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Abstract: Three important projection-pursuit correlations, namely, the distance,

projection, and multivariate Blum–Kiefer–Rosenblatt (BKR) correlations, have been

proposed in the literature to test for independence between two random vectors in

arbitrary dimensions. In this study, we compare the asymptotic power performance

of independence tests built upon these three projection-pursuit correlations, in a

uniform sense. We show that in the presence of outliers, the projection and mul-

tivariate BKR correlation tests are still powerful, whereas the distance correlation

test may lose power. We also analyze the minimax optimality of these indepen-

dence tests. We show that their minimum separation rates are of order n−1, where

n stands for the sample size, and that this minimax optimal rate is tight in terms

of the projection, distance, and multivariate BKR correlations.

Key words and phrases: Distance correlation, independence test, minimax optimal-

ity, projection correlation, power function, robustness.

1. Introduction

Many important applications require quantifying the degree of nonlinear de-

pendence between two random vectors. For example, in genomics research, one

may be interested in testing whether certain diseases are associated with muta-

tions of a particular group of genes. In economic studies, one may wish to evaluate

the nonlinear dependence between the stock market and real estate returns. In

brain sciences, one may expect to discover whether two sets of voxels measured

over time in different parts of brain are functionally related. We formulate these

applications into problems of testing independence. Let x = (X1, . . . , Xp)
T ∈ Rp

and y = (Y1, . . . , Yq)
T ∈ Rq be two random vectors. We assume throughout that

p > 1 and q > 1, unless stated otherwise. The goal of an independence test is to

test

H0 : x and y are statistically independent; H1 : x and y are dependent. (1.1)
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Testing for independence has a long history in the literature. The Pearson

correlation is perhaps the first and one of the most important metrics to test for

independence between two univariate random variables (i.e., p = q = 1). Exten-

sions within the univariate case include, but are not limited to those of Hoeffding

(1948), Blum, Kiefer and Rosenblatt (1961), and Bergsma and Dassios (2014).

These extensions are based on ranks of observations and, thus, cannot be used if

either x or y is multivariate (i.e., p > 1 or q > 1). In the multivariate case, where

x and y both follow jointly normal or elliptically symmetric distributions, test-

ing for independence amounts to testing whether they are linearly uncorrelated

(Oja (2010)). Important examples along this line include the likelihood ratio test

(Wilks (1935)) and canonical correlation coefficient (Hotelling (1936)). Interested

readers may refer to Puri and Sen (1971), Hettmansperger and Oja (1994), and

Taskinen, Oja and Randles (2005) for extensions of the likelihood ratio test.

In the past two decades, numerous efforts have been made to relax the dis-

tributional assumptions; see, for example, Kankainen (1995) and Bakirov, Rizzo

and Szekely (2006). Gretton et al. (2005) proposed an independence criterion

based on the entire eigen-spectrum of covariance operators in reproducing ker-

nel Hilbert spaces. Székely, Rizzo and Bakirov (2007) and Székely and Rizzo

(2009) made important advances by proposing using a distance correlation to

test for independence between two random vectors in arbitrary dimensions. A

distance correlation is well defined by assuming the first moments of both x and

y are finite, and is generalized by Sejdinovic et al. (2013), Pan et al. (2019), and

Shen et al. (2019), from different perspectives. Heller, Heller and Corfine (2013)

pointed out that if the moment conditions are violated, for example, if the un-

derlying distribution of either x or y is heavy tailed or the observations contain

outliers, the distance correlation test may suffer from low power. Given that

outlying observations arise frequently in practice with high-dimensional data, it

is highly desirable to develop robust alternatives to using a distance correlation.

To this end, Zhu et al. (2017) proposed a projection correlation that removes the

moment conditions required by a distance correlation. The projection correla-

tion is, in spirit, a multivariate version of Hoeffding (1948). Kim, Balakrishnan

and Wasserman (2018) suggested a projection-averaging approach to classic two-

sample test problems, stating that their approach can be readily generalized to

test for independence between two random vectors. We follow Kim, Balakrish-

nan and Wasserman (2018) by extending the Blum–Kiefer–Rosenblatt (BKR)

correlation to the multivariate case. Neither the projection correlation nor the

multivariate BKR correlation requires a moment condition on either x or y. We

show that the distance correlation and the projection correlation are both based
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on the integrated squared distance between the joint distribution of the projec-

tions and the product of their marginal distributions over unit spheres. The

independence tests built upon the distance, projection, and multivariate BKR

correlations are all of the projection-pursuit type.

We compare the power performance of the aforementioned three projection-

pursuit independence tests because they share many similarities. In particular,

projection, distance, and multivariate BKR correlations have closed-form expres-

sions and require no tuning parameters, and all tests are consistent against all

fixed alternatives. More importantly, all three tests can be represented by in-

tegrals of the distance between the joint distribution function of (x,y) and the

product of the marginal distribution functions of x and y. They differ only in

the weights. To elaborate, we define Sd−1 def
= {α ∈ Rd : ‖α‖ = 1}, where ‖ · ‖

is the Euclidean norm. Then, FαTx(s)
def
= pr(αTx ≤ s), FβTy(t)

def
= pr(βTy ≤ t),

and FαTx,βTy(s, t)
def
= pr(αTx ≤ s,βTy ≤ t), for α ∈ Sp−1, β ∈ Sq−1, s ∈ R1, and

t ∈ R1. Here, (αTx) and (βTy) are the respective projections of x and y. In the

Supplementary Material, we show that the squared distance covariance can be

represented as

DC(x,y) = (cpcq)−1

∫
α∈Sp−1

∫
β∈Sq−1

∫
t∈R1

∫
s∈R1{

FαTx,βTy(s, t)− FαTx(s)FβTy(t)
}2

(ds dt)dβdα, (1.2)

and the squared projection covariance can be represented as

PC(x,y) = (γpγq)−1

∫
α∈Sp−1

∫
β∈Sq−1

∫
t∈R1

∫
s∈R1{

FαTx,βTy(s, t)− FαTx(s)FβTy(t)
}2
dFαTx,βTy(s, t)dβdα. (1.3)

Kim, Balakrishnan and Wasserman (2018) wrote the multivariate BKR correla-

tion coefficient as

mBKR(x,y) = (γpγq)−1

∫
α∈Sp−1

∫
β∈Sq−1

∫
t∈R1

∫
s∈R1{

FαTx,βTy(s, t)− FαTx(s)FβTy(t)
}2
dFαTx(s)dFβTy(t)dβdα. (1.4)

In the above three expressions, cp
def
= {2π(p−1)/2/(p − 1)}/Γ{(p − 1)/2}, γp

def
=

πp/2−1/Γ(p/2), and Γ(·) is a gamma function. These expressions differ in terms

of how they average over s and t. In particular, in (1.2), the uniform weights are

given on the R1⊗R1 space, and in (1.3) and (1.4), more weight is given on higher

density regions. It is thus anticipated that the projection correlation test and
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the multivariate BKR correlation test are more robust to extreme observations

than is the distance correlation test. The projection correlation uses the joint

density of (αTx) and (βTy) as a weight function, whereas the multivariate BKR

correlation uses the product of their marginal densities.

The asymptotic null distributions of the above projection-pursuit indepen-

dence tests depend on the joint distribution of x and y, which are, in general,

unknown in practice. To approximate the asymptotic null distributions, random

permutations are widely used in these independence tests. However, few studies

have examined the consistency of random permutations. In the present context,

we show that the permutation procedure provides a reasonable approximation of

the asymptotic null distributions, without exhausting all possible permutations.

As a by-product, this allows us to carry out a power analysis of the projection-

pursuit independence tests. We show that in the presence of outliers, the per-

mutation test based on either the projection correlation or the multivariate BKR

correlation is very powerful, while that based on the distance correlation may

lose power. To gain more insight into their asymptotic behaviors, we analyze the

minimax optimality of these projection-pursuit independence tests over a wide

class of distributions using Le Cam’s lemma (Baraud (2002)). We show that their

minimum separation rates are all of order n−1, where n stands for the sample

size. The minimum separation rate is a lower bound that characterizes the sep-

aration boundary between the testable and non-testable regions. Furthermore,

the rate n−1 is tight in terms of the projection, distance, and multivariate BKR

correlations.

2. Some Preliminaries

2.1. The computational complexities

We provide explicit forms for (1.2), (1.3), and (1.4) first. Suppose {(xi,yi), for

i = 1, . . . , 6}, are six independent copies of (x,y). Let z be either x or y. We

define a(z1, z2, z3, z4, z5)
def
= ang(z1−z5, z2−z5)+ang(z3−z5, z4−z5)−ang(z1−

z5, z3 − z5) − ang(z2 − z5, z4 − z5), where ang(a,b)
def
= arccos {(aTb)/(‖a‖‖b‖)}

stands for the angle between the two vectors a and b, and arccos(·) is the in-

verse cosine function. If zi, zj , and zk are all distinctive, ang(zi − zk, zj − zk)

is well defined and ranges from zero to π. Following Escanciano (2006) and Zhu

et al. (2017), we define ang(zi − zk, zj − zk) = 0 if zi = zj 6= zk, zi = zk 6= zj ,

or zj = zk 6= zi, and ang(zi − zk, zj − zk) = −π if zi = zj = zk. We fur-

ther define b(z1, z2, z3, z4)
def
= ‖z1 − z2‖ + ‖z3 − z4‖ − ‖z1 − z3‖ − ‖z2 − z4‖.

Székely, Rizzo and Bakirov (2007) and Székely and Rizzo (2009) showed that
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DC(x,y) = E {b(x1,x2,x3,x4)b(y1,y2,y3,y4)} /4. By Theorem 1 of Zhu et al.

(2017), the explicit form of the projection correlation is given by PC(x,y) =

E{a(x1,x2,x3,x4,x5)a(y1,y2,y3,y4,y5)}/4.Kim, Balakrishnan and Wasserman

(2018, Theorem 7.2) derived that the multivariate BKR correlation has the form

of mBKR(x,y) = E{a(x1,x2,x3,x4,x5)a(y1,y2,y3,y4,y6)}/4. With a random

sample of size n, say, {(xi,yi), i = 1, . . . , n}, we estimate DC(x,y), PC(x,y),

and mBKR(x,y) using U -statistic theory. In particular,

D̂C(x,y)
def
= {4(n)4}−1

n∑
(i,j,k,l)

b(xi,xj ,xk,xl)b(yi,yj ,yk,yl),

P̂C(x,y)
def
= {4(n)5}−1

n∑
(i,j,k,l,r)

a(xi,xj ,xk,xl,xr)a(yi,yj ,yk,yl,yr),

and

m̂BKR(x,y)
def
= {4(n)6}−1

n∑
(i,j,k,l,r,s)

a(xi,xj ,xk,xl,xr)a(yi,yj ,yk,yl,ys),

where (n)m
def
= n(n− 1) · · · (n−m+ 1). The summations

n∑
(i,j,k,l)

,

n∑
(i,j,k,l,r)

, and

n∑
(i,j,k,l,r,s)

are taken over different indexes.

Next, we compare the computational complexity of calculating P̂C(x,y),

D̂C(x,y), and m̂BKR(x,y). The sample distance covariance is a U -statistic of

order four, the sample projection covariance is a U -statistic of order five, and the

sample multivariate BKR correlation is a U -statistic of order six. Székely and

Rizzo (2013) and Yao, Zhang and Shao (2018) stated that

D̂C(x,y) = {n(n− 3)}−1
[
tr(ÃB̃)

+{(n− 1)2}−11T

nÃ1n1
T

nB̃1n − 2(n− 2)−11T

nÃB̃1n

]
, (2.1)

where 1n ∈ Rn is a vector of ones, Ã = (‖xi − xj‖)n×n ∈ Rn×n, and B̃ =

(‖yi − yj‖)n×n ∈ Rn×n. That is, the computational complexity of D̂C(x,y) is of

order O(n2). To calculate P̂C(x,y) and m̂BKR(x,y), we define Ak
def
= (aijk) ∈

R(n−1)×(n−1) and Bk
def
= (bijk) ∈ R(n−1)×(n−1), where aijk

def
= ang(xi−xk,xj −xk)

and, bijk
def
= ang(yi − yk,yj − yk), for i 6= k, j 6= k, and k = 1, . . . , n. With some
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straightforward algebraic calculations, it can be verified that

n∑
(i,j,k)

aijkbijk =

n∑
k=1

tr(AkBk),

n∑
(i,j,k,l)

aijlbikl =

n∑
l=1

{1T

(n−1)AlBl1(n−1) − tr(AlBl)},

n∑
(i,j,k,l,r)

aijrbklr =

n∑
r=1

{1T

(n−1)Ar1(n−1)1
T

(n−1)Br1(n−1)

−41T

(n−1)ArBr1(n−1) + 2tr(ArBr)}.

Collecting these results, we have

P̂C(x,y) = {n(n− 1)(n− 4)}−1
n∑
r=1

[
tr(ArBr)

+{(n− 2)2}−11T

(n−1)Ar1(n−1)1
T

(n−1)Br1(n−1)

−2(n− 3)−11T

(n−1)ArBr1(n−1)

]
. (2.2)

Thus, the computational complexity of P̂C(x,y) is of order O(n3). Similarly, we

can verify that

m̂BKR(x,y) = {n(n− 1)(n− 2)(n− 5)}−1
n∑
r 6=s

[
tr(ArBs)

+{(n− 3)2}−11T

(n−1)Ar1(n−1)1
T

(n−1)Bs1(n−1)

−2(n− 4)−11T

(n−1)ArBs1(n−1)

]
, (2.3)

indicating that estimating the multivariate BKR correlation requires O(n4) op-

erations. Calculating the distance correlation has the smallest complexity.

2.2. The permutation procedure

Zhu et al. (2017) and Székely, Rizzo and Bakirov (2007) showed that the

U -statistic estimates D̂C(x,y) and P̂C(x,y) are n-consistent under H0 and root-

n-consistent under fixed alternatives, respectively. Consequently, n D̂C(x,y)

and n P̂C(x,y) converge in distribution to their respective nondegenerate lim-

its under H0, and diverge to infinity under fixed alternatives. Following Zhu

et al. (2017), we establish the distribution theory for m̂BKR under both the

null and the alternative hypotheses. Specifically, m̂BKR is n-consistent under
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H0 and root-n-consistent under fixed alternatives. Therefore, we reject H0 when

n D̂C(x,y), n P̂C(x,y), and n m̂BKR are greater than or equal to certain critical

values. However, the asymptotic null distributions of n D̂C(x,y), n P̂C(x,y),

and n m̂BKR are not tractable when p > 1 or q > 1. To address this issue, Zhu

et al. (2017) and Székely, Rizzo and Bakirov (2007) suggested approximating the

critical values adaptively using the following random permutation approach:

1. Suppose {i1, i2, . . . , in} and {j1, j2, . . . , jn} are two random permutations of

{1, 2, . . . , n}. Define xbk
def
= xik and ybk

def
= yjk , for k = 1, . . . , n. Re-estimate

DC(x,y), PC(x,y), and mBKR(x,y) using {(xbk,ybk), k = 1, . . . , n}. De-

note the resulting estimates by D̂C(xb,yb), P̂C(xb,yb), and m̂BKR(xb,yb),

respectively. Replicate this permutation procedure B times, say, B = 1,000,

to approximate the asymptotic null distributions of D̂C(xb,yb), P̂C(xb,yb),

and m̂BKR(xb,yb).

2. Denote the observations Dn
def
= {(xi,yi), i = 1, . . . , n}. We define the critical

values at the significance level α by

qDCα,n
def
= inf

[
t ∈ R : 1− α ≤ pr{n D̂C(xb,yb) ≤ t | Dn}

]
, (2.4)

qPCα,n
def
= inf

[
t ∈ R : 1− α ≤ pr{n P̂C(xb,yb) ≤ t | Dn}

]
, (2.5)

qmBKRα,n
def
= inf

[
t ∈ R : 1− α ≤ pr{n m̂BKR(xb,yb) ≤ t | Dn}

]
. (2.6)

We approximate pr{n D̂C(xb,yb) ≤ t | Dn}, pr{n P̂C(xb,yb) ≤ t | Dn}, and

pr{n m̂BKR(xb,yb) ≤ t | Dn} using empirical probabilities

B−1
B∑
b=1

I
{
n D̂C(xb,yb) ≤ t

}
, B−1

B∑
b=1

I
{
n P̂C(xb,yb) ≤ t

}
,

and

B−1
B∑
b=1

I
{
n m̂BKR(xb,yb) ≤ t

}
,

respectively. This, in spirit, approximates the asymptotic null distributions

of n D̂C(xb,yb), n P̂C(xb,yb), and n m̂BKR(xb,yb), respectively.

This random permutation procedure is intuitively valid, and thus widely used

in multiple testing problems and independence tests. A random permutation

procedure is said to be consistent if it provides a reasonable approximation to

the asymptotic null distribution. The consistency of random permutations has

been studied extensively by Romano and Wolf (2005) in the context of multiple
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testing problems. However, its consistency is rarely discussed in the context of

independence tests. In Theorem 1, we show that this permutation procedure

is consistent in all three independence tests. Detailed proofs are given in the

Supplementary Material. Throughout, pr(· | H0) and pr(· | H1) stand for the

respective probabilities that a random event occurs under H0 and H1. They are

not conditional probabilities.

Theorem 1. As n→∞, both

sup
t∈R

∣∣∣pr{n P̂C(xb,yb) ≤ t | Dn} − pr{n P̂C(x,y) ≤ t | H0}
∣∣∣

and

sup
t∈R

∣∣∣pr{n m̂BKR(xb,yb) ≤ t | Dn} − pr{n m̂BKR(x,y) ≤ t | H0}
∣∣∣

converge in probability to zero. If we assume E(‖x‖2) + E(‖y‖2) <∞, then

sup
t∈R

∣∣∣pr{n D̂C(xb,yb) ≤ t | Dn} − pr{n D̂C(x,y) ≤ t | H0}
∣∣∣

converges in probability to zero as n→∞.

We require the condition E(‖x‖2) + E(‖y‖2) <∞ to ensure that the kernel

of the U -statistic estimate D̂C(x,y) is uniformly integrable. Theorem 1 guar-

antees that this random permutation procedure approximates the asymptotic

null distributions precisely, as long as the sample size n is sufficiently large. In

other words, the type-I error rates of all projection-pursuit independence tests

are asymptotically controllable. This allows us to analyze the statistical power

of these tests.

Exhausting all possible permutations is usually computationally prohibitive

and practically infeasible. Therefore, we provide a random approximation in the

above permutation procedure. Proposition 1 states that, as long as the number

of random permutations, B, is sufficiently large, the random approximation is

asymptotically valid.

Proposition 1. Given the data Dn,

sup
t∈R

∣∣∣∣∣B−1
B∑
b=1

I
{
n P̂C(xb,yb) ≤ t

}
− pr{n P̂C(xb,yb) ≤ t | Dn}

∣∣∣∣∣,
sup
t∈R

∣∣∣∣∣B−1
B∑
b=1

I
{
n m̂BKR(xb,yb) ≤ t

}
− pr{n m̂BKR(xb,yb) ≤ t | Dn}

∣∣∣∣∣,
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and

sup
t∈R

∣∣∣∣∣B−1
B∑
b=1

I
{
n D̂C(xb,yb) ≤ t

}
− pr{n D̂C(xb,yb) ≤ t | Dn}

∣∣∣∣∣
converge in probability to zero, as B →∞.

3. Robustness Study

We first highlight the robustness of the projection correlation test and the

multivariate BKR correlation test in a Huber contamination model. The following

is an ε-contamination model:

(x,y) ∼ Fx,y = (1− ε)F (1)
x,y + εH

(n)
x,y, (3.1)

where F
(1)
x,y and H

(n)
x,y are two distributional functions, with F

(1)
x,y fixed and H

(n)
x,y

allowed to vary with n, and 0 < ε < 1. Note that x and y are dependent if

(x,y) ∼ F
(1)
x,y, and independent if (x,y) ∼ H

(n)
x,y. We use the ε-contamination

model (3.1) to evaluate whether an independence test can maintain adequate

power when H
(n)
x,y has an adverse impact on its power performance. The test

functions using the distance correlation, projection correlation, and multivariate

BKR correlations are defined as

ΦDC
α

def
= I

{
n D̂C(x,y) ≥ qDCα,n

}
, ΦPC

α
def
= I

{
n P̂C(x,y) ≥ qPCα,n

}
,

ΦmBKR
α

def
= I

{
n m̂BKR(x,y) ≥ qmBKRα,n

}
,

respectively, where qDCα,n , qPCα,n , and qmBKRα,n are the critical values defined in (2.4),

(2.5), and (2.6), respectively, using random permutations, and I(A) is an in-

dicator function, which equals one if A is true, and zero otherwise. For all

three projection-pursuit independence tests, we reject H0 at the significance

level α when the estimates of the projection-pursuit correlations are larger than

their critical values, that is, when n D̂C(x,y) ≥ qDCα,n , n P̂C(x,y) ≥ qPCα,n and

n m̂BKR(x,y) ≥ qmBKRα,n . We study the robustness of the projection-pursuit

independence tests by comparing their power performance, because Theorem 1

ensures that one can always use random permutations to control the type-I error

rate.

Theorem 2 states that the independence tests built on the projection correla-

tion and the multivariate BKR correlation are uniformly powerful over different

types of contaminations. In contrast, the distance correlation test becomes

asymptotically powerless against certain contaminations.
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Theorem 2. Suppose {(xi,yi), i = 1, . . . , n} are generated independently from

model (3.1) with the contamination ratio ε = cn−1/2, where c is a small positive

constant not depending on n, and there exist three positive constants, $, $′,

and $′′, such that PC(x,y) ≥ $, DC(x,y) ≥ $′, and mBKR(x,y) ≥ $′′, for

sufficiently large n.

1. The projection correlation test and multivariate BKR correlation test are

asymptotically powerful uniformly over H
(n)
x,y in the sense that

lim
n→∞

inf
H

(n)
x,y

pr(ΦPC
α = 1 | H1) = 1 and lim

n→∞
inf
H

(n)
x,y

pr(ΦmBKR
α = 1 | H1) = 1.

2. Assume E(‖x‖2 + ‖y‖2) < ∞ if (x,y) ∼ F
(1)
x,y, and if (x,y) ∼ H

(n)
x,y,

n{var(‖x‖) var(‖y‖)}−1/2 = o(1). The distance correlation test is asymp-

totically powerless against such choices of H
(n)
x,y in the sense of

lim
n→∞

inf
H

(n)
x,y

pr(ΦDC
α = 1 | H1) ≤ α.

The first assertion of Theorem 2 implies that the projection and multivariate

BKR correlation tests are insensitive to the presence of outliers. In the second

statement of Theorem 2, we assume n{var(‖x‖) var(‖y‖)}−1/2 = o(1) if (x,y) ∼
H

(n)
x,y, which allows var(‖x‖) and var(‖y‖) to be divergent, and accordingly, model

(3.1) to yield outliers. We impose this condition to demonstrate that the distance

correlation test might lose power in the presence of outliers.

We conduct simulations to illustrate Theorem 2 with a finite sample size. Fol-

lowing Davison and Hinkley (1997), we set B = 1,000 throughout our numerical

studies.

Example 1. In the ε-contamination model (3.1), we consider an extreme case

for F
(1)
x,y: x follows a multivariate standard normal distribution, and y is equal

to x. This ensures that x and y are dependent. In other words, the observations

are drawn under H1. In addition, we set

H
(n)
x,y = (2πσ2)−p/2 exp

{
− (xTx)2

2σ2

} p∏
k=1

I(0 ≤ Yk ≤ 1).

We consider two scenarios for (ε, σ). In the first scenario, ε = 0.5n−1/2 and

σ = {1, 2.5, 5, 10, 20, 40, 80}. In the second scenario, σ = 100 and ε = cn−1/2,

for c = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. Both σ and ε control the degree of heavy-

tailedness. As σ and c increase, the distance between H0 and H1 becomes smaller,
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(b) σ = 100 and ε = cn−1/2, c = {0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6}

Figure 1. The empirical power of projection correlation test (solid line), distance corre-
lation test (dotted line), and multivariate BKR correlation test (dotdash line) when the
random sample is drawn from the ε-contamination model (3.1) with different ε and σ.

and the probabilities of observing extreme values from H
(n)
x,y increase as well. We

fix p = q = 10 and n = 30, and decide the critical values with permutations

at the significance level α = 0.05. The simulations are replicated 1,000 times.

The empirical power of the projection, distance and multivariate BKR correlation

tests is summarized in Figure 1. It can be clearly seen that the empirical power

of the projection and multivariate BKR correlation tests is very close to one

throughout, indicating that these two tests are consistently robust to changes of

σ and ε. In contrast, the empirical power of the distance correlation test drops

quickly as σ and ε increase. The distance correlation test is powerless when σ or

ε is sufficiently large.

Example 2. In the ε-contamination model (3.1), we set H
(n)
x,y to be the product

of (p + q) independent t-distributions with one degree of freedom, and set F
(1)
x,y

to be the Dirac measure of the form F
(1)
x,y = I(x = κ1p)I(y = x), for κ = {5, 15},

where 1p is a p-vector of ones. Let ε = cn−1/2, for c = {0.2, 0.4, 0.6, 0.8, 1.0}. As

c increases, the probabilities of observing extreme values from H
(n)
x,y increase as

well, which, as stated in Theorem 2, may affect the power performance of the

independence tests. Let p = q = {5, 10, 20} and n = 30. The significance level is

set to α = 0.05.

The empirical power for each test is summarized in Tables 1 and 2, based

on 1,000 replications. Following the suggestion of an anonymous reviewer, we
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Table 1. The empirical power of the projection correlation test (“PC”), distance correla-
tion test (“DC”), multivariate BKR correlation test (“mBKR”), and distance correlation
t-test (“SR”) in Example 2, with three different settings of dimension when κ = 5 and
the nominal level is 0.05.

c = 1.0 c = 0.8 c = 0.6 c = 0.4 c = 0.2

p = 5 PC 0.152 0.391 0.635 0.808 0.907

DC 0.056 0.069 0.104 0.158 0.219

mBKR 0.114 0.303 0.534 0.725 0.841

SR 0.059 0.102 0.247 0.386 0.457

p = 10 PC 0.198 0.458 0.701 0.851 0.946

DC 0.051 0.063 0.083 0.123 0.160

mBKR 0.164 0.397 0.616 0.798 0.884

SR 0.058 0.143 0.295 0.479 0.542

p = 20 PC 0.231 0.544 0.777 0.897 0.955

DC 0.053 0.061 0.078 0.089 0.109

mBKR 0.182 0.410 0.647 0.841 0.916

SR 0.074 0.221 0.346 0.552 0.703

also include the distance correlation-based t-test (Székely and Rizzo (2013))

in our comparison. We denote this test by SR. The SR test is asymptotically

distribution-free. Therefore, we use its asymptotic null distribution directly to

decide the critical values. We expect that the projection correlation test and

the multivariate BKR correlation test to be significantly more powerful than the

distance correlation test and the distance correlation t-test across all scenarios.

When c decreases from 1 to 0.2, p and q increase from 5 to 20, or κ increases

from 5 to 15, the deviation from H0 is accumulating. The power of the projection

and multivariate BKR correlation tests increases significantly. In contrast, the

distance correlation test loses power completely when κ = 5. Because the SR

test was developed specifically for large dimensions, it is more powerful than the

distance correlation test, especially when p = 20. However, the SR test is still

significantly inferior to the projection and multivariate BKR correlation tests in

terms of power performance, particularly when p and c are relatively small.

4. Minimax Optimality

Next, we study the minimax optimality of the three tests. To simplify subse-

quent illustration, let Φα be a level-α test function, equal to one if we reject H0,

and zero otherwise. Denote by pr(· | H0) and pr(· | H1) the probabilities evalu-

ated under H0 and H1, respectively. Accordingly, pr(Φα = 1 | H0) is the type-I

error rate, and pr(Φα = 0 | H1) is the type-II error rate. We define the class of
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Table 2. The empirical power of the projection correlation test (“PC”), distance cor-
relation test (“DC”), multivariate BKR test (“mBKR”), and distance correlation t-test
(“SR”) in Example 2, with three different settings of dimension when κ = 15 and the
nominal level is 0.05.

c = 1.0 c = 0.8 c = 0.6 c = 0.4 c = 0.2

p = 5 PC 0.216 0.508 0.749 0.876 0.948

DC 0.112 0.239 0.394 0.512 0.620

mBKR 0.195 0.482 0.711 0.804 0.896

SR 0.132 0.384 0.508 0.615 0.732

p = 10 PC 0.272 0.592 0.791 0.913 0.971

DC 0.082 0.177 0.282 0.401 0.512

mBKR 0.266 0.514 0.750 0.875 0.914

SR 0.190 0.455 0.682 0.796 0.889

p = 20 PC 0.318 0.655 0.852 0.940 0.977

DC 0.061 0.110 0.188 0.264 0.354

mBKR 0.287 0.568 0.796 0.918 0.962

SR 0.242 0.544 0.751 0.885 0.951

level-α test functions by Tα
def
= {Φα : pr(Φα = 1 | H0) ≤ α}. We measure the

dependence between x and y using a projection correlation, distance correlation,

and multivariate BKR correlation. Define

UPC(c)
def
= {(x,y) : PC(x,y) ≥ cn−1},

UDC(c)
def
= {(x,y) : DC(x,y) ≥ cn−1},

UmBKR(c)
def
= {(x,y) : mBKR(x,y) ≥ cn−1}.

If the degree of dependence between x and y is weak, it may be difficult to

distinguish between H0 and H1. Theorem 3 states that, for all level-α tests,

there exist (x,y) ∈ UPC(c0) for the projection correlation test, (x,y) ∈ UDC(c0)

for the distance correlation test, and (x,y) ∈ UmBKR(c0) for the multivariate

BKR correlation test, such that their type-II error rates, pr(Φα = 0 | H1), are

not asymptotically negligible, even when n → ∞. The specified constant c0

quantifies the degree of deviation from H0.

Theorem 3. For any 0 < ξ < 1− α, there exists c0 > 0 such that the minimax

type-II error rates are lower bounded as n→∞; that is,

lim
n→∞

inf
Φα∈Tα

sup
(x,y)∈UPC(c0)

pr(ΦPC
α = 0 | H1) ≥ ξ,

lim
n→∞

inf
Φα∈Tα

sup
(x,y)∈UmBKR(c0)

pr(ΦmBKR
α = 0 | H1) ≥ ξ,
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lim
n→∞

inf
Φα∈Tα

sup
(x,y)∈UDC(c0)

pr(ΦDC
α = 0 | H1) ≥ ξ.

Theorem 3 indicates that the projection-pursuit independence tests cannot

maintain adequate power, even if the dependence between x and y is cn−1 apart in

terms of PC(x,y), mBKR(x,y), or DC(x,y), for an arbitrarily small c. However,

if we allow c to diverge to infinity, the type-II error rates of these independence

tests shrink to zero as n→∞. This is formulated in Theorem 4. Define

ΦDC
α

def
= I

{
n D̂C(x,y) ≥ qDCα,n

}
, ΦPC

α
def
= I

{
n P̂C(x,y) ≥ qPCα,n

}
ΦmBKR
α

def
= I

{
n m̂BKR(x,y) ≥ qmBKRα,n

}
,

where qDCα,n , qPCα,n , and qmBKRα,n are defined in (2.4), (2.5), and (2.6), respectively.

Theorem 4. The minimax type-II error rate of the projection correlation test

tends to zero uniformly over UPC(cn), with cn →∞ as n→∞; that is,

lim
n→∞

sup
(x,y)∈UPC(cn)

pr(ΦPC
α = 0 | H1) = 0.

The minimax type-II error rate of the multivariate BKR correlation test tends to

zero uniformly over UmBKR(cn), with cn →∞ as n→∞; that is,

lim
n→∞

sup
(x,y)∈UmBKR(cn)

pr(ΦmBKR
α = 0 | H1) = 0.

Furthermore, if ‖x‖ and ‖y‖ are squared integrable, the minimax type-II error

rate of the distance correlation test tends to zero uniformly over UDC(cn), with

cn →∞ as n→∞; that is,

lim
n→∞

sup
(x,y)∈UDC(cn)

pr(ΦDC
α = 0 | H1) = 0.

Theorem 4, together with Theorem 3, indicates that the minimax lower

bound of the minimum separation rate is n−1. This lower bound is asymptoti-

cally tight for the projection and multivariate BKR correlation tests. If ‖x‖ and

‖y‖ are squared integrable, this lower bound is also asymptotically tight for the

distance correlation test.

5. Discussion

We consider three projection-pursuit correlations, namely, the distance, pro-

jection, and multivariate BKR correlations. These correlations quantify the dif-

ference between the joint distribution function and the product of the marginal
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distribution functions. These three projection-pursuit correlations differ only in

their weight functions. We investigate their robustness, and compare the power

performance of independence tests built upon these correlations under a mini-

max framework. We also seek the conditions under which the projection-pursuit

independence tests are minimax rate optimal.

It is practically interesting, yet theoretically challenging to characterize the

exact value of c in UDC(c), UPC(c), and UmBKR(c) that separates the testable

region from the non-testable one. This is because the class of alternatives we are

targeting is huge, owing to the existence of nonlinear dependence. This issue is

beyond the scope of this study, and is left to future research.

Supplementary Material

The online Supplementary Material contains the proofs of (1.2), Proposition

1, and Theorems 1–4.
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