Remark 1. In Section 3, a theoretical value for the tuning parameter λ′

in the quadratic optimization problem (2.9) is obtained, up to a constant

factor. For numerical implementations, in Section 5, we propose a practical

iterative procedure for determining an appropriate value for λ′ that exhibits good

numerical performance across various settings.

The rationale behind the projected estimating function in (2.8) is evident

from a bias-variance analysis for the estimator β̃j. Specifically, the projected

estimating function is carefully constructed using the projection vector v̂j defined

in (2.9), such that the bias term of β̃j is dominated by a stochastic error,

introduced below. Denote β̃∗
j = (β̂1, . . . , β̂j−1, β̃j, β̂j+1, . . . , β̂p)

⊤. By the Taylor

expansion,

0 = Ŝj(β̃
∗
j ) = v̂⊤

j g
∗
n(β̂

∗
j ) + v̂⊤

j Gnej · (β̃j − βj)

= v̂⊤
j g

∗
n(β) + v̂⊤

j Gn(β̂
∗
j − β) + v̂⊤

j Gnej · (β̃j − βj), (2.11)

which can be rewritten as

β̃j − βj = −
v̂⊤
j g

∗
n(β)

v̂⊤
j Gnej︸ ︷︷ ︸

Stochastic Error

−
v̂⊤
j Gn(β̂

∗
j − β)

v̂⊤
j Gnej︸ ︷︷ ︸

Remaining Bias

. (2.12)

The estimation error β̃j−βj is decomposed into two parts. The first term in (2.12)

is a stochastic error, which is asymptotically normal with variance determined by

v̂⊤
j Wnv̂j, and the remaining bias is bounded by∣∣∣∣ v̂⊤

j Gn(β̂
∗
j − β)

v̂⊤
j Gnej

∣∣∣∣ ≤ ∥(v̂⊤
j Gn)−j∥∞∥(β̂∗

j − β)−j∥1
1− |v̂⊤

j Gnej − 1|
≤

∥v̂⊤
j Gn − e⊤

j ∥∞∥β̂ − β∥1
1− ∥v̂⊤

j Gn − e⊤
j ∥∞

,

(2.13)

using Hölder’s inequality. As a result, the remaining bias is dominated by the

stochastic error, because the factor ∥v̂⊤
j Gn − e⊤

j ∥∞ is well controlled by (2.9),

and ∥β̂ − β∥1 is sufficiently small.

From the above argument, the constrained optimization problem (2.9) is

rooted in a bias–variance trade-off: It aims to find a projection vector v̂j that

controls ∥v̂⊤
j Gn − e⊤

j ∥∞ in (2.13) to ensure the remaining bias in (2.12) is
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negligible with respect to the stochastic error, while reducing the variance of the

stochastic error, by minimizing v̂⊤
j Wnv̂j, to obtain a more efficient estimator.

Remark 2. For general missing data problems, there are likelihood-based ap-

proaches where missing values are marginalized under distributional assumptions

(Garcia, Ibrahim and Zhu, 2010; Ibrahim, Lipsitz and Chen, 1999; Chen, Prentice

and Wang, 2014). In particular, the expectation–maximization (EM)-based

estimating equation method also constructs estimating functions based on missing

data (Elashoff and Ryan, 2004). However, the proposed projected estimating

equations and the EM-based estimating equations are conceptually different.

First, the proposed method does not need to specify distributions for all the

variables. Second, the projected estimating equations are carefully designed to

correct the bias of our initial estimator. In contrast, the EM-based estimating

equations are the derivatives of the log-likelihood function with respect to the

parameters (Elashoff and Ryan, 2004).

Remark 3. In our construction of β̃j, we mainly correct for the bias due to β̂−j,

as in (2.13), rather than the bias due to {γ̂j,a(r,k) : j ∈ a(r)c, k ∈ G(r), 1 ≤ r ≤ R}
from the imputation procedure. In general, the bias of the final estimator β̃j stems

partially from the estimation error of the conditional expectation E(Xij|Xia(r,k)),

defined as the difference between γ̂⊤
j,a(r,k)Xia(r,k) and γ⊤

j,a(r,k)Xia(r,k) under the

linear assumption E(Xij | Xia(r,k)) = γ⊤
j,a(r,k)Xia(r,k). The estimation error can

be well controlled by ∥γ̂j,a(r,k) − γj,a(r,k)∥2, which contains both the bias and

the variance of γ̂j,a(r,k). To obtain a small estimation error, we leverage both

unsupervised and supervised samples to ensure that ∥γ̂j,a(r,k) −γj,a(r,k)∥2 is small

with high probability.

3. Theoretical Justifications

This section provides theoretical justifications for the proposed inference

procedures by studying the properties of the proposed estimator β̂ and its bias-

corrected counterpart β̃ = (β̃1, . . . , β̃p)
⊤. For technical reasons, we assume

for simplicity that the blockwise imputation step (2.1) is performed using the

unsupervised samples D1 and a fixed portion of the supervised samples D2 that

preserve the blockwise missing pattern (i.e., the number of groups and the missing

variables in each group). On the other hand, the construction of the estimators β̂

and β̃ is based on the imputed observations of the other portion of the supervised

samples D2. In practice, however, splitting the supervised samples D2 into two

parts is not needed, and the proposed method works well numerically when all

the samples are used for imputation and inference; see the numerical results in

Sections 5 and 6.

We first introduce the notation and assumptions for the theoretical results.

For any r ∈ [1 : R], k ∈ G(r) and i ∈ D, we define Σ(r,k) = E{I(ξi =

r)X
(k)
i (X

(k)
i )⊤} ∈ Rp×p. Recall that ξi ∈ [1 : R] denotes the random group label
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of the ith sample, a(k)c is the index set of the missing covariates in Group k, a(k)

is the index set of the observed covariates in Group k, and a(r, k) is the index set of

the covariates observed in both Groups r and k. We also denote Nr = |D1∩S(r)|
as the number of unsupervised samples in Group r, nr = |D2 ∩ S(r)| as the

number of supervised samples in Group r, and N = |D1|.
For the missingness mechanism, we assume the following:

(A1) The random group label ξi is independent of all covariates or depends only

on covariates observed in all groups, and the response is MCAR.

(A2) For the missing patterns, we assume R is a finite integer, and for all r ∈ [1 :

R] and k ∈ G(r), we have |a(r)|/p, a(r, k)/p ∈ [C1, C2] and nr/n,Nr/N ∈
[c1, c2], with probability at least 1−p−c for some constants 0 < C1 < C2 < 1,

0 < c1 < c2 < 1, and c > 0.

The assumption for the random group label in (A1) implies the missingness

mechanisms of the covariates are either MCAR or MAR, because the missingness

(or group assignments) is completely random or can be fully explained by

completely observed variables.

Assumption (A2) is mild, because it essentially ensures that the missing

patterns are finite and balanced. For the design covariates, and the regression

coefficient vector β, we assume the following:

(A3) Each Xi, for i ∈ D, is an independent centered sub-Gaussian random vector

with Σ = E(XiX
⊤
i ) satisfying C−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ C, for some

absolute constant C > 1, and γj = argminγ∈Rp−1 E(Xij−γ⊤Xi,−j)
2 satisfies

∥γj∥0 ≤ s, for each j ∈ [1 : p];

(A4) β satisfies ∥β∥2 ≤ C, for some absolute constant C > 0.

(A5) There exists some r ∈ [1 : R], k1, k2 ∈ G(r) and some constant c0 > 0,

such that λmin(Σ
(r,k)
a(k),a(k)) ≥ 7c0 > c0 ≥ λmax(Σ

(r,k)
a(k),a(k)c), for k = k1, k2,

and a(k1) ∪ a(k2) = [1 : p]. In Assumption (A3), the sub-Gaussian

condition includes many important cases, such as Gaussian, bounded, and

binary covariates, or any combinations of them. This makes our proposed

method applicable to many practical settings. The sparsity condition on

the best linear predictor coefficient γj ensures the quality of the Lasso-based

imputation step, which essentially requires a sparse conditional dependence

structure among the covariates. For example, when Xi
i.i.d.∼ N(0,Σ), this

condition is equivalent to a sparse Gaussian graph condition, requiring each

row of Σ−1 = (ωij) to be s-sparse.

Assumption (A5) requires the existence of two groups {k1, k2} ⊆ G(r), such that

each covariate is observed in one of these two groups. However, the eigenvalue
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condition λmin(Σ
(r,k)
a(k),a(k)) ≥ 7c0 > c0 ≥ λmax(Σ

(r,k)
a(k),a(k)c) requires the existence of

a pair of groups (r, k) ∈ [1 : R]×G(r) such that, for each i ∈ S(r), the subvector

X
(k)
ia(k) of the imputed vector X

(k)
i does not contain variables that are highly

correlated within themselves, or with the variables in X
(k)
ia(k)c . This condition

essentially ensures that each covariate is sufficiently informative. In Section S8 of

the Supplementary Material, a more interpretable sufficient condition is obtained

under the Gaussian design.

The following theorem concerns the convergence rates of the estimator β̂ in

(2.6).

Theorem 1. Suppose (A1) to (A5) hold, log p ≪ min{N,n}, and s ≪
min{

√
n/log p, (n + N)/ log p}. For sufficiently large (n, p), if we choose

τ ≍
√
log p/(n+N) in (2.1) and λ ≍

√
log p/n + s

√
log p/(n+N) in (2.6),

then ∥β̂ − β∥1 ≲ sλ and ∥β̂ − β∥2 ≲ s1/2λ hold with probability at least 1− p−c,

for some absolute constant c > 0.

Some remarks about Theorem 1 are in order. First, our theorem shows

that the rate of convergence under the ℓ2-norm is bounded by
√
s log p/n +

s3/2
√
log p/(n+N). The first term

√
s log p/n is the ordinary estimation error

for the Lasso or Dantzig selector type of estimators, whereas the second term

s3/2
√
log p/(n+N) comes from the estimation error of the conditional expecta-

tion in the BI step for the missing covariates. Intuitively, the estimation error of

the conditional expectation depends on both N and n, because the BI step uses

both the supervised and the unsupervised samples. In contrast, the estimation

error of the Lasso or Dantzig selector depends only on n, because only the imputed

supervised samples are used in the estimating equations (2.5).

Second, compared with the minimax optimal rate
√
s log p/n for estimating

β with complete observations of n samples with λ ≍
√
log p/n (Verzelen,

2012), the above error rate has an additional term s3/2
√
log p/(n+N) under

λ ≍
√
log p/n + s

√
log p/(n+N). This extra error term and the different

choice of tuning parameters reflect the cost of imputing the missing variables;

see also Chandrasekher, Alaoui and Montanari (2020) for similar phenomena in

the imputation of unstructured missing data using the Lasso method. However,

Theorem 1 also implies that when the number of unsupervised samples is

sufficiently large, that is, when N ≳ s2n, the estimation error of the conditional

expectation is dominated by the estimation error
√
s log p/n, and the estimator

β̂ achieves the minimax optimal rate for complete observations of n samples.

In other words, our method benefits from the extra unsupervised samples to

improve the estimation. Nevertheless, note that even in the presence of a far

greater number of unsupervised samples (N ≫ n), the convergence rate cannot

be better than
√
s log p/n. After all, there are only n observations of the response

variable, rather than n complete samples.
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Third, unlike many existing inferential methods for missing data, such as

those of Cai, Cai and Zhang (2016), Kundu, Tang and Chatterjee (2019), and

Yu et al. (2020), our method does not require fully observed samples. In other

words, each sample in the data set may have missing variables, which precludes

using existing methods for fully observed data. In contrast, our method should

work, as long as |G(r)| ≥ 1 and the missing groups are finite and asymptotically

balanced.

The proof of Theorem 1 is involved and quite different to existing works

that analyze the risk bound of the Dantzig selector or the Lasso estimator for

the linear regression model with complete data (Candes and Tao, 2007; Bickel,

Ritov and Tsybakov, 2009). The detailed proof can be found in Section S5 of the

Supplementary Material. In particular, as a key component of our theoretical

analysis, we develop a novel restricted singular value inequality that accounts

for the blockwise-imputed samples, and plays a similar role to the restricted

eigenvalue condition (Raskutti, Wainwright and Yu, 2010) or the restricted strong

convexity property (Negahban et al., 2012; Negahban and Wainwright, 2012)

needed to analyze of high-dimensional ℓ1-penalized estimators. This inequality,

proved in Section S7.4 of the Supplementary Material, could be of independent

interest.

Proposition 1. Under the conditions of Theorem 1, there exist some r ∈ [1 : R]

and k ∈ G(r), such that, with probability at least 1−p−c for some absolute constant

c > 0,

inf
∥u∥2=1,u∈Es(p)
∥ua(k)∥2≥1/2

∣∣∣∣n−1
r

n∑
i=1

I{ξi = r}
(

ua(k)

∥ua(k)∥2

)⊤

X̂
(k)
ia(k)(X̂

(k)
i )⊤u

∣∣∣∣ ≥ c0, (3.1)

for some constant c0 > 0, where Es(p) = {δ ∈ Rp : ∥δ∥2 = 1, ∥δSc∥1 ≤
∥δS∥1, for some set S ⊂ [1 : p] with |S| ≤ s}, and Sc represents the complement

of set S.

Our next theorem establishes the asymptotic normality of the bias-corrected

estimator β̃j, supporting the asymptotic validity of the confidence intervals and

the statistical tests proposed in Section 4. We need the following condition,

ensuring the existence of a true projection vector satisfying the constraint in

(2.9), with high probability:

(A6) For G = dg∗(β)/dβ with g∗(β) being the population counterpart of g∗
n(β),

we have λmin(E{G}) ≥ c, for some absolute constant c > 0,

Theorem 2. Suppose the conditions of Theorem 1 and (A6) hold, and N ≳
n log p. If we choose λ′ ≍

√
log p/n and s ≪ min

{√
n/log p,

√
N/n log p}, then,

for each j ∈ [1 : p], we have
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n(β̃j − βj)

sj
= AB +D, (3.2)

where sj is defined in (4.1), A → 1 and D → 0 in probability, and B|X̂ → N(0, 1)

in distribution, in which X̂ = {X̂(k)
i }i∈D2

is the set of all imputed observations.

Theorem 2 shows that to obtain an asymptotically normally distributed

estimator, we needa sufficiently large set of unsupervised samples for both the

blockwise imputation and the bias correction. Specifically, from our proof of

Theorem 2 (such as Lemma 6 in the Supplementary Material), it seems that,

under the current analytical framework, the condition N ≳ n log p is likely

necessary for constructing nearly unbiased estimators with efficiency competitive

to β̃j. In addition, the condition s ≪
√
N/n log p ensures that the imputation

error is o(n−1/2), whereas the more standard condition s ≪
√
n/log p implies that

the remaining bias in (2.12) after the bias-correction step is negligible.

These conditions are explained as follows. On the one hand, additional

unsupervised samples are needed to achieve desirable imputation quality, that

is, to ensure the imputation error is dominated by the estimation error for β̂.

Intuitively, if the imputation error dominates the estimation error in the bias of

β̂, then such a bias is intrinsic, and may not be removed by any approach based

on the imputed data. On the other hand, the unsupervised samples help to reduce

bias: the proposed projected estimating equation approach incorporates both the

unsuperivsed and the supervised samples to jointly determine the best projection

direction in (2.9) for bias correction. We also provide theoretical results when

we have only supervised samples in Section S4 of the Supplementary Material,

showing that the convergence rate of the proposed estimator is faster for both

supervised and unsupervised samples than it is for only supervised samples.

4. Confidence Intervals and Statistical Tests

In this section, we develop asymptotically valid confidence intervals and

statistical tests for each coefficient βj, with j ∈ [1 : p]. As shown in Section

3, by carefully analyzing the bias-corrected estimator β̃j, conditional on the im-

puted covariates, under mild regularity conditions, β̃j is asymptotically normally

distributed with variance s2j/|D2|2, where

s2j =
∑
i∈D2

∑
k∈G(r),1≤r≤R

|D2|2σ2
r,k

|D2 ∩ S(r)|2
I(ξi = r)(v̂⊤

j,rkXia(r,k))
2, (4.1)

σ2
r,k = σ2 + β⊤

a(r)cE{ϵ(k)ia(r)c(ϵ
(k)
ia(r)c)

⊤}βa(r)c , ϵ
(k)
ia(r)c ∈ R|a(r)c| is the residual term of

the ith sample in the regression model of Xia(r)c , with Xia(r,k) as covariates, and

v̂j,rk ∈ R|a(r,k)|, with r ∈ [1 : R] and k ∈ G(r), is the subvector of the projection

vector v̂j corresponding to the estimating functions in g∗
n(β) associated with
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Group k ∈ G(r). Consequently, for any given j ∈ [1 : p], an asymptotically

(1 − α)-level confidence interval for βj can be constructed as CIα(βj) = [β̃j −
zα/2ŝj/|D2|, β̃j+zα/2ŝj/|D2|], where zα/2 = Φ−1(1−α/2) is the upper α/2-quantile

of the standard normal distribution,

ŝ2j = σ̂2
∑
i∈D2

∑
k∈G(r),1≤r≤R

|D2|2

|D2 ∩ S(r)|2
I(ξi = r)(v̂⊤

j,rkXia(r,k))
2, (4.2)

and σ̂2 is some reasonable estimator for maxk,r σ
2
r,k (see Section S2 of the

Supplementary Material).

Along with the above confidence interval, we also construct an asymptotically

valid statistical test for the null hypothesis H0 : βj = bj, for any bj ∈
R. Specifically, we define a test statistic Tj = |D2|(β̃j − bj)/ŝj. Then, an

asymptotically α-level two-sided test rejects H0 whenever |Tj| > zα/2. With

these component-wise test statistics, one can also construct tests for the global

null hypothesis H0 : β = 0, and the multiple simultaneous hypotheses H0j : βj =

0, j ∈ [1 : p]. For example, to test the global null hypothesis, we could adopt the

maximum-type test statistic M = max1≤j≤p T
2
j , and compare its empirical values

with the quantile of the Gumbel distribution given in Theorem 1 of Ma, Cai and

Li (2021).

To test simultaneous null hypotheses while controlling for false discovery

rates, we can apply the modified Benjamini–Hochberg procedure in Javanmard

and Javadi (2019) and Ma, Cai and Li (2021) to design covariates that are weakly

correlated, or the Benjamini–Yekutieli procedure (Benjamini and Yekutieli, 2001)

if the design covariates are arbitrarily correlated. The theoretical validity of these

simultaneous inference procedures follows from the arguments in Javanmard and

Javadi (2019) and Ma, Cai and Li (2021).

5. Simulation

We provide simulation studies to compare the proposed method with existing

methods, including the debiased Lasso method (Javanmard and Montanari, 2014)

with complete cases, the Lasso projection method (van de Geer et al., 2014; Zhang

and Zhang, 2014) with complete cases, the debiased Lasso method with single

regression imputation, and the Lasso projection method with the single regression

imputation. Here, “single regression imputation” refers to predicting missing

values using linear regressions, with observed variables as predictors (Baraldi

and Enders, 2010; Zhang, 2016; Campos et al., 2015).

To implement of the proposed method, we use the R packages glmnet1,

Rglpk2, and osqp3 to solve the minimization problem in (2.1), the linear pro-

1https://cran.r-Bproject.org/web/packages/glmnet/index.html
2https://cran.r-Bproject.org/web/packages/Rglpk/index.html
3https://cran.r-Bproject.org/web/packages/osqp/index.html

https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/Rglpk/index.html
https://cran.r-project.org/web/packages/osqp/index.html
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gramming problem in (2.6), and the quadratic programming problem in (2.9),

respectively. The parameters τ and λ are determined by cross-validation,

which might not achieve the desired theoretical convergence rates. This is one

limitation of the proposed method. We let λ′ = 0.1(log p/n)1/2, and scale it

up if there is no solution to the quadratic programming problem in (2.9). The

R functions of the proposed method have been made publicly available online

at https://github.com/feixue-stat/Inference blockmissing. We use the

R code in https://web.stanford.edu/~montanar/sslasso/ to implement the

debiased Lasso method. For the Lasso projection method, we apply the R package

hdi4.

For each i ∈ [1 : (n+N)], we simulate Xi independently from a multivariate

Gaussian distribution with mean zero and a covariance matrix Σ, and generate

yi = X⊤
i β + ϵi with ϵi

i.i.d.∼ N(0, 1). The relevant covariates share the same

signal strength βs; that is, the nonzero elements in β are all equal to βs. In

the following three settings, all samples are randomly assigned to four missing

groups. In Settings 1 and 2, we assume MNAR for the covariates from three

sources, and the four missing pattern groups are shown in Figure 2. In contrast,

we assume MAR in Setting 3, and add one additional data source, where the

variables are all observed for each subject. For the missingness of the response,

in each setting, the response is MCAR, where only n/N of all samples in each

group are observed. This satisfies Assumption (A1).

In each setting, we construct confidence intervals for a relevant covariate

with confidence level 95%, and evaluate each method using the coverage rate and

average length of the confidence intervals based on 250 replications. Let pl denote

the number of total covariates in the lth data source, and sl denote the number of

relevant covariates in the lth data source, for l ∈ [1 : S]. Recall that s denotes the

number of all relevant covariates, specifying the sparsity of the coefficient vector

β. That is, we have s nonzero elements in β. In addition, recall that nr denotes

the number of supervised samples in the rth missing group, for r ∈ [1 : R]. Then,

we have
∑R

r=1 nr = n.

Setting 1. Let n = 150, p = 200, s = 9, R = 4, S = 3, N = 300, βs = 0.2,

n1 = 30, n2 = 70, n3 = n4 = 25, p1 = 115, p2 = 45, p3 = 40, s1 = 5, s2 = s3 = 2,

and Σ = diag{Ip1
,A}, where Ip1

is an identity matrix of size p1, and A is a

(p2 + p3) × (p2 + p3) exchangeable matrix with diagonal elements one and off-

diagonal elements ρ. We let ρ = 0.1 or 0.3, and let the covariates be MNAR.

Specifically, samples are sequentially randomly assigned into the complete case

group with probabilities proportional to exp(−10yi) for 1 ≤ i ≤ n+N . Otherwise,

they are uniformly assigned to the other three missing groups.

Setting 2. The same as Setting 1, except that p = 700 and p1 = 615.

4https://cran.r-Bproject.org/web/packages/hdi/index.html

https://github.com/feixue-stat/Inference_blockmissing
https://web.stanford.edu/~montanar/sslasso/
https://cran.r-project.org/web/packages/hdi/index.html
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Source1         Source2              Source3

Group 1

Group 2

Group 3

Group 4

Figure 2. Blockwise missing structure used for simulation.

Setting 3. The same as Setting 1, except that n = 120, S = 4, N = 600,

n1 = 15, n2 = n3 = n4 = 35, p2 = 40, p4 = 5, s1 = 4, s4 = 1, and

Σ = diag{Ip1
,A, Ip4

}. We let the covariates be MAR. Specifically, samples are

sequentially randomly assigned into the complete case group with probabilities

proportional to exp(−10di) for 1 ≤ i ≤ n + N , where di is the sum of the ith

samples of covariates in the fourth source of data. Otherwise, they are uniformly

assigned to the other three missing groups. The missing patterns of the covariates

in Sources 1–3 are the same as that in Figure 2, and covariates in Source 4 are

all observed.

The results of Settings 1–3 are provided in Table 1, where ρ represents the

correlations between covariates. We use different ρ to investigate the performance

under various strengths of dependence between the covariates. In Table 1, the

proposed method outperforms existing methods across all settings in terms of

coverage rate. In Setting 1, 80% of samples have missing covariates, and the

missingness is MNAR. Even so, as shown in Table 1, the coverage of the proposed

method is at least 42.0% and 19.7% more than that of other methods when ρ = 0.1

and ρ = 0.3, respectively.

In Setting 2, we consider simulations with potential predictors to mimic the

ADNI data in Section 6. The proposed method still produces the largest coverage

rate. Moreover, when ρ = 0.1, the coverage rate of the proposed method is

94.4%, which is close to 95%. Note that the MNAR missingness mechanism

of the covariates in both Settings 1 and 2 violates the MAR assumption (A1),

which may explain why the coverage of the proposed method does not achieve

95%. However, there might be other reasons for the lower coverage, such as

the limited sample size, missing proportion of responses, and structure of the

covariance matrix Σ.
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Table 1. Simulation results of Settings 1–3. DL-CC: the debiased Lasso method with
complete cases. LP-CC: the Lasso projection method with complete cases. DL-SI: the
debiased Lasso method with single regression imputation. LP-SI: the Lasso projection
method with single regression imputation.

ρ = 0.1 ρ = 0.3

Method Coverage rate Average length Coverage rate Average length

Setting 1

Proposed 0.920 0.581 0.876 0.560

DL-CC 0.264 0.274 0.248 0.291

LP-CC 0.636 0.423 0.644 0.429

DL-SI 0.036 0.140 0.036 0.135

LP-SI 0.648 0.326 0.732 0.362

Setting 2

Proposed 0.944 0.931 0.908 0.881

DL-CC 0.000 0.004 0.000 0.008

LP-CC 0.628 0.428 0.668 0.443

DL-SI 0.036 0.146 0.016 0.140

LP-SI 0.804 0.375 0.800 0.380

Setting 3

Proposed 0.956 0.722 0.956 0.699

DL-CC 0.260 0.217 0.308 0.229

LP-CC 0.964 1.229 0.924 1.228

DL-SI 0.116 0.191 0.116 0.173

LP-SI 0.356 0.227 0.404 0.252

Setting 3 focuses on MAR and contains additional unsupervised samples. In

Table 1, the proposed method and the Lasso projection method with complete

cases (LP-CC) both achieve desirable coverage. However, the average length of

the confidence intervals of the proposed method is much smaller than that of the

LP-CC, indicating that the confidence intervals of the proposed method are more

accurate.

In Table 4 of the Supplementary Material, we compare the empirical bias and

the empirical standard deviation of each method under Setting 3, and with the

multivariate imputation by chained equations (MICE) method. The results show

that the proposed estimator has a much smaller empirical standard deviation

than that of the LP-CC, and that MICE-based methods produce much larger

biases than that of the proposed method. Moreover, although in Table 1 the

confidence intervals of LP-SI have poor coverage, Table 4 of the Supplementary

Material shows that its point estimator has the smallest mean squared error

(squared bias plus variance). In addition, we provide absolute values of empirical

biases of β̂j and β̃j, and histograms of β̂j for the jth covariate under Setting 3

in the Supplementary Material, showing that the empirical bias of β̂j is much

larger than that of β̃j, and that the empirical distribution of β̂j is right-skewed.
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For the effects of the degree of correlations (ρ) between the covariates on the

proposed method, Table 1 shows that the coverage rate of the proposed method

is lower for larger ρ under Settings 1 and 2, and Table 4 of the Supplementary

Material shows that the proposed method has slightly greater bias for larger ρ

under Setting 3.

6. Real-Data Application

In this section, we apply the proposed method to the ADNI data set, which

contains multisource measurements: MRI, PET imaging, gene expressions, and

cognitive tests (Mueller et al., 2005). Of the latter tests, the mini-mental state

examination is often used to diagnose Alzheimer’s Disease (AD) (Chapman et al.,

2016). It is therefore important to identify the imaging and gene expression

features that are associated with and can predict the score of the mini-mental

state examination. To identify biomarkers associated with AD, we use the score of

the mini-mental state examination as our response variable, and treat the MRI,

PET, and gene expression variables as predictors.

Specifically, the MRI variables contain volumes, surface areas, average

cortical thickness, and the standard deviation of the cortical thickness of regions

of interest in the brain, which are extracted from the MRIs by the Center

for Imaging of Neurodegenerative Diseases at the University of California, San

Francisco. To mitigate bias due to different head sizes, we normalize the MRI

variables by dividing the region volumes, surface areas, and cortical thicknesses

by the whole-brain volume, the total surface area, and the mean cortical thickness

of each subject, respectively (Zhou et al., 2014; Kang et al., 2019). The PET

variables are standard uptake value ratios of brain regions of interest, that

represent metabolic activity, and are provided by the Jagust Lab at the University

of California, Berkeley. Gene expression levels at different probes are contributed

by Bristol-Myers Squibb laboratories from blood samples of ADNI participants.

Although the ADNI is a longitudinal study, we focus on data collected in

the second phase of the study (ADNI-2), at month 48. In total, there are 212

samples, 267 MRI variables, 113 PET variables, and 49,386 gene expression

variables. The blockwise missingness emerges when we combine the MRI, PET,

and gene expression data. The missing pattern structure is the same as that in

Figure 2, with four groups and 69 complete observations. Because of the relatively

small sample sizes, we first screen the gene expression variables using marginal

correlations based on sure independence screening (Fan and Lv, 2008) retaining

300 gene expression variables. We compute the marginal correlation between the

response variable and each gene expression variable based on all available pairs

of observations of the two variables.

We first apply the proposed method to all n = 212 samples in order

to identify the biomarkers associated with the score of the mini-mental state
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examination. We test the simultaneous hypotheses H0j : βj = 0, 1 ≤ j ≤ p = 680,

while controlling the false discovery rate (FDR), using the modified Benjamini–

Hochberg procedure of Ma, Cai and Li (2021) with the proposed estimators β̃j

and their variance estimators ŝ2j . The multiple testing procedure assumes that

the true alternatives are sparse, and is shown to control the FDR in probability

under mild conditions as n → ∞. See Section S9 of the Supplementary Material

for more details about the testing procedure.

The biomarkers identified by the methods at the significance level α = 0.01

are provided in Table 6 of the Supplementary Material. For the gene expression

probes, we provide the corresponding gene names in the table. The proposed

method identifies 36 biomarkers, including 19, 2, and 15 variables from the

MRI, PET, and gene expressions, respectively. Some of these biomarkers

are also selected by other methods. We provide the biomarkers identified

by both the proposed method and one of other methods in Table 7 in the

Supplementary Material. Although the debiased Lasso using complete cases or

using single regression imputation seems to identify many more markers, based

on our simulation results, many of the identified markers may be false positives,

because the corresponding confidence intervals do not provide the correct coverage

probabilities.

Among the associated genes, SFRP1 is selected by all the methods, and

is crucial in AD pathogenesis (Esteve et al., 2019). PJA2 is identified only

by the proposed method, and has reduced expressions in AD patients than

on normal controls. PJA2 has been shown to regulate AD marker genes in

mouse hippocampal neuronal cells, indicating its the potential relevance to the

pathophysiology of AD (Gong et al., 2020). Among the MRI related markers,

“ST30SV” is identified by our method as well as DL-SI and LP-SI, and represents

the volume of the left inferior lateral ventricle, which is related to AD (Bartos

et al., 2019; Ledig et al., 2018). However, only the proposed method identifies

“ST101SV” and “ST35TA”, representing the volume of the right pallidum and

the average cortical thickness of the left lateral occipital, respectively. Both

are shown to be associated with AD (Kautzky et al., 2018; Yang et al., 2019).

Finally, the PET biomarker “CTX RH TEMPORALPOLE,” the standardized uptake

value of the right temporal pole, is identified only by our method. This agrees

with the observation that hypometabolism in the temporal lobe often appears in

AD patients (Sanabria-Diaz, Mart́ınez-Montes and Melie-Garcia, 2013).

To show that the multiple sources in theADNI study contain complementary

information, we compare the proposed method with the Lasso using only the

MRI, PET, or gene expression variables for prediction. We also compare the

proposed method with the naive mean prediction method and the Lasso using

only complete observations. The naive mean prediction method uses the sample

mean of the response variable, calculated based on training sets for prediction.

Specifically, we randomly hide 10% of all values of the response variable as testing
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responses 150 times, and apply all the methods to the remaining data. In each

replication, we calculate the prediction mean squared error
∑

1≤i≤T (ŷi − yi)
2/T ,

where yi is a testing response, ŷi is the corresponding predicted value, and T

is the number of testing responses. We also compute the improvement rates of

the proposed method relative to other methods in terms of the prediction mean

squared error, which is defined as (PEM − PEP)/PEP , where PEP and PEM

denote the averages of the prediction mean squared errors of the proposed method

and the method M, respectively, based on the 150 replications.

As shown in Table 2, the proposed estimator β̂ produces smaller prediction

mean squared errors than other estimators, indicating that the proposed method

can achieve higher prediction accuracy than when using data from only one source

or when using only complete cases. This implies that using all the data sources

(MRI, PET, and Gene) with the proposed method can improve the prediction

compared with using a subset of predictors. Note that this is not over-fitting,

because the prediction errors in Table 2 are testing errors, rather than training

errors. Thus, different data sources in the ADNI study contain complementary

information, and the proposed integration method is suitable in that respect.

Specifically, the proposed method reduces the prediction mean squared errors

of other methods by at least 10.6%. In particular, the improvement rate with

respect to the Lasso method using only gene expression variables or using only

complete cases is over 30%. Moreover, the standard deviation of the prediction

mean squared errors of the proposed method is smaller than that of other the

methods, indicating that the proposed method is more stable. Furthermore, we

provide the absolute mean (absolute value of the mean) and standard deviation

of ŷi − yi, for i = 1, . . . , T , in Table 8 of the Supplementary Material. We also

provide the squared bias
∑n

i=1 I(yi ∈ T ) · (
∑ti

j=1 ŷij/ti − yi)
2/|T | and variance∑n

i=1 I(yi ∈ T ) ·
∑ti

j=1(ŷij −
∑ti

j=1 ŷij/ti)
2/(ti|T |) in Table 9 of the Supplementary

Material, where n is the total number of samples in the real data, T is the set of

responses that are included in at least one test set, ŷij is the jth predicted value

by a method for yi in all test sets, and ti is the total number of the predicted

values ŷij in all test sets. The results show that the proposed method produces

the smallest squared bias among all the methods.

In summary, the proposed estimator produces smaller prediction mean

squared errors and smaller squared bias than using only one source data or using

only complete observations, implying that integrating data from multiple sources

and using incomplete observations are critical. Additionally, the proposed method

identifies meaningful and important biomarkers not selected by other methods,

indicating that the proposed method is more powerful in terms of integrating

multimodal data.
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Table 2. Averages of prediction mean squared errors based on 150 replications. Proposed
(β̂): the proposed method with the estimator β̂. MRI Lasso, PET Lasso, and Gene
Lasso: Lasso method using only MRI, PET, and gene expression variables, respectively.
CC Lasso: the Lasso method using only complete cases. Naive mean: using the sample
mean of the response variable in the training sets for prediction. SD: standard deviation
of prediction mean squared errors calculated based on 150 replications.

Method Prediction mean squared error (SD) Improvement rate

Proposed (β̂) 13.898 (4.427) —

MRI Lasso 15.546 (5.715) 10.6%

PET Lasso 16.975 (7.009) 18.1%

Gene Lasso 19.946 (8.909) 30.3%

CC Lasso 19.956 (9.724) 30.4%

Naive mean 21.018 (10.410) 33.9%

7. Discussion

As mentioned in Section 2.1, methods that consider blockwise missing

patterns, such as the proposed method and the method of Xue and Qu (2021),

can incorporate both the complete case group and the incomplete groups in the

imputation step, thus ensuring better accuracy. This is the main advantage of the

proposed method compared with many existing imputation methods. However,

our method may become complicated when there are too many data sources or

different missing groups, leading to many blockwise imputations for each missing

block, and thus many estimating equations to be solved. In general, the proposed

method is more suitable for blockwise data with a small number of data sources

and missing groups.

Although the MNAR mechanism is not covered in our theoretical justifi-

cations, simulation studies in Section 5 show that the proposed method still

outperforms other methods under some MNAR settings. This may be because

the proposed method incorporates more groups in the imputation of each missing

block via the blockwise imputation. In this way, the proposed method aggregates

information from various groups to reduce the selection bias in the groups caused

by the MNAR mechanism. In future work, we may investigate managing MNAR

situations by modeling the missingness or using instrumental variables.

A few other extensions are also worth exploring in the future. For example,

because AD is a progressive brain disease, it is of interest to incorporate

longitudinal data in the estimating functions to improve efficiency. In addition,

currently, our method focuses only on linear regression with continuous responses;

thus, it would be worthwhile generalizing our method to include binary and

categorical responses.
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Supplementary Material

We provide additional numerical and theoretical results and discussion, as

well as proofs for all the theorems in the main text in the online Supplementary

Material.
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