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Abstract: Boosting methods have been broadly discussed for various settings, and

most methods handle data with complete observations. Although some methods

are available for survival data with censored responses, they tend to assume a

specific model for the survival process, and most provide numerical implementation

procedures without rigorous theoretical justifications. In this paper, we develop an

unbiased boosting estimation method for censored survival data, without assuming

an explicit model, and explore three strategies for adjusting the loss functions,

while accommodating censoring effects. We implement the proposed method using

a functional gradient descent algorithm, and rigorously establish the theoretical

results, including the consistency and optimization convergence. Our numerical

studies show that the proposed method exhibits satisfactory performance in finite-

sample settings.
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1. Introduction

Boosting is a popular technique for deriving a strong learner from weak, yet

simple learners by iteratively updating the learning results. Interest in boosting

has increased since the publications of Schapire (1990) and Freund (1995),

with numerous boosting algorithms developed for various settings; see Ridgeway

(1999) for a summary of early boosting methods for regression and classification

problems. Additional details can be found in Bühlmann and Hothorn (2007),

Hastie, Tibshirani and Friedman (2008), and Schapire and Freund (2014).

Although most studies focus on settings with complete responses (e.g.,

Bühlmann and Yu (2003); Lugosi and Vayatis (2004); Zhang and Yu (2005)),

boosting algorithms have also recently been used to analyze survival data, which

typically involve censored responses, mainly under parametric or semiparametric

survival models. For example, under the Cox proportional hazards model, Li

and Luan (2005) present a gradient boosting procedure with cubic smoothing

splines, Chen et al. (2013) derive a boosting algorithm using the concordance

index, He et al. (2016) consider a component-wise gradient boosting procedure,

and Bühlmann and Hothorn (2007) and Binder and Schumacher (2008) develop
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the R packages mboost and CoxBoost, respectively. Focusing on the accelerated

failure time model, Schmid and Hothorn (2008) examine a boosted estimating

procedure. Considering nonlinear transformation models, Lu and Li (2008)

propose a gradient boosting method that uses the negative log marginal likelihood

function as the loss function. Other boosting procedures related to survival data

include those of Benner (2002), Mayr, Hofner and Schmid (2016), Lee, Chen

and Ishwaran (2021), Bellot and van der Schaar (2018a), and Bellot and van der

Schaar (2018b).

Although boosting methods under assumed survival models can be useful,

they are vulnerable to model misspecification and their application scope is

model-dependent, and thus restrictive. More notably, most existing boosting

methods for survival data focus simply on implementation procedures whose

feasibility are assessed using numerical studies. To the best of our knowledge,

with the exception of the work of Lee, Chen and Ishwaran (2021), no existing

studies establish theoretical results for boosting methods on survival data.

To fill this gap, we develop a boosting method under a general setup that

does not impose specific models for survival data. Our research not only supplies

a model-free boosting method for censored survival data, but also establishes

its theoretical results. In particular, our research contributes to the literature

in three ways. First, under the same framework, we examine three strategies

for adjusting the usual loss functions to address the effects of right-censored

responses, yielding three classes of adjusted loss functions, called Buckley–James-

type (BJ) loss functions, inverse-censoring probability weighted (ICPW) loss

functions, and augmented inverse-censoring probability weighted (AICPW) loss

functions. These strategies enable us to handle survival data flexibly in order

to incorporate different features. The BJ adjustment applies to settings with a

good amount of information about the survival process, the ICPW scheme works

when we have adequate knowledge about the censoring process, and the AICPW

method allows either the survival or the censoring process to be misspecified, thus

enjoying the double robustness property. Second, we use the functional gradient

descent algorithm to devise a two-stage minimization procedure to derive the

prediction function for the survival times. Finally, and importantly, we rigorously

establish theoretical results for the proposed methods, including consistency and

convergence.

Our work is similar to that of Hothorn et al. (2006), who consider only

the ICPW scheme to adjust for censoring effects, without providing theoretical

studies. In contrast, we present additional adjustment methods and provide

their theoretical justifications. Wang and Wang (2010) use the BJ formulation

(Buckley and James (1979)) to create a pseudo-response to account for censoring

effects, using the L2-norm loss function, but not providing any theoretical

justification. Our BJ scheme adjusts for any loss functions, and we provide

rigorous justifications for our results. Although Lee, Chen and Ishwaran (2021)
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establish theoretical results, their goal differs from ours. They estimate the

hazard function nonparametrically by minimizing a scaled negative log likelihood

function. In contrast, we focus on finding a prediction model for survival times

by minimizing the risk function, which may assume various forms.

The remainder of the paper is organized as follows. In Section 2, we introduce

our notation and framework. In Section 3, we consider censored survival data,

and examine three schemes that accommodate censoring effects in loss functions.

In Section 4, we implement the procedure for the proposed unbiased boosting

estimation method for censored survival data. In Section 5, we rigorously

establish our theoretical results to justify the validity of the proposed method.

Numerical results for the real-data analysis and simulation studies are presented

in Section 6 and Section S5 of the Supplementary Material, respectively. Section 7

concludes the paper; all technical details are reported in the Supplementary

Material.

2. Notation and Framework

2.1. Survival data and objective

Let T ≥ 0 represent the survival time of an individual, and let X denote the

vector of associated p-dimensional covariates. To remove the positivity constraint

on T , we consider a transformed outcome. In particular, let T̃ = log T . We are

interested in finding a function of X such that its value predicts T̃ well. To this

end, we consider a class of useful functions. Specifically, let F denote the convex

set of real-valued functions from Rp to R satisfying Condition (C5) in Section S1.1

of the Supplementary Material. For f ∈ F , let L : R× R → R denote the

loss function of using f(X) to predict T̃ , which is a convex and differentiable

function in the second argument, as stated in Condition (C3) in Section S1.1 of

the Supplementary Material.

Define the risk function as

R(f) = E
[
L
{
T̃ , f(X)

}]
, (2.1)

where, and hereafter, E represents the expectation with respect to the joint

distribution of the random variables appearing in the loss function. By the

convexity and differentiability of L(·, ·), the risk function (2.1) is convex with

respect to f ∈ F , as discussed by Zhang and Yu (2005), and is differentiable,

provided we can interchange the expectation and the differentiation.

To find a function in F that predicts T̃ well, we need to identify the element

in F with

f0 = argmin
f∈F

R(f),



442 CHEN AND YI

assuming the existence and uniqueness of minf∈F R(f), or equivalently,

R(f0) = min
f∈F

R(f). (2.2)

Because the joint distribution of T̃ and X is unknown, we use the sample

information and the empirical average to replace the expectation in (2.1). That

is, we estimate f0 by finding f̂comp ∈ F , such that

f̂comp = argmin
f∈F

[
1

n

n∑
i=1

L{T̃i, f(Xi)}
]
, (2.3)

where we assume the availability of a random sample of independent observations

Ocomp ,
{

(T̃i, Xi) : i = 1, . . . , n
}

, with n being the sample size and (T̃i, Xi)

denoting an independent copy of (T̃ ,X). For ease of exposition , throughout the

article, we use uppercase letters, such as T̃i and Xi, to represent both random

variables and their realizations without differentiating them in notation.

2.2. Usual steepest descent algorithm

We can use a boosting method such as the steepest descent method (e.g.,

Hastie, Tibshirani and Friedman (2008, Sec. 10.10)) to solve (2.3). This method

essentially uses the gradient of the loss function to enhance estimates of the

function f(·) by iteratively using a varying learning rate that can be treated as a

weak learner. Thus, we can use the method of Hastie, Tibshirani and Friedman

(2008) by “parameterizing” the function f(X) as {f(X1), . . . , f(Xn)} for the n

observations of the covariates X, and then define the partial derivative of the loss

function L{T̃i, f(Xi)} as

∂L{T̃i, f(Xi)} ,
∂L(u, v)

∂v

∣∣∣
u=T̃i,v=f(Xi)

, (2.4)

where ∂L(u, v)/∂v represents the partial derivative of the loss function L(u, v)

with respect to the second argument, while keeping the first argument fixed.

With the estimate of f(·) at iteration m, denoted as f (m)(·), we employ the

steepest descent method to enhance the estimation of f(·) at iteration (m + 1)

by adding an increment term, −α̂m+1∂L{T̃i, f (m)(Xi)}, to f (m)(·). Here, α̂m+1 is

a scalar learning rate determined during the previous iteration:

α̂m+1 = argmin
αm+1∈R

(
1

n

n∑
i=1

L[T̃i, f
(m)(Xi)− αm+1∂L{T̃i, f (m)(Xi)}]

)
. (2.5)

That is, the estimate of f(·) at iteration (m+ 1) is given by

f (m+1)(Xi) = f (m)(Xi)− α̂m+1∂L{T̃i, f (m)(Xi)}, (2.6)
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Table 1. Common loss functions.

Name Loss function: L(T̃i, f(Xi)) Derivative: ∂L(T̃i, f(Xi))

L2-norm
{
T̃i − f(Xi)

}2

−2
{
T̃i − f(Xi)

}
L1-norm

∣∣∣T̃i − f(Xi)
∣∣∣ −sign

{
T̃i − f(Xi)

}
if
∣∣∣T̃i − f(Xi)

∣∣∣ 6= 0

Huber


1
2

{
T̃i − f(Xi)

}2

, if
∣∣∣T̃i − f(Xi)

∣∣∣ ≤ η,
η
(∣∣∣T̃i − f(Xi)

∣∣∣− η
2

)
, otherwise


−
{
T̃i − f(Xi)

}
, if

∣∣∣T̃i − f(Xi)
∣∣∣ < η,

−η sign
{
T̃i − f(Xi)

}
, if

∣∣∣T̃i − f(Xi)
∣∣∣ > η

and the final boosting estimator is f̂comp(Xi) , f (m+1)(Xi), if the iteration stops

at (m+ 1).

2.3. Loss functions

Three loss functions are popular for continuous responses; see the middle

column of Table 1 (Friedman (2001, p.1197)). Here, for the Huber loss function, η

can be taken as the αth-quantile of |T̃i−f(Xi)| for a constant α, with 0 < α < 100

and i = 1, . . . , n (Hastie, Tibshirani and Friedman (2008, p.349, p.360)).

Differentiating the loss function is crucial to implement (2.4). Although this

is not a problem when using the L2-norm, it is when we use the L1-norm or

Huber loss function, because they are not differentiable over the entire domain.

In this case, we can modify ∂L{T̃i, f(Xi)} using the subdifferential. For ease

of exposition, we take ∂L{T̃i, f(Xi)} as defined in (2.4). For the loss functions

listed in Table 1, we present the values of ∂L{T̃i, f(Xi)} in the last column of

Table 1, where the constraint |T̃i − f(Xi)| 6= a is included for the L1-norm loss

with a = 0 and the Huber loss with a = η. This requirement is not as restrictive

as it appears, and holds in practical settings, because “|T̃i − f(Xi)| = a” occurs

with zero probability.

3. Adjusting Loss Functions with Censoring Effects Accommodated

The discussion in Section 2 relies on the availability of complete observations,

Ocomp, of a random sample. However, this is often not true for survival data,

owing to the presence of censoring. For i = 1, . . . , n, let Ci denote the censoring

time for Ti, let ∆i = I(Ti ≤ Ci) denote the censoring indicator, and write

Yi = min(Ti, Ci) and Ỹi = log Yi, where I(·) is the indicator function. Let

[0, τ ] denote the study period with τ finite. Consistent with most discussions

about survival analysis, we assume that Ti and Ci are conditionally independent,

given Xi. Following Rubin and van der Laan (2007), Zhu and Kosorok

(2012), and Steingrimsson et al. (2016), we further assume that Ci and Xi are

independent. These assumptions are listed as Condition (C6) in Section S1.1 of

the Supplementary Material.
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In the presence of censoring, the survival time T̃i is not available for every

study subject, and, thus, we cannot use the estimation procedure in Section 2.2

directly. Consequently, we consider new loss functions expressed in terms of the

observed censored data Ocd ,
{

(Ỹi, Xi,∆i) : i = 1, . . . , n
}

, while accounting

for the censoring effects. The basic idea is to ensure that the expectation of

a new loss function, denoted by L∗{Ỹi, f(Xi)}, recovers the expectation of the

original loss function L{T̃i, f(Xi)}, expressed in terms of T̃i and Xi; that is,

E[L∗{Ỹi, f(Xi)}] = E[L{T̃i, f(Xi)}]. Thus, the minimizer of the expectation of

the workable new loss function E[L∗{Ỹi, f(Xi)}] also minimizes the risk function

R(f) in (2.1), as if T̃i were always observed.

3.1. Adjustment strategies

In this subsection, we describe three strategies for constructing adjusted loss

functions. Let FT0(y|Xi) = P (Ti > y|Xi) represent the true conditional survival

function of Ti, given Xi, and let FT (y|Xi) denote a working function used to

model FT0(y|Xi), with fT (t|Xi) denoting the corresponding conditional density

of Ti. Let G0(c) = P (Ci > c) stand for the true survivor function of Ci, and let

G(c) denote its working function.

The first adjusted loss function is motivated by the BJ formulation (Buckley

and James (1979)):

LBJ{Ỹi, f(Xi)} = ∆iL{Ỹi, f(Xi)}+ (1−∆i)Ψ(Yi, Xi), (3.1)

where Ψ(y,Xi) = E[L{T̃i, f(Xi)}|Ti > y,Xi], determined by

Ψ(y,Xi) =

∫ ∞
y

L{t, f(Xi)}fT (t|Xi)

FT (y|Xi)
dt. (3.2)

The conditional expectation Ψ(Yi, Xi) in (3.1) facilitates the contribution from

the censored subjects, but requires a working model FT (y|Xi) for the survival

process.

On the other hand, we may wish to use information from the uncensored

subjects only, in the hope of not needing FT (y|Xi). Hothorn et al. (2006)

considered an adjusted loss function based on the ICPW scheme:

LICPW{Ỹi, f(Xi)} =
∆iL{Ỹi, f(Xi)}

G(Yi)
. (3.3)

Although (3.3) frees us from using FT (y|Xi) in the formulation, as in (3.1), it

calls for a working model G(c) of the censoring process. With the different

involvements of FT (y|Xi) and G(c) in (3.1) and (3.3), what happens if we use both

FT (y|Xi) and G(c) to adjust the original loss function L{T̃i, f(Xi)}? Motivated
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by Rubin and van der Laan (2007), we further consider the AICPW loss function

LAICPW{Ỹi, f(Xi)} = LICPW{Ỹi, f(Xi)}+ Γ(Yi, Xi,∆i), (3.4)

with

Γ(y,Xi,∆i) =
(1−∆i)

G(y)
Ψ(y,Xi)−

∫ y

0

Ψ(t,Xi)

G2(t)
dG(t).

Although (3.4) might seem more restrictive than (3.1) and (3.3) because

both FT (y|Xi) and G(c) are involved, it does have an advantage, as discussed

in Section 3.2. Clearly, (3.3) uses information from subjects in the sample who

are not censored, ignoring the partial information of subjects who are censored.

Adding the term Γ(Yi, Xi,∆i) to (3.3) enables us to use the measurements from

censored subjects, possibly enhancing the efficiency. Because FT (y|Xi) and G(c)

appear in the denominators in the preceding formulations, they are assumed to

be greater than zero (almost surely), as stated in Condition (C7) in Section S1.1

of the Supplementary Material. Note that Steingrimsson et al. (2016) use an

empirical version similar to (3.4) to construct survival trees.

3.2. Properties of the proposed loss functions

The three adjusted loss functions in Section 3.1 are formulated from different

perspectives to accommodate censoring effects. Their validity is justified in the

following two propositions.

Proposition 1. The proposed adjusted loss functions (3.1) and (3.3) have the

same expectation as L{T̃i, f(Xi)}. That is,

(a) E[LICPW{Ỹi, f(Xi)}] = E[L{T̃i, f(Xi)}];

(b) E[LBJ{Ỹi, f(Xi)}] = E[L{T̃i, f(Xi)}],

where the expectations are evaluated with respect to the joint distribution of the

associated random variables under the working models.

The proof of this proposition is provided in Section S4.1 of the Supplementary

Material. Proposition 1 states that the expectation of the two adjusted loss

functions, LICPW(·, ·) and LBJ(·, ·), recovers the risk function (2.1) based on the

transformed failure time T̃i. With L(·, ·) taken as the L2-norm loss function,

Bühlmann and Hothorn (2007) establish the identity in Proposition 1(a).

The formulation of LAICPW(·, ·) involves the distributions of both the survival

and the censoring processes, which, at first sight, appears more restrictive than

either LBJ(·, ·) or LICPW(·, ·). However, the following proposition ensures that

LAICPW(·, ·) is more flexible than LBJ(·, ·) or LICPW(·, ·). As long as FT (y|Xi) or

G(c) is specified correctly (even if we do not know which one), LAICPW(·, ·) has

the expectation identical to that of the initial loss function L(·, ·).
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Proposition 2 (Double Robustness). Let LAICPW,0{Ỹi, f(Xi)} be determined

by (3.4), with G(c) and FT (y|Xi) replaced by G0(c) and FT0(y|Xi), respectively.

Then,

(a) the expectation of the loss function LAICPW,0{Ỹi, f(Xi)} is given by

E
[
LAICPW,0{Ỹi, f(Xi)}

]
= E

[
G(Ti)

G0(Ti)
L{T̃i, f(Xi)}

]
− E

{
L{T̃i, f(Xi)} ×

(∫ Ti

0

FT (t|Xi)

FT0(t|Xi)

[
d

dt

{
G(t)

G0(t)

}]
dt

)}
;

(b) if either FT (y|Xi) = FT0(y|Xi) or G(c) = G0(c), then we have

E
[
LAICPW,0{Ỹi, f(Xi)}

]
= E

[
L{T̃i, f(Xi)}

]
, (3.5)

where the expectations are evaluated with respect to the working models for

the associated random variables.

The proof of this proposition is deferred to Section S4.2 of the Supplementary

Material. Proposition 2(b) resembles the property of doubly robust estimators in

regression analysis (e.g., Rubin and van der Laan (2007, Thm. 1)), which requires

that only one of the two models be specified correctly.

For ease of referral, we let L∗(·, ·) denote the loss function defined by (3.1),

(3.3), or (3.4). By (2.1), Propositions 1 and 2 indicate R(f) = E[L∗{Ỹi, f(Xi)}].
Consequently, we now modify (2.3), with the complete observations Ocomp of a

random sample replaced by the available censored data Ocd. That is, we want to

find f̂cd ∈ F , such that

f̂cd = argmin
f∈F

[
1

n

n∑
i=1

L∗{Ỹi, f(Xi)}
]
. (3.6)

However, the minimization problem in (3.6) cannot proceed, because of the

involvement of the adjusted loss function L∗(·, ·) with unknown (conditional)

survivor functions FT (y|Xi) and/or G(c). To circumvent this difficulty, we

approximate L∗(·, ·), denoted by L̂∗(·, ·), by replacing FT (y|Xi) and G(c) with

their consistent estimators, denoted by F̂T (y|Xi) and Ĝ(c), respectively; the

construction of F̂T (y|Xi) and Ĝ(c) is deferred to Section 4.2. Our goal is to apply

the observed censored data Ocd to find the solution to the following minimization

problem:

argmin
f∈F

[
1

n

n∑
i=1

L̂∗{Ỹi, f(Xi)}
]
. (3.7)
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4. Unbiased Boosting Estimation with Censored Data

4.1. Boosting estimation procedure

Propositions 1 and 2(b) state that an adjusted loss function constructed

from censored data has the same expectation as that of the initial loss function

L{T̃i, f(Xi)}. Thus, on average, the risk function induced from an adjusted loss

function is identical to that derived from the original failure time T̃i, as if T̃i were

available for all i ∈ {1, . . . , n}. In this sense, we regard the procedure described

in this subsection as an unbiased boosting estimation for censored (UBEC) data.

Now, we implement the procedure for the minimization problem (3.7). With

a given form of L̂∗(·, ·), it may be tempting to use (2.6) by replacing ∂L{T̃i, f(Xi)}
with ∂L̂∗{Ỹi, f (m)(Xi)} , ∂L̂∗(u, v)/∂v

∣∣
u=Ỹi,v=f(m)(Xi)

(assuming its existence).

However, as discussed by Schapire and Freund (2014), using the gradient descent

update directly may lead to an entirely unconstrained new update f (m+1)(·).
A way to overcome this problem is to impose some constraints to ensure each

updated estimate of f(·) to be contained in a class of functions.

Let C represent a certain class of continuous functions mapping Rp to

R that are uniformly bounded over any finite domain. Instead of using the

increment −α̂m+1∂L{T̃i, f (m)(Xi)} in (2.6), with ∂L{T̃i, f (m)(Xi)} replaced by

∂L̂∗{Ỹi, f (m)(Xi)}, to update the estimation of f(·), we take the increment to be

α̂m+1hm+1(Xi), with hm+1(·) taken from C, and update the estimate of f(·) at

iteration (m+ 1) using a modified version of (2.6):

f (m+1)(Xi) = f (m)(Xi) + α̂m+1ĥm+1(Xi), (4.1)

where α̂m+1 and ĥm+1(·) are determined by

(
α̂m+1, ĥm+1

)
= argmin

αm+1∈R
hm+1∈C

[
1

n

n∑
i=1

L̂∗{Ỹi, f (m)(Xi) + αm+1hm+1(Xi)}
]
. (4.2)

Although (4.2) involves determining two unknown components, αm+1 and

hm+1(·), rather than one unknown parameter αm+1, as in (2.6), it ensures that

the estimates of f(·) at each iteration are bounded and, thus, that the final

estimate falls in the class F .

To find the minimizer of (4.2) at iteration (m + 1), we use two iterative

steps to find α̂m+1 and ĥm+1(·) separately, rather than jointly. First, treating

L̂∗{Ỹi, f (m)(Xi) + αm+1hm+1(Xi)} as a function of the argument hm+1(Xi), with

other quantities fixed, we apply the first-order Taylor series expansion around

hm+1(Xi) = 0:
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Algorithm 1: Functional Gradient Descent Algorithm.

Let f (0) ∈ F denote the initial value and set ζ = n−$ for a given $ ≥ 1 ;
for step m with m = 0, 1, 2, . . . do

(a) calculate ∂L̂∗{Ỹi, f (m)(Xi)} for i = 1, . . . , n;

(b) find ĥm+1 by solving (4.4);

(c) solve the minimization problem (4.5) and obtain α̂m+1 ;

(d) update f (m)(Xi) using (4.1) and denote the resultant estimate as
f (m+1)(Xi) ;

if ∣∣∣∣∣ 1n
n∑
i=1

L̂∗{Ỹi, f (m)(Xi)} −
1

n

n∑
i=1

L̂∗{Ỹi, f (m+1)(Xi)}

∣∣∣∣∣ ≤ ζ (4.6)

then
Stop iteration and let

f̂n(·)← f (m̃)(·) (4.7)

be the final estimator, where m̃ represents the iteration number m at
the stopping step such that (4.6) is met for ζ.

end

end

L̂∗{Ỹi, f (m)(Xi) + αm+1hm+1(Xi)}

≈ L̂∗{Ỹi, f (m)(Xi)}+

[
∂L̂∗{Ỹi, f (m)(Xi)} × hm+1(Xi)

]
αm+1. (4.3)

Because the first term in (4.3) is free of hm+1(·) and αm+1 is fixed, the minimizer

of hm+1(·), denoted by ĥm+1(·), is determined by

ĥm+1 = argmin
hm+1∈C

(
1

n

n∑
i=1

[
∂L̂∗{Ỹi, f (m)(Xi)} × hm+1(Xi)

])
. (4.4)

Next, replacing hm+1(·) in (4.2) with ĥm+1(·) gives

α̂m+1 = argmin
αm+1∈R

[
1

n

n∑
i=1

L̂∗{Ỹi, f (m)(Xi) + αm+1ĥm+1(Xi)}
]
. (4.5)

Consequently, α̂m+1 and ĥm+1(·) can be used to update f (m)(·) and produce

f (m+1)(·) using (4.1). This strategy is also called the functional gradient

descent algorithm (e.g., Boyd and Vandenberghe (2004, p.475); Schapire and

Freund (2014, p.190)). The pseudocode for the implementation is presented in

Algorithm 1.
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Algorithm 1 differs from the greedy algorithm of Zhang and Yu (2005) and

Schapire and Freund (2014), which obtains the minimizers of αm+1 and hm+1

simultaneously. When implementing Algorithm 1, we need to set a stopping

criterion. To highlight the feature of censored responses, we examine the

difference of L̂∗(·, ·) evaluated at two successive estimates, f (m+1)(·) and f (m)(·),
using the squared error (L2-norm), absolute error (L1-norm), or Huber error

as a stopping criterion, and compare it with a prespecified threshold value; an

example of using the L1-norm is shown in (4.6). Alternatively, we can determine

the stopping step by comparing the values of the empirical risk function against

the number of iterations.

For the data Ocd with size n, described in Section 3, let m̃ represent the

iteration number at the stopping step, such that (4.6) is met for a prespecified

positive value ζ, and let f̂n(·) denote the resultant estimator for the solution

(3.7) determined by (4.7). The value of ζ determines when to stop the iterations.

Taking ζ = n−$, with $ ≥ 1, gives us a convenient way of discussing the

asymptotic behavior of f̂n(·), as shown in Section S4.4. In applications with

a finite sample, one may often set ζ as a small value, such as 10−6, regardless of

the value of n.

4.2. Implementation remarks

The boosting procedure described in Section 4.1 hinges on the specification

of the class C, and on the use of a consistent estimator of FT (y|Xi) or G(c).

Similarly to Li and Luan (2005) and Bühlmann and Yu (2003), we employ the

cubic spline method to characterize the functions in C. Specifically, any function

h(·) in C is assumed to take the additive form

h(Xi) = h1(Xi1) + · · ·+ hp(Xip),

with Xi =
(
Xi1, . . . , Xip

)>
, and each hj(Xij) expressed as an M -order spline with

J knots, where M and J are positive integers. That is, using the truncated power

basis functions
{

1, Xij, X
2
ij, . . . , X

M−1
ij , (Xij − ρj1)M−1

+ , . . . , (Xij − ρjJ)M−1
+

}
with

knots ρj1, . . . , ρjJ , we write

hj(Xij) =
M−1∑
r=0

βjrX
r
ij +

J∑
k=1

γjk(Xij − ρjk)M−1
+ ,

where βjr for r = 0, 1, . . . ,M−1 and γjk for k = 1, . . . , J are unknown parameters,

and a+ , max(0, a) for a constant a. In practice, we often use a cubic spline with

M set as 4, where J may be set as 2 (Hastie, Tibshirani and Friedman (2008,

p.143)).

To estimate FT (y|Xi), we can use strategies based on parametric or

semiparametric regression models (e.g., Lawless (2003)). Such methods are
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straightforward to implement, but a major drawback is the sensitivity of the

results to the model assumptions. Alternatively, one may invoke the kernel

conditional Kaplan–Meier estimator (e.g., Dabrowska (1989)) to consistently

estimate FT (y|Xi). However, this approach requires a proper specification of the

bandwidth, and may suffer from the curse of dimensionality when the dimension

p of the covariates is large (e.g., Geenens (2011)).

To provide a consistent, yet robust estimation of FT (y|Xi), we can use a

random survival forest (RSF) to estimate FT (y|Xi). The estimation procedure

is outlined as follows. First, set a positive integer D (e.g., D = 1000), and draw

D independent bootstrap samples from the initial sample data Ocd, denoted as

S1, . . . ,SD. For each bootstrap sample Sd, with d = 1, . . . , D, build a binary

survival tree using recursive random splitting rules and the procedures of, for

instance, Cui et al. (2022); let {Aud : u ∈ Ud} denote the collection of the

resulting terminal nodes, with Ud denoting a set of indices based on the dth

bootstrap sample. Then, the Nelson–Aalen estimator for the cumulative baseline

hazard function based on a terminal node Aud is given by

Λ̂Aud
(t) =

∑
u≤t

{∑n
i=1 I

(
∆i = 1

)
I
(
Yi = u

)
I
(
Xi ∈ Aud

)∑n
i=1 I

(
Yi ≥ u

)
I
(
Xi ∈ Aud

) }
for t > 0,

and the conditional cumulative baseline hazards function, given Xi, is thus given

by

Λ̂d(t|Xi) =
∑
u∈Ud

I
(
Xi ∈ Aud

)
Λ̂Aud

(t).

Finally, the RSF estimate of Λ(t|Xi) is given by Λ̂(t|Xi) = (1/D)
∑D

d=1 Λ̂d(t|Xi),

leading to an estimate for FT (t|Xi) to be F̂T (t|Xi) = exp{−Λ̂(t|Xi)}. This

estimator of FT (t|Xi) is shown to be consistent under regularity conditions (e.g.,

Ishwaran and Kogalur (2010); Cui et al. (2022)).

Finally, using the Kaplan–Meier estimator (e.g., Lawless (2003)), we estimate

G(c) by pooling the study subjects and ignoring their differences in covariates:

Ĝ(c) =
∏
i:Yi≤c

(
1− 1

#{j : Yj ≥ Yi}

)1−∆i

for c > 0,

which is shown to be consistent (e.g., Wang (1987)), and where #{j : Yj ≥ Yi}
represents the count of index j satisfying Yj ≥ Yi.

4.3. Finite-sample performance

To evaluate the finite-sample prediction performance of the proposed method,

we use the integrated Brier score (IBS) (Graf et al. (1999)) as other studies have

done (e.g., Benner (2002); Zhu and Kosorok (2012)). Let FT (t) = P (Ti ≥ t)

represent the unconditional survivor function for the survival time Ti. We want
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to assess the performance of applying the estimator (4.7) to predict FT (t) using

the censored sample Ocd. To this end, we divide the original observed data Ocd

into training data and validation data, so that the censoring proportions in both

are comparable, and let T and V denote the respective sets of subject indices.

First, we use the training data in T to estimate FT (t), using the procedure

described in Section 4.1 to determine f̂n(·) in (4.7), with FT (y|Xi) and G(c) in

L∗(·, ·) estimated using the RSF estimator and Ĝ(c), respectively. Then, using

f̂n(·), we take

F̂T (t) =
1

|T |
∑
i∈T

I
{
f̂∗n(Xi) ≥ t

}
(4.8)

as an estimate of FT (t), where f̂∗n(x) = exp{f̂n(x)}.
Next, we use the validation data in V by separating the measurements by

censoring status, and then calculate the empirical version of the expected value

for the squared difference between I(Ti > t) and FT (t), while accounting for the

censoring effects. That is, for any t > 0, the Brier score (Benner (2002)) for the

validation data in V is defined as

BS(t) =
1

|V|
∑
i∈V

[{
0− F̂T (t)

}2

I (Yi ≤ t,∆i = 1)
1

Ĝ(Yi)

+
{

1− F̂T (t)
}2

I (Yi > t)
1

Ĝ(t)

]
, (4.9)

where Ĝ(t) and F̂T (t) are obtained from the training data. Then, the IBS for the

validation data is defined as

IBS = {ymax}−1

∫ ymax

0

BS(t)dt, (4.10)

where ymax = max{Yi : i ∈ V}.
To alleviate the effects of dividing the original data into training and

validation data sets, we use the K-fold cross-validation procedure, with a positive

integer K such as 5. Specifically, we split the original data Ocd into K roughly

equal-sized subsets, so that the censoring proportion in each subset is similar.

For k = 1, . . . ,K, take the kth subset as validation data, and let the remaining

(K − 1) pooled subsets be training data; let Vk and Tk represent the class of

subject indices for the kth validation and training data sets, respectively.

For k = 1, . . . ,K, we apply the preceding steps to the training data in Tk
and the validation data in Vk to calculate the Brier score at each Yi, with i ∈ Vk,
using (4.9), with V replaced by Vk. Then, we approximate the IBS (4.10) for the

kth validation data by
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IBSk =
1

ymax,k

∑
i∈Vk

BS(Yi),

where ymax,k = max{Yi : i ∈ Vk}. Consequently, the IBS for the original sample

data Ocd is approximated by the average of the K-fold cross-validation estimates

of IBS:

IBSCV =
1

K

K∑
k=1

IBSk. (4.11)

5. Theoretical Results

In this section, we develop theoretical results for the proposed method,

including the convergence of Algorithm 1 and the consistency of the estimator

f̂n(·) defined by (4.7).

5.1. Convergence of the algorithm

Theorem 1. Assume that the regularity conditions (C1)–(C5) in Section S1.1 of

the Supplementary Material hold. Suppose we are given data of a random sample

Ocd with the given size n. For any initial function f (0) ∈ F , let f (m+1) denote

the updated estimate of the function at step (m+ 1) of Algorithm 1. Then,

lim
m→∞

R(f (m+1)) = R(f0). (5.1)

This theorem states that with data Ocd given, iterating Algorithm 1 yields

convergence as the iteration number approaches infinity.

Although Theorem 1 ensures the convergence of the iterations in Algorithm 1,

in practice, we prefer a small number m̃ to stop the iterations in order to avoid

overfitting (e.g., Jiang (2004); Zhang and Yu (2005)). In Section S4.3 of the

Supplementary Material, we show that for any given nonnegative integer m, there

exist positive constants b∗ and B∗, with b∗ < B∗, such that

0 ≤ R(f (m+1))−R(f0) ≤
(

1− b∗

B∗

)m {
R(f (0))−R(f0)

}
, (5.2)

where f0 is the true function satisfying (2.2).

Let m̃ be a positive integer denoting the number of iterations required to

stop Algorithm 1. Then, we have∣∣∣R(f (m̃))−R(f (m̃+1))
∣∣∣ ≤ ∣∣∣R(f (m̃))−R(f0)

∣∣∣+
∣∣∣R(f (m̃+1))−R(f0)

∣∣∣
≤
(

1− b∗

B∗

)m̃−1 {
R(f (0))−R(f0)

}
+

(
1− b∗

B∗

)m̃ {
R(f (0))−R(f0)

}
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=

(
1− b∗

B∗

)m̃−1 {
R(f (0))−R(f0)

}(
2− b∗

B∗

)
, (5.3)

where the second inequality comes from (5.2).

We wish to stop the iteration at m̃ if the difference (in absolute value) of its

following two iterations is smaller than a given threshold, say, ζ > 0. By (5.3),

we suggest stopping the iteration if(
1− b∗

B∗

)m̃−1 {
R(f (0))−R(f0)

}(
2− b∗

B∗

)
< ζ.

That is,

m̃ < 1 +
log
[
ζ/{
∣∣R(f (0))−R(f0)

∣∣ (2− b∗/B∗)}]
log (1− b∗/B∗)

, (5.4)

suggesting that the number of iterations m̃ is upper bounded by a value depending

on b∗, B∗, and ζ, as well as on the initial value f (0).

Note that the upper bound of (5.4) involves the initial value f (0). Although

(5.1) holds regardless of the initial values, a better choice of f (0) makes∣∣R(f (0))−R(f0)
∣∣ and the right-hand side of (5.4) small. In this case, a smaller

number of iterations m̃ can achieve the required accuracy.

Finally, another concern is whether the sample size n affects the convergence

(5.1). As discussed in Section 2.2, based on n observations, the function f is

“parametrized” and characterized as {f(X1), . . . , f(Xn)}. From Algorithm 1,

the updated value at Xi in step (m+ 1), f (m+1)(Xi), is determined by ĥm+1(Xi)

and α̂m+1, the optimization of which depends on the sample size n. In addition, a

larger sample size n may enable the updated value f (m+1)(Xi) to be more precise.

5.2. Consistency and boundness

In this subsection, we examine the asymptotic behavior of f̂n. For f ∈ F
and L̂∗(·, ·) defined as in (3.7), define

R̂(f) =
1

n

n∑
i=1

L̂∗{Ỹi, f(Xi)}. (5.5)

Theorem 2. Assume that the regularity conditions (C1)–(C5) in Section S1.1 of

the Supplementary Material hold. Furthermore, suppose that Algorithm 1 is run

for a sequence of random samples Ocd, with varying sizes n, and let f̂n denote

the resultant estimator, defined in (4.7) at the stopping time m̃, satisfying (4.6).

Then, for any ε > 0,

P (‖f̂n − f0‖∞ ≤ ε)→ 1 as n→∞,

where ‖f̂n − f0‖∞ = supXi: i=1,...,n

∣∣∣f̂n(Xi)− f0(Xi)
∣∣∣ is the L∞-norm of f̂n − f0
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evaluated over {Xi : i = 1, . . . , n}.

Theorem 2 shows the limiting behavior of a sequence of the proposed

estimators f̂n obtained by applying the same method (i.e., Algorithm 1) to a

sequence of data Ocd with varying sample sizes n. The result shows that the

difference between the estimator f̂n and its target f0, expressed in the L∞-

norm, converges in probability to zero, suggesting the consistency of f̂n in this

sense. The proof of Theorem 2 is provided in Section S4.4 of the Supplementary

Material.

Next, we examine an informative lower bound of f̂n−f0 in the infinity norm.

Theorem 3. Under the regularity conditions and the setup in Theorem 2, there

exist positive constants s and α > 1/2, such that∥∥∥f̂n − f0

∥∥∥
∞
≥ sn−α/(2α+1),

for any sample size n.

This lower bound of ‖f̂n − f0‖∞ is characterized in terms of the sample size

n, which partially explains the finite-sample performance of f̂n. This implies that

with a small sample size n, the difference between f̂n and f0 cannot be arbitrarily

small, and must be lower bounded by a positive constant related to the size n.

6. Analysis of NKI Breast Cancer Data

To demonstrate the usefulness of the proposed method, we apply it to analyze

the breast cancer data collected by the Netherlands Cancer Institute (NKI) (van

de Vijver et al. (2002)). Tumors from 295 women with breast cancer were

collected from the fresh-frozen-tissue bank of the Netherlands Cancer Institute.

The tumors were primarily invasive breast cancer carcinoma about 5 cm in

diameter. At diagnosis, the patients were 52 years or younger, and the diagnosis

occured between 1984 and 1995. Of the 295 patients, 79 died before the study

ended, yielding approximately 73.2% censoring.

Approximately 25,000 gene expressions were also collected, of which 70

genes with previously determined average profiles are useful for tumor diagnosis

(van de Vijver et al. (2002, p.2002)); these gene expression values are recorded as

the log intensity. We study the relationship of survival time with those 70 genes

by implementing the proposed method. Here we specify C as in Section 4.2, and

set M = 4 and J = 2, where ρj1 and ρj2 are the 25th and 75th percentiles,

respectively, of the jth variable in Xi in the sample. We assess the prediction

performance using the measure discussed in Section 4.3, with K = 5.

To gain a better understanding of how the IBS measure performs over a

number of data sets instead of a single data set, we apply the procedure described

in Section 4.3 repeatedly to Nboot bootstrap samples generated randomly from



BOOSTING ESTIMATION FOR SURVIVAL DATA 455

L1-ICPW L1-BJ   L1-AICPW L2-ICPW  L2-BJ  L2-AICPW  H-ICPW   H-BJ    H-AICPW    coxph

0
.1

0
  
  
 0

.1
5

  
  
 0

.2
0

  
  
 0

.2
5

  
  
 0

.3
0

  
  
 0

.3
5

  
  
 0

.4
0

 
IB

S

Figure 1. Box plots of the IBS with 500 repeated bootstrapping.

the initial sample Ocd with replacement, where Nboot is taken as 500. Let IBS(d)

denote the value (4.11) yielded by the dth bootstrap samples, for d = 1, . . . , Nboot,

where the three adjusted loss functions (3.1), (3.3), and (3.4) are used with the

three respective loss functions in Table 1. Box plots for {IBS(d) : d = 1, . . . , Nboot}
are displayed in Figure 1, where L1-BJ, L1-ICPW, and L1-AICPW denote the

adjusted loss functions (3.1), (3.3), and (3.4), respectively, with the loss function

L(·, ·) taken as the L1-norm; L2-BJ, L2-ICPW, and L2-AICPW denote the same

adjusted loss functions with the loss function L(·, ·) set as the L2-norm; and

H-BJ, H-ICPW, and H-AICPW denote the adjusted loss functions with the loss

function L(·, ·) set as the Huber loss function. For comparison purposes, we also

apply the “coxph” method of Chen et al. (2013) to analyze the data, and show

the results in the box plot labeled “coxph”.

Compared with the “coxph” method, the proposed UBEC method generally

performs well with small IBS values, regardless of the choice of the loss function

L(·, ·) or its adjusted version. With a given loss function form, the AICPW

adjustment tends to perform best. In addition, with a given adjustment strategy,

the Huber loss function outperforms the other two loss functions, and the L2-norm

loss function seems to incur the most variability.

On the other hand, the “coxph” method produces noticeably larger IBS

values than our proposed estimators, suggesting unsatisfactory prediction perfor-

mance. To see why the “coxph” method fails to work, we apply the Schoenfeld

residuals (e.g., Lawless (2003, p.364)) and implement the R function cox.zph

to test the proportional hazards assumption. This yields a p-value of 7.3e-06,

suggesting that the proportional hazards assumption is not suitable for describing

the data.
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7. Discussion

To assess the finite-sample performance of our method, we conduct simulation

studies under different settings. The results are provided in Section S5 of the

Supplementary Material, and show that the proposed UBEC method produces

satisfactory results.

As discussed in Section 3.2, the proposed method hinges on consistent

estimations of FT (t|Xi) and G(c), which are often calculated using existing

methods, described in Section 4.2. In contrast to many available parametric

or semiparametric methods that focus on inferences about the model parameters

or that estimate the conditional survivor function FT (t|Xi), our goal is to find

an optimal function of covariates to predict the transformed failure time Ti.

Furthermore, our development enables us to estimate the unconditional survivor

function of Ti without knowing the distribution of the covariates Xi or specifying

any model forms. In contrast to most existing boosting methods for censored

data that do not provide theoretical justifications, the validity of the proposed

method is asserted discreetly.

We assume that the censoring time Ci is independent of the covariates Xi,

enabling us to estimate the survivor function of the censoring process consistently

using the Kaplan–Meier estimator. However, this assumption is not essential,

and can be relaxed by replacing the unconditional survivor function G(c) of Ci
with the conditional survivor function G(c|Xi) , P (Ci > c|Xi) of Ci, given Xi.

Then, the development can be modified accordingly, where we require a consistent

estimator of G(c|Xi).

Supplementary Material

The online Supplementary Material contains a full set of regularity condi-

tions, with discussion, detailed proofs for the results in Sections 3.2 and 5, and

further details about our simulation studies.
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