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STATISTICAL INFERENCE FOR HIGH-DIMENSIONAL
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Abstract: Blockwise missing data occur frequently when we integrate multisource or
multimodality data, in which different sources or modalities contain complementary
information. In this study, we consider a high-dimensional linear regression model
with blockwise missing covariates and a partially observed response variable. Under
this framework, we propose a computationally efficient estimator for the regression
coefficient vector based on carefully constructed unbiased estimating equations and
a blockwise imputation procedure, and obtain its rate of convergence. Furthermore,
building on an innovative projected estimating equation technique that intrinsically
corrects any bias in the initial estimator, we propose a nearly unbiased estimator
for each individual regression coefficient, which is asymptotically normally dis-
tributed under mild conditions. Based on these debiased estimators, we construct
asymptotically valid confidence intervals and statistical tests for each regression
coefficient. The results of our numerical studies and an application to data from
the Alzheimer’s Disease Neuroimaging Initiative show that the proposed method
outperforms existing methods, and benefits more from unsupervised samples than
existing methods do.

Key words and phrases: Blockwise imputation, data integration, projected estimat-
ing equation.

1. Introduction

The problem of blockwise missing data arises when we integrate data from
multiple modalities, sources, or studies. For instance, the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) study collects data from magnetic resonance
imaging (MRI), positron emission tomography (PET) imaging, genetics, cere-
brospinal fluid, cognitive tests, and demographic information of patients (Mueller
et al., 2005). However, because some subjects do not have MRI or PET
images, the biomarkers related to the images can be completely missing for
these subjects. As a result, when we integrate data from multiple sources, and
group patients based on their missing patterns, blocks of values may be missing,
as illustrated in Figure 1(a), where white areas represent the missing blocks.
Multimodality data also appear in modern genomic studies of complex dis-
eases. For example, the Genotype-Tissue Expression (GTEx) study has collected
RNA-seq gene expression data from over 45 tissues of more than 800 donors
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Figure 1. White areas represent missing blocks, while shaded areas represent observed
blocks. (a) Missing structure for ADNI data. (b) A blockwise missing example.

(Lonsdale et al.,[2013). In this case, the gene expression data in the GTEx study

are blockwise missing if a tissue sample is not available.

Many important scientific questions can be answered by using an association
or regression analysis. In this case, for data sets with blockwise missing covariates,
the response variable is often also partially missing across the samples, for
example, this situation could occur when the outcomes are expensive to collect,
such as in electronic health records databases, where labeling the outcome for each
individual is costly and time consuming . In the GTEx study,
samples are collected only from non-diseased tissue samples across individuals
(GTEx Consortium, 2017)), implying that the response is only partially observed
when we predict a gene expression in one tissue using gene expression levels in

other tissues.

Therefore, to make the most use of such data sets, it is essential to develop
methods that are adaptive and can effectively use extra unsupervised samples to
infer the underlying models.

In this study, we consider a linear regression model

V=X"B+e¢ (1.1)

where ) is the response variable, X is a p-dimensional random vector of regression
covariates, 3 is a p-dimensional regression sparse coefficient vector, and € is a
centered sub-Gaussian random variable with variance ¢? and independent of X.
Let s be the number of relevant covariates with nonzero coefficients. Suppose
that X consists of covariates from S data sources. For instance, there are four
sources in Figure 1(a), and three sources in Figure 1(b). We further suppose that
all samples are drawn independently from (X,)) in before going through
certain missingness mechanisms.
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Throughout, we allow the response variable to be missing. Specifically, we
let the index set of all samples be D = {1,...,N + n} = D; U Dy, where D; is
the index set of the samples for which the response variable is not observable,
D, is the index set of the samples with observed responses, and N and n are the
numbers of samples in D; and D,, respectively. For simplicity, we slightly abuse
the terminology, and refer to the samples in D; as the “unsupervised samples,”
and refer to the samples in D, as the “supervised samples.” We let y denote
the (N + n)-dimensional vector consisting of all samples of the response, and
let X denote the (N + n) x p design matrix, where y and X can both have
missing values. In Section S1 of the Supplementary Material, we provide a table
explaining all notation used in this paper.

We assume that the covariates are blockwise missing. Specifically, we assume
that there are R groups of samples in D, with the same missing covariate indices
within each group, and the missing covariates consist of variables in one or several
data sources. This gives rise to missing blocks in the design matrix, as shown in
Figure 1. There are R = 8 missing groups in Figure 1(a), and R = 5 missing
groups in Figure 1(b). For any i = 1,..., N 4+ n, we let §; be the group label of
the ¢th sample, which takes random values in {1,..., R}. For any r = 1,..., R,
we let S(r) C D be the index set of the samples in Group r. Our goal is to study
statistical inference for the high-dimensional regression vector 8 in based
on such partially observed responses and blockwise missing covariates.

In general, there are three types of missingness mechanisms (Little and
Rubin} 2019)). If the missingness of a missing variable is independent of the values
of both the missing variables and the observed variables, then we refer to this as
missing completely at random (MCAR). If the missingness can be fully accounted
for by observed variables for which we have complete information, then the
missing mechanism is missing at random (MAR). If the missingness depends on
the values of the missing variables, then the missing mechanism is called missing
not at random (MNAR). For blockwise missing covariates, the corresponding
missing mechanism depends on the relationship between &;(1 < i < N) and the
covariates. For example, if £ depends only on covariates observed in all groups,
then the missingness mechanism of the blockwise missing covariates is MAR.
We focus mainly on MAR, but do also investigate MNAR in simulations in
Section 5.

1.1. Related works

Several methods have been developed recently related to blockwise missing
data (Yuan et al., |2012; Xiang et al., 2014; [Yu et al., 2020; |Cai, Cai and
Zhang, 2016; Xue and Qu, [2021). In particular, Yuan et al. (2012) studied
the integration of large-scale brain imaging data sets from multiple imaging
modalities, where data are blockwise missing, because each modality contains
missing measurements. They propose dividing the blockwise missing data into
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several learning tasks, based on the availability of the data sources, and use
penalization to encourage the selection of a common set of features across all
tasks. [Xiang et al. (2014) extended the method by letting feature-level parameters
be the same across all tasks, which is beneficial for the prediction of subjects
with new missing patterns. Moreover, they included parameters for source-level
weights to reflect the effectiveness of each source. Nevertheless, none of these
existing methods aim to construct confidence intervals or test hypotheses for the
regression models, nor do they incorporate a partially observed response with
blockwise missing data.

In general, the simplest approach to handle missing data is to restrict the
analysis to complete cases. However, this might induce bias if the missingness
mechanism is not completely at random. The inverse probability weighting (IPW)
is widely used to correct this bias (Little and Rubin), [2019) by modeling the
probability of being a complete case, given some predictors, and then reweighting
complete cases using the inverse of the estimated probability. The augmented
IPW methods improve the IPW by combining it with imputation of missing
values (Robins, Rotnitzky and Zhao, [1994; |Qin, Zhang and Leung), 2017; Seaman
and Vansteelandt, |2018]). However, these methods are not directly applicable or
easily extendable to blockwise missing data, without sacrificing efficiency. This
is because IPW-related methods usually only consider whether or not a subject
is completely observed, and cannot fully use the blockwise missing structure of
the blockwise missing covariates.

With regard to statistical inference for high-dimensional regression models
under fully observed settings, several studies employ a bias correction of regu-
larized estimators, including thos of Javanmard and Montanari| (2014), van de
Geer et al. (2014), |Zhang and Zhang (2014]), Ning and Liu/ (2017), |[Javanmard
and Montanari (2018), and [Neykov et al.| (2018), among many others.

More recently, high-dimensional inference problems with partially observed
responses have been studied (Bellec et al.l 2018; [Zhang and Bradic, 2019; |Cai
and Guo, [2020; Deng et al., 2020). However, none of these methods address the
problem of missing covariates. In particular, to the best of our knowledge, there
is no existing method that focuses on statistical inference for a high-dimensional
regression with blockwise missing data.

1.2. Main contributions

In this study, we build on a blockwise imputation (BI) procedure and
carefully constructed unbiased estimating equations to account for structural
missing covariates and a partially observed response variable. As such, we propose
a computationally efficient sparse estimator for a high-dimensional regression
coefficient vector, and obtain its theoretical properties under mild regularity
conditions. Importantly, unlike most existing methods, our method does not
require fully observed samples in the data, and benefit automatically from
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additional unsupervised samples, until achieving the optimal rate of convergence
of fully observed samples.

In addition, we develop an innovative projected estimating equation tech-
nique that leverages all available data, including the unsupervised samples, to
correct the bias in the initial sparse estimator, and to obtain nearly unbiased
estimators for the individual regression coefficients. These estimators are shown
to be asymptotically normally distributed, with a variance that is minimized
by construction. By carefully analyzing these debiased estimators, we can
construct asymptotically valid confidence intervals and statistical tests about
each regression coefficient accordingly. In particular, our theoretical analysis
provides important insights about the benefits of using unsupervised samples on
the proposed inference procedures, revealing their important role in constructing
estimators with competitive efficiency (see also the discussions after Theorems 1
and 2).

1.3. Notation

Throughout, for a vector a = (ay,...,a,)’ € R", we define the £,-norm
lal, = (Z:’:laf)l/p, the lp-norm |a|o = Y_;—, 1{a; # 0}, and the ¢, -norm
llal|cc = max;<;<, |a;|. For an index set & C {1,...,n}, we denote ag as the

subvector of a consisting of all the components a;, where j € £. In addition,
a_; € R"! denotes the subvector of a without the jth component. For a matrix
A € RP*?1 )\;(A) denotes the ith largest singular value of A, and A,.(A) =
A1(A) and Apin(A) = Amin(p,q) (A). For index sets S; C [1: p] and S, C [1: g, we
denote Ag, s, as the submatrix of A consisting of its entries in the rows indexed
by S; and the columns indexed by S>. We denote || Al = max; ; |A;;|. For any
positive integer n, we denote the set {1,2,...,n} as [1 : n]. For sequences {a,}
and {b,}, we write a,, = o(b,), a, < b,, or b, > a, if lim, a, /b, = 0, and write
a, = O(b,), a, < by, or b, 2 a, if there exists a constant C' such that a,, < Cb,,
for all n. We write a,, < b, if a,, < b, and a,, = b,. For a set A, we denote |A| as
its cardinality.

2. Parameter Estimation using Blockwise Imputation
2.1. Blockwise imputation (BI)

The BI procedure is able to use more information from incomplete samples
(or cases) than traditional single regression imputation (SI) methods do, which
impute missing values via regression models using all the observed variables as
the predictors (Baraldi and Enders, 2010; Zhang), 2016; Campos et al., 2015).
For example, in Figure 1(b), the traditional ST method imputes missing values in
Group 2 by modeling the relationship between the variables in Source 3 and all
other variables. This relationship can be estimated based on complete samples
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in Group 1. However, Groups 3 and 4 also contain information about Source 3
variables, but are not used by the SI. In contrast, the BI imputes the missing
values in a group by using both the dependence between the missing variables
and all the observed variables in this group, and the dependence between the
missing variables and part of the observed variables, which could lead to several
imputations for each missing value. The additional imputations based on part of
the observed variables incorporate information from incomplete groups, that is,
Groups 3 and 4 in Figure 1(b), because these incomplete groups can be used to
estimate the latter dependence.

Specifically, for each missing group, the first step in BI is to determine the
groups that can be used to construct an association between the missing variables
and at least part of the observed variables in this group. For each Group r € [1 :
R], we let G(r) C [1 : R] be the index set of the groups in which all the missing
variables of Group r and the variables in at least one of the other sources are
observed, and let a(r),a(r)¢ C [1 : p] be the index sets of the observed variables
and missing variables, respectively, in Group r. For example, when there are
three sources of data with R = 5 missing groups, as shown in Figure 1(b), then
G(2) = {1, 3,4}, and a(2)° consists of indices of the covariates in Source 3. Group
5 is not in G(2), because it does not contain any information about the variables
in Source 3 that are missing in Group 2. If Group r is completely observed, that
is, there are no missing values in Group r, we let G(r) = {r}.

In this paper, we assume, without loss of generality, that |G(r)| > 1, for each
r € [1 : R], implying that each covariate is observed in at least one group. This
assumption is equivalent to that, for each missing variable in Group r, there is at
least one group of samples reflecting the association between this missing variable
and at least part of the observed variables in Group r. Note that this assumption
does not require the existence of complete samples, because incomplete groups
could also contain values for both missing variables and some observed variables
in Group 7.

In the second step of BI, we impute missing values in Group r based on
each of the groups in G(r). Specifically, for any sample i in Group r € [1 : R]
(i.e., i € S(r)), if the variable X;; is missing (j € a(r)°), then for any Group
k € G(r), we impute X;; by E(X;;|X,a(rr)), where X;; is the (¢, j) element in the
design matrix X, and a(r,k) C [1 : p] is an index set of covariates observed in
both Groups r and k. Throughout, for each r € [1 : R] and i € S(r), we define
x® = (x® ,Xi(zlf ))T as the imputed random vector for sample i according
to Group k € G(r), so that Xff) = E(X;j| Xiarr)) if the jth covariate X;; is
missing in the ¢th sample X;, otherwise Xl-(f) = X,;. Note that the superscript
(k) indicates the conditional expectation imputation based on Group k.

Often, we can estimate the conditional expectation E(X;;|Xqrk)) by fitting
a linear regression model between X;; and the random vector X, x) using the
samples in Group k. To account for high dimensionality, we consider the Dantzig
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selector (Candes and Tao, [2007)), defined as

Nia(rk) = yae%ﬂ%g\ lv|l1, subject to HXS(k)j — XS(k)a(Tvk)'VHoo <, (2.1)
where 7 > 0 is a tuning parameter. Then, we can approximate the imputed
variable XZ-(JI»C) = E(X;j|Xiatrr) by 'T/]Ta(r,k)Xm(nk). The imputed values are
deterministic, given the data, and may be biased in the high-dimensional setting.
Below, we carefully analyze such an imputation error (Section 3), and propose
a bias-correction procedure to construct asymptotically unbiased estimators for
the components of 3 (Section 2.3).

For cach r € [1: R] and i € S(r), we define X* = (X, .. .,Xf;f))T as the
actual imputed observations of sample ¢ based on Group k € G(r), where )?i(f) =
ﬁ;a(r7k)Xia(r,k) if the jth covariate is missing in the ¢th sample X;, otherwise
)?Z-(f) = X;;. Importantly, because for each group r, G(r) could contain multiple
elements (e.g., |G(2)| = 3 in Figure 1(b)), there could be multiple imputations
for the missing blocks in this group, each associated with a distinct k& € G(r).
Finally, we obtain the theoretical value for the tuning parameter 7 in in
Section 3; in practice, 7 can be determined using cross-validation (Section 5).

2.2. Construction of estimating equations and the proposed estimator

To construct unbiased estimating equations for estimating the unknown
regression coefficients, for each of these blockwise imputations, we consider their
corresponding moment conditions, as follows. For any r € [1: R], k € G(r), and
i € Do, we consider

hi(B) = 1(& = )iy — (X8} - X5, (2.2)

where y; is the response of the ith sample, and Xl(f()k) is a subvector of Xi(k)
consisting of elements corresponding to all covariates observed in Group k. Under
the linear regression model, whenever ¢; is independent of all the covariates
(MCAR), or depends only on the observed covariates (MAR), it can be shown
that E{h;+(8)} = 0 (Xue and Qu, 2021). Intuitively, the construction of h;.«(3)
is inspired by the score function under the linear regression model, which is still
expected to be zero after the blockwise imputations. In addition, note that
for different ki,ky € G(r) or for different imputations, the dimension of their
corresponding equation may be different, because the subset a(k) varies
with k.

Integrating all missing groups and imputations, we can define a system of
unbiased estimating equations as
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1 07 hit (B)
g(B) = ] Z ) : =0, (2.3)
i€Dy eﬁlth(,@)

where 6, = |D, N S(r)|/|Ds is an estimate of the observed rate for the rth group
among D,, and h;,.(8) is a vector combining the components of the vectors in
{hiri(B) }reg(ry, for 7 € [1 : R]. In particular, g(8) is a vector of dimension
M, = Zle D okeG(r) |a(k)|, which may be larger than p. This overspecification is
helpful in terms of making full use of the information contained in all the missing
patterns and the available observations. Nonetheless, it is shown in Section S5
of the Supplementary Material (Lemmas 1 and 2) that, under a wide range of
settings, the above system of estimating equations leads to a feasible set that
contains the true coefficient vector 3 with high probability.

However, the random vectors Xi(k) required by and are not fully
observed. Instead, we use the imputed observations Xik as an approximation.
Specifically, we define the imputed counterpart of h;.(3) as

hak(B) = 1(& = r){y — (X)) T8} - X0, (2.4)

and define the imputed estimating function as

@ == | (25

where n = |D,|, and h;,(3) is a vector combining the components of the vectors
in {Eirk(,@)}keg(r), for each r € [1: R].

Finally, respecting the underlying sparsity of the coefficient vector 3, we
define the proposed estimator as

B= argmin B[y, subject to [|g.(B)]l < A, (2.6)
BeR?

where A > 0 is a tuning parameter. In Section 3, we obtain the theoretical
value for A up to a constant factor, such that the associated optimizer B is
a consistent estimator. In practice, we recommend using cross-validation to
determine the optimal choice of A. See Section 5 for more details about the
numerical implementation of .

2.3. Bias-correction based on the projected estimating equations

Although the proposed estimator ﬁ performs well in terms of point esti-
mation, it is actually biased, and cannot be used directly to develop powerful
inference procedures, such as confidence intervals and statistical tests. In
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this subsection, we propose a novel projected estimation equation approach
incorporating both the unsupervised and the supervised samples, and construct
bias-corrected estimators that are asymptotically normally distributed around
the true coefficients.

From the imputed estimating function g, (8) in , we define g (3) as a
subvector of g, (3), where we replace each Birk(ﬁ) in (2.4) with its subvector

R (B) = I(& = r){yi — (X)) BY- X1 o = 1(& = r){y:— (X)) B} Xiar-

The dimension of g*(3) is thus 3.7 > keg(r la(r, k). Note that i\zfrk(ﬁ) involves

only imputed values in 5(\ , whereas the remaining part in i\zi,.k(,@) contains
imputed values in )/(\i(k) and XZ(:()k Na(rkys Where Xm(k)\a(r ) 1s a subvector of )/(\i(k)
consisting of the covariates indexed by a(k)\a(r, k). We have two reasons for using
g:(B) instead of g,(8). First, from our theoretical analysis, g (3) contributes
less error caused by imputation to the final debiased estimator. Second, it
significantly simplifies our numerical implementation and improves the finite-
sample performance, especially in the optimization below.

Based on the initial estimator B and g*(3), we propose a bias-corrected
estimator Bj of p; for each j € [1 : p], defined as the root of the projected
estimating function

8,8 =0, (2.7)

where ,@;‘ = (Bl, .. .,B\j—hﬁj,gj_t,_l, e ,Bp)T, B; and Bj are the jth elements of 3
and ,3, respectively, and

S;(8) =9/ g:(8). (2.8)

Here, the equation ([2.7)) is treated as a univariate equation of the scalar 3;, and
the projection vector ¥; is defined as the solution to the following optimization
problem:

¥; = argminv' W,v, subject to ||[v' G, — €;j]lo0 <N, (2.9)

where A’ > 0 is a tuning parameter, e; € R? has 1 as its jth element and is zero
otherwise, W, is a block-diagonal matrix consisting of the sub-matrices

D, |?
Dy N S(r)? > & =} X X,

1€Do

ordered first by r € [1 : R] and then by k € G(r), and

07 dh;, (8)/dB
G,=— :

: (2.10)
&, 0z dh;n(8)/dB
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Here in (2.10), for each r € [1 : R], we have dh;.(8)/dB € Rm *P with
M), = 3 cgn la(r, k)| consisting of submatrices {I(§; = ) Xia(, o (X Y eam
combined by row. Importantly, in and , the unsupervised samples are
implicitly used to construct the optimal projection direction v, using the imputed
variables. Moreover, in Section 3, we show that having a sufficiently large set of
unsupervised samples Dy, and being able to incorporate the information contained
in Dy, is necessary to reduce the bias and to obtain the asymptotically normal
estimator Bj.

Remark 1. In Section 3, a theoretical value for the tuning parameter X
in the quadratic optimization problem is obtained, up to a constant
factor. For numerical implementations, in Section 5, we propose a practical
iterative procedure for determining an appropriate value for A’ that exhibits good
numerical performance across various settings.

The rationale behind the projected estimating function in is evident
from a bias-variance analysis for the estimator Bj. Specifically, the projected
estimating function is carefully constructed using the projection vector v, defined
in (2.9), such that the bias term of ,BJ is dominated by a stochastic error,
introduced below. Denote ,8* = (51, e ,BJ 1,@,@“, . .,Bp)T. By the Taylor
expansion,

0=35;(8)) =, g:(B) + 9] Gre; - (B; — 5;)
] g1(B) + 9, G.(B; — B) + 0] Ge; - (B; — B)), (2.11)

which can be rewritten as

o7 g:(8) 0/ G.(B; —B)

Bi—Bj=— =7 - — . (2.12)
v Gre; v Gre;
N—— N—
Stochastic Error Remaining Bias

The estimation error BNJ- —f; is decomposed into two parts. The first term in (2.12)
is a stochastic error, which is asymptotically normal with variance determined by
fJJT W, v,, and the remaining bias is bounded by

6, G.(B; ﬂ)‘ 19 Gn) 5l 18] = B)-slls _ 118, Gn = €] [|=[IB = Bl
0/ Gre; - 1o/ Ghe; — 1] T 1|/ G.—e|lx
(2.13)
using Holder’s inequality. As a result, the remaining bias is dominated by the
stochastic error, because the factor |6 G, — e] || is well controlled by (2.9),
and [|8 — B||, is sufficiently small.
From the above argument, the constrained optimization problem is
rooted in a bias—variance trade-off: It aims to find a projection vector v; that

controls [[9 G, — e[| in (2.13) to ensure the remaining bias in (2.12) is
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negligible with respect to the stochastic error, while reducing the variance of the
stochastic error, by minimizing ijTWnﬁj, to obtain a more efficient estimator.

Remark 2. For general missing data problems, there are likelihood-based ap-
proaches where missing values are marginalized under distributional assumptions
(Garcia, Ibrahim and Zhu, 2010; Ibrahim, Lipsitz and Chen), [1999; Chen, Prentice
and Wang, 2014). In particular, the expectation-maximization (EM)-based
estimating equation method also constructs estimating functions based on missing
data (Elashoff and Ryan, 2004). However, the proposed projected estimating
equations and the EM-based estimating equations are conceptually different.
First, the proposed method does not need to specify distributions for all the
variables. Second, the projected estimating equations are carefully designed to
correct the bias of our initial estimator. In contrast, the EM-based estimating
equations are the derivatives of the log-likelihood function with respect to the
parameters (Elashoff and Ryan) 2004).

Remark 3. In our construction of Bj, we mainly correct for the bias due to ,[§_j,
as in (2.13)), rather than the bias due to {F; a(mr) : j € a(r),k € G(r),1 <r < R}
from the imputation procedure. In general, the bias of the final estimator Bj stems
partially from the estimation error of the conditional expectation E(X;;| Xa(rx)),
defined as the difference between 7, 1y Xia(rk) and ¥} 4. ) Xia(rs) under the
linear assumption E(X;; | Xiar)) = va’a(nk)Xm(r,k). The estimation error can
be well controlled by |[4j.a(rk) = Yja(rk)ll2, Which contains both the bias and
the variance of ‘Ay]-,a(r’k). To obtain a small estimation error, we leverage both
unsupervised and supervised samples to ensure that |7, o(rk) — Vi (k) |2 is small
with high probability.

3. Theoretical Justifications

This section provides theoretical justifications for the proposed inference
procedures by studying the properties of the proposed estimator é and its bias-
corrected counterpart 5 = (Bl,...,ﬁp)T. For technical reasons, we assume
for simplicity that the blockwise imputation step is performed using the
unsupervised samples D; and a fixed portion of the supervised samples D, that
preserve the blockwise missing pattern (i.e., the number of groups and the missing
variables in each group). On the other hand, the construction of the estimators ,@
and B is based on the imputed observations of the other portion of the supervised
samples D,. In practice, however, splitting the supervised samples D, into two
parts is not needed, and the proposed method works well numerically when all
the samples are used for imputation and inference; see the numerical results in
Sections 5 and 6.

We first introduce the notation and assumptions for the theoretical results.
For any r € [1 : R], k € G(r) and i € D, we define X" = E{I(§ =
XM (XH)TY € RP*P. Recall that & € [1 : R] denotes the random group label
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of the ith sample, a(k)€ is the index set of the missing covariates in Group k, a(k)
is the index set of the observed covariates in Group k, and a(r, k) is the index set of
the covariates observed in both Groups r and k. We also denote N, = |D;NS(r)|
as the number of unsupervised samples in Group 7, n, = |Dy N S(r)| as the
number of supervised samples in Group r, and N = |D,]|.

For the missingness mechanism, we assume the following:

(A1) The random group label ¢; is independent of all covariates or depends only
on covariates observed in all groups, and the response is MCAR.

(A2) For the missing patterns, we assume R is a finite integer, and for all r € [1 :
R] and k € G(r), we have |a(r)|/p,a(r,k)/p € [C,C,] and n,/n,N,./N €
[c1, c2], with probability at least 1 —p~¢ for some constants 0 < C; < Cy < 1,
0<ci <ecy<1,and ¢ > 0.

The assumption for the random group label in (A1) implies the missingness
mechanisms of the covariates are either MCAR or MAR, because the missingness
(or group assignments) is completely random or can be fully explained by
completely observed variables.

Assumption (A2) is mild, because it essentially ensures that the missing
patterns are finite and balanced. For the design covariates, and the regression
coeflicient vector B, we assume the following;:

(A3) Each X, for ¢ € D, is an independent centered sub-Gaussian random vector
with ¥ = E(X;X,") satisfying C7 < A\pin(E) < Apax(E) < C, for some
absolute constant C' > 1, and «y; = argmin_ g, + E(X;; —v" X, _;)? satisfies
lvillo < s, for each j € [1: p];

(A4) 3 satisfies ||B|l2 < C, for some absolute constant C' > 0.

(A5) There exists some r € [1 : R|, ki,ks € G(r) and some constant ¢, > 0,
such that Amin(E00 w) = 700 > €0 > Anax(BUE sue)s for k = ki, ko,
and a(ky) U a(ky) = [1 : p|. In Assumption (A3), the sub-Gaussian
condition includes many important cases, such as Gaussian, bounded, and
binary covariates, or any combinations of them. This makes our proposed
method applicable to many practical settings. The sparsity condition on
the best linear predictor coefficient ; ensures the quality of the Lasso-based
imputation step, which essentially requires a sparse conditional dependence
structure among the covariates. For example, when X "N (0,3), this
condition is equivalent to a sparse Gaussian graph condition, requiring each

row of X! = (w;;) to be s-sparse.

Assumption (A5) requires the existence of two groups {k1,k2} C G(r), such that
each covariate is observed in one of these two groups. However, the eigenvalue
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condition )\min(E&Qa(k)) > Tcy > co > )\,nax(Efl?:){a(k)c) requires the existence of
a pair of groups (r, k) € [1: R] x G(r) such that, for each i € S(r), the subvector
Xi(:()k) of the imputed vector Xi(k) does not contain variables that are highly
correlated within themselves, or with the variables in X Z(f()k) This condition
essentially ensures that each covariate is sufficiently informative. In Section S8 of
the Supplementary Material, a more interpretable sufficient condition is obtained
under the Gaussian design.

The following theorem concerns the convergence rates of the estimator ,@ in

2.0)-

Theorem 1. Suppose (Al) to (A5) hold, logp < min{N,n}, and s <
min{+/n/logp, (n + N)/logp}.  For sufficiently large (n,p), if we choose
7 =< /logp/(n+ N) in and X =< /logp/n + s\/logp/(n+ N) in (2.6),
then ||B — 8|1 < s\ and ||B — B2 < s'/2X hold with probability at least 1 — p~°,
for some absolute constant ¢ > 0.

Some remarks about Theorem 1 are in order. First, our theorem shows
that the rate of convergence under the fy-norm is bounded by /slogp/n +
s%2\/logp/(n + N). The first term /slogp/n is the ordinary estimation error
for the Lasso or Dantzig selector type of estimators, whereas the second term
s3/2\/logp/(n + N) comes from the estimation error of the conditional expecta-
tion in the BI step for the missing covariates. Intuitively, the estimation error of
the conditional expectation depends on both N and n, because the BI step uses
both the supervised and the unsupervised samples. In contrast, the estimation
error of the Lasso or Dantzig selector depends only on n, because only the imputed
supervised samples are used in the estimating equations .

Second, compared with the minimax optimal rate y/slogp/n for estimating
B with complete observations of n samples with A =< +/logp/n (Verzelen,
2012)), the above error rate has an additional term s*2,/logp/(n + N) under
A < Jlogp/n + sy/logp/(n+ N). This extra error term and the different
choice of tuning parameters reflect the cost of imputing the missing variables;
see also (Chandrasekher, Alaoui and Montanari (2020) for similar phenomena in
the imputation of unstructured missing data using the Lasso method. However,
Theorem 1 also implies that when the number of unsupervised samples is
sufficiently large, that is, when N > s%n, the estimation error of the conditional
expectation is dominated by the estimation error y/slogp/n, and the estimator
ﬁ achieves the minimax optimal rate for complete observations of n samples.
In other words, our method benefits from the extra unsupervised samples to
improve the estimation. Nevertheless, note that even in the presence of a far
greater number of unsupervised samples (N > n), the convergence rate cannot
be better than \/slogp/n. After all, there are only n observations of the response
variable, rather than n complete samples.
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Third, unlike many existing inferential methods for missing data, such as
those of |Cai, Cai and Zhang| (2016), [Kundu, Tang and Chatterjee| (2019), and
Yu et al.| (2020), our method does not require fully observed samples. In other
words, each sample in the data set may have missing variables, which precludes
using existing methods for fully observed data. In contrast, our method should
work, as long as |G(r)| > 1 and the missing groups are finite and asymptotically
balanced.

The proof of Theorem 1 is involved and quite different to existing works
that analyze the risk bound of the Dantzig selector or the Lasso estimator for
the linear regression model with complete data (Candes and Tao, 2007; Bickel,
Ritov and Tsybakov] [2009). The detailed proof can be found in Section S5 of the
Supplementary Material. In particular, as a key component of our theoretical
analysis, we develop a novel restricted singular value inequality that accounts
for the blockwise-imputed samples, and plays a similar role to the restricted
eigenvalue condition (Raskutti, Wainwright and Yu, 2010) or the restricted strong
convexity property (Negahban et al., [2012; [Negahban and Wainwright, 2012)
needed to analyze of high-dimensional /;-penalized estimators. This inequality,
proved in Section S7.4 of the Supplementary Material, could be of independent
interest.

Proposition 1. Under the conditions of Theorem 1, there exist some r € [1 : R]
and k € G(r), such that, with probability at least 1—p~¢ for some absolute constant
c> 0,

.
nt I{&—r}( ) XM (XN Tul > e, (3.1
Z ||ua<k>||2 (k) ’

inf
lull2=1,u€Es(p)
Hua(k)H2>1/2
for some constant ¢ > 0, where Eip) = {d € RP : ||8]2 = 1,[|ds¢]1 <
|0s]|1, for some set S C [1:p] with |S| < s}, and S¢ represents the complement
of set S.

Our next theorem establishes the asymptotic normality of the bias-corrected
estimator Bj, supporting the asymptotic validity of the confidence intervals and
the statistical tests proposed in Section 4. We need the following condition,
ensuring the existence of a true projection vector satisfying the constraint in

(2.9), with high probability:
(A6) For G = dg*(3)/dpB with g*(3) being the population counterpart of g (3),
we have A\pin(E{G}) > ¢, for some absolute constant ¢ > 0,

Theorem 2. Suppose the conditions of Theorem 1 and (A6) hold, and N 2

nlogp. If we choose X' =< /logp/n and s < min {y/n/logp, /N/nlogp}, then,

for each j € [1: p|, we have
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n(B; — B;)

S5

where s; is defined in , A= 1 and D — 0 in probability, and B|X — N(0,1)
wn distribution, in whzch X {X( )}1692 is the set of all imputed observations.

= AB+ D, (3.2)

Theorem 2 shows that to obtain an asymptotically normally distributed
estimator, we needa sufficiently large set of unsupervised samples for both the
blockwise imputation and the bias correction. Specifically, from our proof of
Theorem 2 (such as Lemma 6 in the Supplementary Material), it seems that,
under the current analytical framework, the condition N 2= nlogp is likely
necessary for constructing nearly unbiased estimators with efficiency competitive
to Bj. In addition, the condition s < /N/nlogp ensures that the imputation
error is o(n~/2), whereas the more standard condition s < /n/log p implies that
the remaining bias in (2.12]) after the bias-correction step is negligible.

These conditions are explained as follows. On the one hand, additional
unsupervised samples are needed to achieve desirable imputation quality, that
is, to ensure the imputation error is dominated by the estimation error for B
Intuitively, if the imputation error dominates the estimation error in the bias of
ﬁ, then such a bias is intrinsic, and may not be removed by any approach based
on the imputed data. On the other hand, the unsupervised samples help to reduce
bias: the proposed projected estimating equation approach incorporates both the
unsuperivsed and the supervised samples to jointly determine the best projection
direction in for bias correction. We also provide theoretical results when
we have only supervised samples in Section S4 of the Supplementary Material,
showing that the convergence rate of the proposed estimator is faster for both
supervised and unsupervised samples than it is for only supervised samples.

4. Confidence Intervals and Statistical Tests

In this section, we develop asymptotically valid confidence intervals and
statistical tests for each coefficient ;, with j € [1 : p]. As shown in Section
3, by carefully analyzing the bias-corrected estimator Bj, conditional on the im-
puted covariates, under mild regularity conditions, Bj is asymptotically normally
distributed with variance s?/|D,|*, where

|D2’20'3 5
$= Y paseplE=n0l X (@D

i€D2 keG(r),1<r<R

lh=0+ BQ(T)FE{GESET)F( fszr)c)T}Ba(r)c, 61(‘];27 € RI¢M°l is the residual term of
the ith sample in the regression model of X;,(,)e, with X, 1) as covariates, and
¥jp € RIVCP with » € [1: R] and k € G(r), is the subvector of the projection

vector v; corresponding to the estimating functions in g (3) associated with
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Group k € G(r). Consequently, for any given j € [l : p], an asymptotically
(1 — a)-level confidence interval for 3; can be constructed as CL,(8;) = [, —
20/28;/|Dal, B+ 2028,/ |D2], where 24/ = ®~'(1—a/2) is the upper a/2-quantile
of the standard normal distribution,

52— 52 ‘D2|2 AT 2
5 = Z g l&i=1r)(0 ‘Jka(r,k)) , (4.2)
J B koS Ter<n |Dy N S(7)]? J

and 0* is some reasonable estimator for maxy, o7, (see Section S2 of the
Supplementary Material).

Along with the above confidence interval, we also construct an asymptotically
valid statistical test for the null hypothesis Hy, : ; = b;, for any b; €
R. Specifically, we define a test statistic T, = |D|(8; — b;)/5;. Then, an
asymptotically a-level two-sided test rejects Hy whenever |T;| > z,/.. With
these component-wise test statistics, one can also construct tests for the global
null hypothesis H, : 8 = 0, and the multiple simultaneous hypotheses Hy; : 3; =
0,7 € [1: p]. For example, to test the global null hypothesis, we could adopt the
maximum-type test statistic M = max;<;<, Tf, and compare its empirical values
with the quantile of the Gumbel distribution given in Theorem 1 of [Ma, Cai and
Li| (2021)).

To test simultaneous null hypotheses while controlling for false discovery
rates, we can apply the modified Benjamini-Hochberg procedure in |[Javanmard
and Javadi (2019)) and |[Ma, Cai and Li| (2021) to design covariates that are weakly
correlated, or the Benjamini—Yekutieli procedure (Benjamini and Yekutieli, [2001)
if the design covariates are arbitrarily correlated. The theoretical validity of these
simultaneous inference procedures follows from the arguments in |[Javanmard and
Javadi (2019)) and Ma, Cai and Li| (2021)).

5. Simulation

We provide simulation studies to compare the proposed method with existing
methods, including the debiased Lasso method (Javanmard and Montanari, [2014)
with complete cases, the Lasso projection method (van de Geer et al., 2014;|Zhang
and Zhang, 2014) with complete cases, the debiased Lasso method with single
regression imputation, and the Lasso projection method with the single regression
imputation. Here, “single regression imputation” refers to predicting missing
values using linear regressions, with observed variables as predictors (Baraldi
and Enders, [2010; Zhang, 2016} Campos et al., [2015)).

To implement of the proposed method, we use the R packages glmnet!',
Rglpk?, and osqp® to solve the minimization problem in , the linear pro-

Uhttps://cran.r-Bproject.org/web/packages/glmnet/index.html
2https://cran.r-Bproject.org/web/packages/Rglpk/index.html
Shttps://cran.r-Bproject.org/web/packages/osqp/index.html
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gramming problem in , and the quadratic programming problem in ,
respectively. The parameters 7 and A are determined by cross-validation,
which might not achieve the desired theoretical convergence rates. This is one
limitation of the proposed method. We let N = 0.1(logp/n)*/?, and scale it
up if there is no solution to the quadratic programming problem in . The
R functions of the proposed method have been made publicly available online
at https://github.com/feixue-stat/Inference blockmissing. We use the
R code in https://web.stanford.edu/~montanar/sslasso/| to implement the
debiased Lasso method. For the Lasso projection method, we apply the R package
hdi®.

For each i € [1 : (n+ N)], we simulate X; independently from a multivariate
Gaussian distribution with mean zero and a covariance matrix 3, and generate
v = X, '8 + ¢ with ¢ KN (0,1). The relevant covariates share the same
signal strength fB,; that is, the nonzero elements in 8 are all equal to B,. In
the following three settings, all samples are randomly assigned to four missing
groups. In Settings 1 and 2, we assume MNAR for the covariates from three
sources, and the four missing pattern groups are shown in Figure 2. In contrast,
we assume MAR in Setting 3, and add one additional data source, where the
variables are all observed for each subject. For the missingness of the response,
in each setting, the response is MCAR, where only n/N of all samples in each
group are observed. This satisfies Assumption (Al).

In each setting, we construct confidence intervals for a relevant covariate
with confidence level 95%, and evaluate each method using the coverage rate and
average length of the confidence intervals based on 250 replications. Let p; denote
the number of total covariates in the /th data source, and s; denote the number of
relevant covariates in the Ith data source, for [ € [1 : S]. Recall that s denotes the
number of all relevant covariates, specifying the sparsity of the coefficient vector
3. That is, we have s nonzero elements in 3. In addition, recall that n, denotes
the number of supervised samples in the rth missing group, for r € [1 : R]. Then,
we have Y. n, = n.

Setting 1. Let n = 150, p = 200, s = 9, R =4, S =3, N = 300, 8, = 0.2,
ny = 30, ny = 70, ng = ny = 25, p1 = 115, po = 45, p3 = 40, 1 = 5, 83 = 53 = 2,
and ¥ = diag{I,,, A}, where I, is an identity matrix of size p;, and A is a
(p2 + p3) X (p2 + p3) exchangeable matrix with diagonal elements one and off-
diagonal elements p. We let p = 0.1 or 0.3, and let the covariates be MNAR.
Specifically, samples are sequentially randomly assigned into the complete case
group with probabilities proportional to exp(—10y;) for 1 <i < n+N. Otherwise,
they are uniformly assigned to the other three missing groups.

19

Setting 2. The same as Setting 1, except that p = 700 and p; = 615.

“https://cran.r-Bproject.org/web/packages/hdi/index.html
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Sourcel Source2 Source3

Group 1

Group 2

Group 3

Group 4

Figure 2. Blockwise missing structure used for simulation.

Setting 3. The same as Setting 1, except that n = 120, S = 4, N = 600,
ng = 15, no = n3 = nyg = 35, po = 40, p, = 5, s1 = 4, s4, = 1, and
3 = diag{I,,, A, I,,}. We let the covariates be MAR. Specifically, samples are
sequentially randomly assigned into the complete case group with probabilities
proportional to exp(—10d;) for 1 < i < n 4+ N, where d; is the sum of the ith
samples of covariates in the fourth source of data. Otherwise, they are uniformly
assigned to the other three missing groups. The missing patterns of the covariates
in Sources 1-3 are the same as that in Figure 2, and covariates in Source 4 are
all observed.

The results of Settings 1-3 are provided in Table 1, where p represents the
correlations between covariates. We use different p to investigate the performance
under various strengths of dependence between the covariates. In Table 1, the
proposed method outperforms existing methods across all settings in terms of
coverage rate. In Setting 1, 80% of samples have missing covariates, and the
missingness is MNAR. Even so, as shown in Table 1, the coverage of the proposed
method is at least 42.0% and 19.7% more than that of other methods when p = 0.1
and p = 0.3, respectively.

In Setting 2, we consider simulations with potential predictors to mimic the
ADNI data in Section 6. The proposed method still produces the largest coverage
rate. Moreover, when p = 0.1, the coverage rate of the proposed method is
94.4%, which is close to 95%. Note that the MNAR missingness mechanism
of the covariates in both Settings 1 and 2 violates the MAR assumption (Al),
which may explain why the coverage of the proposed method does not achieve
95%. However, there might be other reasons for the lower coverage, such as
the limited sample size, missing proportion of responses, and structure of the
covariance matrix 3.
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Table 1. Simulation results of Settings 1-3. DL-CC: the debiased Lasso method with
complete cases. LP-CC: the Lasso projection method with complete cases. DL-SI: the
debiased Lasso method with single regression imputation. LP-SI: the Lasso projection
method with single regression imputation.

p=0.1 p=03

Method Coverage rate  Average length ~ Coverage rate  Average length
Setting 1

Proposed 0.920 0.581 0.876 0.560
DL-CC 0.264 0.274 0.248 0.291
LP-CC 0.636 0.423 0.644 0.429
DL-SI 0.036 0.140 0.036 0.135
LP-SI 0.648 0.326 0.732 0.362
Setting 2

Proposed 0.944 0.931 0.908 0.881
DL-CC 0.000 0.004 0.000 0.008
LP-CC 0.628 0.428 0.668 0.443
DL-SI 0.036 0.146 0.016 0.140
LP-SI 0.804 0.375 0.800 0.380
Setting 3

Proposed 0.956 0.722 0.956 0.699
DL-CC 0.260 0.217 0.308 0.229
LP-CC 0.964 1.229 0.924 1.228
DL-SI 0.116 0.191 0.116 0.173
LP-SI 0.356 0.227 0.404 0.252

Setting 3 focuses on MAR and contains additional unsupervised samples. In
Table 1, the proposed method and the Lasso projection method with complete
cases (LP-CC) both achieve desirable coverage. However, the average length of
the confidence intervals of the proposed method is much smaller than that of the
LP-CC, indicating that the confidence intervals of the proposed method are more
accurate.

In Table 4 of the Supplementary Material, we compare the empirical bias and
the empirical standard deviation of each method under Setting 3, and with the
multivariate imputation by chained equations (MICE) method. The results show
that the proposed estimator has a much smaller empirical standard deviation
than that of the LP-CC, and that MICE-based methods produce much larger
biases than that of the proposed method. Moreover, although in Table 1 the
confidence intervals of LP-SI have poor coverage, Table 4 of the Supplementary
Material shows that its point estimator has the smallest mean squared error
(squared bias plus variance). In addition, we provide absolute values of empirical
biases of Bj and ﬁj, and histograms of Bj for the jth covariate under Setting 3
in the Supplementary Material, showing that the empirical bias of Bj is much
larger than that of Bj, and that the empirical distribution of Bj is right-skewed.
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For the effects of the degree of correlations (p) between the covariates on the
proposed method, Table 1 shows that the coverage rate of the proposed method
is lower for larger p under Settings 1 and 2, and Table 4 of the Supplementary
Material shows that the proposed method has slightly greater bias for larger p
under Setting 3.

6. Real-Data Application

In this section, we apply the proposed method to the ADNI data set, which
contains multisource measurements: MRI, PET imaging, gene expressions, and
cognitive tests (Mueller et al., [2005). Of the latter tests, the mini-mental state
examination is often used to diagnose Alzheimer’s Disease (AD) (Chapman et al.
2016). It is therefore important to identify the imaging and gene expression
features that are associated with and can predict the score of the mini-mental
state examination. To identify biomarkers associated with AD, we use the score of
the mini-mental state examination as our response variable, and treat the MRI,
PET, and gene expression variables as predictors.

Specifically, the MRI variables contain volumes, surface areas, average
cortical thickness, and the standard deviation of the cortical thickness of regions
of interest in the brain, which are extracted from the MRIs by the Center
for Imaging of Neurodegenerative Diseases at the University of California, San
Francisco. To mitigate bias due to different head sizes, we normalize the MRI
variables by dividing the region volumes, surface areas, and cortical thicknesses
by the whole-brain volume, the total surface area, and the mean cortical thickness
of each subject, respectively (Zhou et al) 2014; [Kang et al., 2019). The PET
variables are standard uptake value ratios of brain regions of interest, that
represent metabolic activity, and are provided by the Jagust Lab at the University
of California, Berkeley. Gene expression levels at different probes are contributed
by Bristol-Myers Squibb laboratories from blood samples of ADNI participants.

Although the ADNI is a longitudinal study, we focus on data collected in
the second phase of the study (ADNI-2), at month 48. In total, there are 212
samples, 267 MRI variables, 113 PET variables, and 49,386 gene expression
variables. The blockwise missingness emerges when we combine the MRI, PET,
and gene expression data. The missing pattern structure is the same as that in
Figure 2, with four groups and 69 complete observations. Because of the relatively
small sample sizes, we first screen the gene expression variables using marginal
correlations based on sure independence screening (Fan and Lv, 2008) retaining
300 gene expression variables. We compute the marginal correlation between the
response variable and each gene expression variable based on all available pairs
of observations of the two variables.

We first apply the proposed method to all n = 212 samples in order
to identify the biomarkers associated with the score of the mini-mental state
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examination. We test the simultaneous hypotheses Hy; : 3; = 0,1 < j < p = 680,
while controlling the false discovery rate (FDR), using the modified Benjamini—
Hochberg procedure of Ma, Cai and Li (2021) with the proposed estimators Bj
and their variance estimators /s\f The multiple testing procedure assumes that
the true alternatives are sparse, and is shown to control the FDR in probability
under mild conditions as n — co. See Section S9 of the Supplementary Material
for more details about the testing procedure.

The biomarkers identified by the methods at the significance level a = 0.01
are provided in Table 6 of the Supplementary Material. For the gene expression
probes, we provide the corresponding gene names in the table. The proposed
method identifies 36 biomarkers, including 19, 2, and 15 variables from the
MRI, PET, and gene expressions, respectively. Some of these biomarkers
are also selected by other methods. We provide the biomarkers identified
by both the proposed method and one of other methods in Table 7 in the
Supplementary Material. Although the debiased Lasso using complete cases or
using single regression imputation seems to identify many more markers, based
on our simulation results, many of the identified markers may be false positives,
because the corresponding confidence intervals do not provide the correct coverage
probabilities.

Among the associated genes, SFRP1 is selected by all the methods, and
is crucial in AD pathogenesis (Esteve et al., 2019). PJA2 is identified only
by the proposed method, and has reduced expressions in AD patients than
on normal controls. PJA2 has been shown to regulate AD marker genes in
mouse hippocampal neuronal cells, indicating its the potential relevance to the
pathophysiology of AD (Gong et al., 2020). Among the MRI related markers,
“ST308V” is identified by our method as well as DL-SI and LP-SI, and represents
the volume of the left inferior lateral ventricle, which is related to AD (Bartos
et al., 2019; Ledig et all 2018). However, only the proposed method identifies
“ST1018V” and “ST35TA”, representing the volume of the right pallidum and
the average cortical thickness of the left lateral occipital, respectively. Both
are shown to be associated with AD (Kautzky et al., [2018; |[Yang et al., 2019).
Finally, the PET biomarker “CTX_RH_TEMPORALPOLE,” the standardized uptake
value of the right temporal pole, is identified only by our method. This agrees
with the observation that hypometabolism in the temporal lobe often appears in
AD patients (Sanabria-Diaz, Martinez-Montes and Melie-Garcial [2013)).

To show that the multiple sources in the ADNI study contain complementary
information, we compare the proposed method with the Lasso using only the
MRI, PET, or gene expression variables for prediction. We also compare the
proposed method with the naive mean prediction method and the Lasso using
only complete observations. The naive mean prediction method uses the sample
mean of the response variable, calculated based on training sets for prediction.
Specifically, we randomly hide 10% of all values of the response variable as testing
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responses 150 times, and apply all the methods to the remaining data. In each
replication, we calculate the prediction mean squared error Y, ;o (9; — v:)?/T,
where y; is a testing response, g; is the corresponding predicted value, and T
is the number of testing responses. We also compute the improvement rates of
the proposed method relative to other methods in terms of the prediction mean
squared error, which is defined as (PEy — PEp)/PFEp, where PEp and PE)y,
denote the averages of the prediction mean squared errors of the proposed method
and the method M, respectively, based on the 150 replications.

As shown in Table 2, the proposed estimator ,@ produces smaller prediction
mean squared errors than other estimators, indicating that the proposed method
can achieve higher prediction accuracy than when using data from only one source
or when using only complete cases. This implies that using all the data sources
(MRI, PET, and Gene) with the proposed method can improve the prediction
compared with using a subset of predictors. Note that this is not over-fitting,
because the prediction errors in Table 2 are testing errors, rather than training
errors. Thus, different data sources in the ADNI study contain complementary
information, and the proposed integration method is suitable in that respect.

Specifically, the proposed method reduces the prediction mean squared errors
of other methods by at least 10.6%. In particular, the improvement rate with
respect to the Lasso method using only gene expression variables or using only
complete cases is over 30%. Moreover, the standard deviation of the prediction
mean squared errors of the proposed method is smaller than that of other the
methods, indicating that the proposed method is more stable. Furthermore, we
provide the absolute mean (absolute value of the mean) and standard deviation
of §; —y;, for i = 1,...,T, in Table 8 of the Supplementary Material. We also
provide the squared bias >  I(y;, € T) - (Z§:1 05/t — y:)*/|T| and variance
So Iy eT)- Z;i:l(/gij - 22:1 0:;/t:)*/(t;|T]) in Table 9 of the Supplementary
Material, where n is the total number of samples in the real data, 7 is the set of
responses that are included in at least one test set, 7;; is the jth predicted value
by a method for y; in all test sets, and t; is the total number of the predicted
values ¢;; in all test sets. The results show that the proposed method produces
the smallest squared bias among all the methods.

In summary, the proposed estimator produces smaller prediction mean
squared errors and smaller squared bias than using only one source data or using
only complete observations, implying that integrating data from multiple sources
and using incomplete observations are critical. Additionally, the proposed method
identifies meaningful and important biomarkers not selected by other methods,
indicating that the proposed method is more powerful in terms of integrating
multimodal data.
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Table 2. Averages of prediction mean squared errors based on 150 replications. Proposed
(B): the proposed method with the estimator 3. MRI Lasso, PET Lasso, and Gene
Lasso: Lasso method using only MRI, PET, and gene expression variables, respectively.
CC Lasso: the Lasso method using only complete cases. Naive mean: using the sample
mean of the response variable in the training sets for prediction. SD: standard deviation
of prediction mean squared errors calculated based on 150 replications.

Method Prediction mean squared error (SD) Improvement rate
Proposed (B) 13.898 (4.427) —

MRI Lasso 15.546 (5.715) 10.6%
PET Lasso 16.975 (7.009) 18.1%
Gene Lasso 19.946 (8.909) 30.3%
CC Lasso 19.956 (9.724) 30.4%
Naive mean 21.018 (10.410) 33.9%

7. Discussion

As mentioned in Section 2.1, methods that consider blockwise missing
patterns, such as the proposed method and the method of Xue and Qu (2021),
can incorporate both the complete case group and the incomplete groups in the
imputation step, thus ensuring better accuracy. This is the main advantage of the
proposed method compared with many existing imputation methods. However,
our method may become complicated when there are too many data sources or
different missing groups, leading to many blockwise imputations for each missing
block, and thus many estimating equations to be solved. In general, the proposed
method is more suitable for blockwise data with a small number of data sources
and missing groups.

Although the MNAR mechanism is not covered in our theoretical justifi-
cations, simulation studies in Section 5 show that the proposed method still
outperforms other methods under some MNAR settings. This may be because
the proposed method incorporates more groups in the imputation of each missing
block via the blockwise imputation. In this way, the proposed method aggregates
information from various groups to reduce the selection bias in the groups caused
by the MNAR mechanism. In future work, we may investigate managing MNAR
situations by modeling the missingness or using instrumental variables.

A few other extensions are also worth exploring in the future. For example,
because AD is a progressive brain disease, it is of interest to incorporate
longitudinal data in the estimating functions to improve efficiency. In addition,
currently, our method focuses only on linear regression with continuous responses;
thus, it would be worthwhile generalizing our method to include binary and
categorical responses.
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Supplementary Material

We provide additional numerical and theoretical results and discussion, as
well as proofs for all the theorems in the main text in the online Supplementary
Material.
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