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This supplement contains proofs of Theorems [IH4] Proposition |If and (1.2).

S1. Proof of Theorem 1

For any t; € RP and t, € R?, given independent and identically distributed
data {(x;,y:),7 =1,...,n}, the characteristic function of (x;,,y;,) is equal
to

n2 Z exp(itix; +ityy;),
ij=1

which, by the law of large numbers, converges to E{exp(it]x; +it7ys)}. By
Lévy’s theorem, (x;,,y;,) converges in distribution to (x1,y2). By contin-
uous mapping theorem, it follows that a(x;,,Xi,, Xis, Xiy, Xis )@Y i1 Yia» Vs
Vi, ¥is) and a(Xi,, Xy, Xig, Xy Xis )Y j15 Yios Yis» Yia ¥je) cOnverge in distri-
bution to a(Xy,Xa, X3, X4, X5)a(¥1, Y2, Y3, Y4, ¥s) and a(X1, X2, X3, X4, X5)a(y1,

¥2,¥3,¥4,¥6) respectively, where {X;,y;}7; denotes an independent and



identically distributed sample from (xy,y2). Because of | a(+) |< 47, a(x;,, Xy,
Xig, Xigs Xis ) (Y i1 Yias Vs Yiss Yjs) 15 uniformly integrable. Thereby, the
above convergence also holds in L. This, together with Theorem 2.1 of
Leucht and Neumann | (2009), completes the proof for the first claim.
Following similar arguments, we show that b(x;,, Xy, Xis, Xi,)0(¥ 1, ¥ia
Yjs:Yj,) converges in distribution to b(X1,X2,X3,X4)b(¥1,¥2,¥s,y4). For
convenience, write bt = b(x;,,X;,, X, X;,) and b} E (Vi Yins Yiss Vi )-
For any e > 0, E*{| byby | I(] b3b; [> €)} is less than or equal to
EX{ by | I(] by |> €/2)} 4+ E*{] b3b;, | 1(] b5, |> €'/2)}. By the definition

*

of permutation as well as the law of large numbers, we can show E*{| b;b; |
I(] b |2 €72)} = B{| b(X1, %2, X3, %) | 1(] b(X1, %o, X3,%a) [> €'/?)}E|
b(¥1,¥2,¥3,¥4) |} + o(1). By Markov’s inequality, E{| b(X1,X2,X3,X4) |
I(| b(X1,Xa,X3,%X4) |> €/2)} < e V2E{b?(x,,%2,X3,X4)}. By triangle in-
equality, we have b%(x1, X2, x3,x4) < C(||x1]|* + ||x2]|* + ||x3]|* + ||x4]|*) and
| b(x1,X2,%x3,%4) |< C(|y1ll+ ||y2ll + |ly3ll + ||ya]]) for some constant C' > 0.
Together with E{||x||* + |ly||*} < oo, we have that for any € large enough,
E*{| bb;, | I(] b} |> €/2)} — 0 in probability. Similarly, we can show that
for any € large enough, E*{| b3b; | I(| b5 |> €'/%)} — 0 in probability. Con-
sequently, b;b; is uniformly integrable. The rest proof can be done through

using similar arguments for proving the first statement. 0O



S2. Proof of Proposition 1

We only prove the first claim. The proofs for the other two assertions are
very similar and hence omitted. Let {K;}2, and {K; }B | be two indepen-
dent sequences of uniformly distributed random variables on {1,..., (n),}.
Then introduce for all £ € {1,...,(n),} and for all i € {1,..., B} the

random variables
Yip = I(K;=k) and Yy =I(K; =k).

By definition, both Y;; and EN/Z-k have a Bernoulli distribution with parameter

{(n),}~!. Furthermore, we can write

B M (e B
Blzl{nPny)<t} - B- Z {nPC( )gt}
b=1 k=1 fm1 i=1
(m)n (m)n

= 1{n PO yh) <t} B Z YuV.

k=

—_
ﬁl
_

By the strong law of large numbers, it follows that given the data,
B (n)n (n)n

lim B! I{n F/’a(xb,yb) < t} = {(n)n}~ ZZ[{?’L PC(x )

B—oo
b=1 k=1 f—1

= pr{n F/’a(xb,yb) <t| D},

almost surely. This, together with Lemma 2.11 of|van der Vaart and Wellner

(1996), completes the proof of the first statement. 0O



S3. Proof of Theorem 2
It is apparent that

lim inf pr(®X“ =1|H,) = 1— lim sup pr{nﬁa(x,y) < qbS | Hyi}.

To establish the first statement, it suffices to show lim sup pr{nf’é(x, y) <

—

PO | H,} = 0. Invoking the fact | a(+) |< 47 and Lemma 5.2.1A of Serfling

Ao
(1980>7 we have Var{lga(xbv yb) | Xy, >Xn} < O(nil). This 1mp11es qig =

O,(n*?) = o0,(n). This, together with PC(x,y) > w, indicates that there

C

exists ng large enough such that for all n > ng, @w/2 > n~'¢)S. Using

Chebyshev’s inequality, we have that lim sup pr{nﬁa(x, y) < qbS | Hi}is

N

equal to

| —PC PC(x,y) — n-1qFC

lim sup pr PC(X’y)APC(XaY) S (x Y)A N on "
(ETON | varl/2{PC(x,y)} var/2{PC(x,y)}

< lim suppr |ECY) ZPCy) o POy |\ p
n—00 H,(:)), i Varl/Q{PC(X, y)} 2Var1/2{PC(x, y)}

4var{PC(x,y)} 40

< lim — =0
PC*(x,y) n500 neo?

< lim sup
n—oo (n)
nyy

where the positive constant C' is generic and its exact value may vary at

each appearance. Hence, lim inf pr(®f¢ = 1 | H;) = 1. As the kernel

associated with HEK\R(X, y) is bounded, apply arguments similar to those

for dealing with PC(x,y) to obtain lim inf pr(®™BKR = 1| Hy) = 1.
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For the distance correlation test, we choose H 1(;) properly to show that

this statistic is dominated by the samples drawn from the contaminations

H,gn}), Let (0,X) denote any random vector with mean zero and covariance

3. Specifically, we pick H,(cns), = H,((")Hb(,"), where HY and H§,”) have the

2

same distributions as (0,,07,31) and (04, 05, %), respectively. Here o7,

and o3, will be specified later, tr(2;) + tr(X;) < oo, and (0,, X;) is in-
dependent of (0,, X5). Under this setting, we define the truncated random

vectors x(T) and y(™) given by

0, if x ~ Fy, 0, ify ~ Fy,
x™ = , and y") =

x/01, ifx~ H,(cn), y/oo, ify~ H}(,n),
where Fy and Fy are the marginal distributions of x and y, respectively. By

the construction, x(™) and y™) have the respective mixture distributions as

x™ ~ (1 - e)pr(w, = 0,) 4 eHV

X

and y) ~ (1 — €)pr(w, = 0,) + eH?,

where wy has the degenerating distribution at 04, i.e., pr(wg = 04) = 1,
and HY and H§2) are the marginal distributions of (0,,3;) and (0,4, X2),
respectively.

If the distance correlation test using the original samples is asymptoti-
cally equivalent to that using the truncated ones drawn independently from

the mixture distributions, then we can illustrate that the distance correla-



tion test is asymptotically powerless. Suppose {x\" ,le)} {xn Ly }
are generated from {x(*),y(™}. The sample version of DC{x") y(™} is

ﬁa{xm, yY = Si 4 Sy — 285, where

~ _ T T T T
Sio= Y I =<y -y,

17

~ _ T T T

Sso= )zt D I ==y =yl
i#4,j £k ki

~ _ T T T T

So o= )i Y I =<y -yl
(ihj?k?l)

By definition, | (01.,02,) 'DC(x,y) — DC{x™,y™} | is less than or equal

to
Cn 23 | Anlingin ) |40 S0 | Anis i k) |
i#] i#4,j7k kA
+OnT > T A4 k) = L+ L+ I,

(4,3,k,1)

where Ay (i, j, k1) = 1%/ 01— /01 alll[s/ 020 =31/ 02all= I =% [y}
yl(T) ||. It is noted that there are four possible cases of the difference A, (4, 7,1, j).

That is, A, (1, 7,1, 7) equals

/

L HXZ_XJHHY’L_y]H? if Xy X5 ~ 1'%, Yi, Y5 NFy:

01,n02n
if % X, n) o +. (n)
07 lf Xlaxj ~ HX awaJ ~ Hy )

L (% = x5 llllye — w5l = I llllysl)s i %o ~ Fayxy ~ H,ys ~ Fy,y; ~ Hy",

01,n02n

(i = x5 llly: = will = illllyal), i€ % ~ Foxi ~ H,y; ~ Fyyyi ~ 1y,

01,n02n



If x ~ Fx and y ~ Fy, then x/01,, = Oy(1) and y/o2,, = O,(1) be-
cause E(||x|| + |ly]]) < oco. Further, If x ~ HY” and y ~ HY", we still
have x/o1,, = Op(1) and y /o, = O,(1) because H" ~~(0,,3) and

x/o1,

H(n)

v/oan ™ (04,%5). On the basis of these observations, we can obtain I; =

O,{1/(01,,02,,)}. In a similar fashion, we can obtain Iy = O,{1/(01,02,)}

and I3 = O,{1/(01,02,)}. As a result,
n(01002,) 'DC(x,y) — nDC{xT), y D} = 0,{n/(01.,02.)}.

By the definitions of x(*) and y(*), we can show that E{||x7|?} = E(n*)tr(2;) <
oo and E{|lyD|?} = E(n*)tr(Z3) < oo where n ~ Bernoulli(1,e). Since
x(™) is not independent of y™, BE{X(T),y(T)} does not have degener-
acy of order one with the finite variance of the kernel. Nevertheless, it
is noted that (x™),y™) ~ (1 — €)pr(w, = 0,)pr(w, = 0,) + eHL HY,
where ¢ = O(n~'/?). By Le Cam’s third lemma (van der Vaart , 2000),
nﬁa{x(T), y™)} still converges in distribution to an infinite weighted sum
of chi-square random variables, i.e., > 7, )\EC(ZE — 1), for nonnegative con-
stants {\!},>; and normal random variables {Z%};>1. Again, combining
the arguments mentioned above and the details for dealing with Theorem

[} we can also show that

n(017n027n)_1ﬁa(xb, yb) — nﬁa{X(T), y(T)} = O;{n/(017n027n)},



where O} is defined under the permutation space. By choosing 1, and
o2, such that n/(o1,02,) = o(1l), and using Slutsky’s theorem, both
(01 n02,) 'DC(x, y) and n(o1 ,02,,) " DC(x*, y?) converge to 3252, A (72—
1) as well. Thus, when H ((:)y) favors Hj, the distance correlation test of

asymptotic level-a becomes powerless.

S4. Proof of Theorem 3

Given UFC(c), UP%(c) and U™PEE(c) arbitrarily, the family of alterna-
tive distributions includes some Gaussian distributions as a subset. Write
w = (x,y), cov(w) = E{(w — Ew)(w — Ew)"} and consider that w is
multivariate Gaussian with pairwise correlation p. Under the alternative,

we have
lcov(iw)| = (1—p)™ {1+ (m —1)p}, and (S4.1)
[2covH(w) = Tn| = {(1+p)(1—p) ' }"[L = 2mp{(1 + p)(1 + (m — 1)p)} ],

where m = p+ ¢ and I,,, € R™*™ is the identity matrix.

By the Le Cam’s lemma (Baraud | 2002) and for sufficiently large n,
inf  sup  E{®, | Hi} > 1—a—2"{E(L] | Hy) — 1}/,
®0€Ta (x,5)€UPC (co)

inf sup  E{®, | Hi} >1—a—2"Y{E(L. | Hy) — 1}/,

Pa€Ta (x,y)eUmBKR cy)



and

inf  sup  E{® | Hi} > 1—a—2"{E(L] | Hy) — 1}/,

Pa€To (x,y) U (co)

where L, = [] d{pr(w; | H1)}/d{pr(w; | Ho)} with w; = (x;,y;). There-
i=1

fore, as long as
B(I | Hy) — 1= o{1), (542)
we can prove the assertion. By definition and (54.1),

E(L2 | Hy) = (Z)E (ﬁew-lwf{wwIm}w])

(L4 )L = mp/ (Lt )}

Asp =0, (14+p)™™ = e ™ and {1—mp/(14p)} " = em™?/(1+P) Thus, as
p— 0, Eo(L2) = e=mm*/(040) where we use the fact —mnp+mnp/(14p) =

—mnp?/(1+ p). To get (S4.2), we need to show that as p — 0,

PC(x,y) =< p*, (S4.3)

mBKR(x,y) = p?, (S4.4)
and

DC(x,y) = p*, (54.5)
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where a,, =< b, means that there exist constants Cy > C; > 0 such that
Ch)bn| < |an| < Cylby,| for all sufficiently large n. We first deal with (S4.3)).

According to [Zhu et al. | (2017), we can show

PO, y) = (17)"" /a N /ﬂ Ui h - 2ddadp, ($46)

where

Jio= pr(W =0, W >0, W >0 wd > 0),

Jo = pr(W® >0, WP >0 w? >0w? >0),

T = pr (WP >0, > 0,w? > 0,w® > 0),
Wl(l) = {2a"cov(x)a} 2" (x5 — x1), 2(1) = {2a"cov(x)a} V2" (x5 — x3),
Wit = {287cov(y)B} 2B (vs — y1), Wi = {287cov(y)B} 2B (5 — ¥2),
Wi = {28%cov(y)B} 28" (ys — ya). WP = {287 cov(y) B} 28" (ys — ys).
i = W =w® wi =W = wiP wi = wyh,

WP = {28%cov(y)B} 28" (ys — ya).

We will deal with J;, Jo and J; by invoking the work by |Cheng | (1969).
Write @ = 1/2 and b = pa®1,8"1,{a cov(x)aB" cov(y)3}) V2. It is ap-
parent that (Wl(k), s Wik)), k =1,2,3, follow quadrivariate normal distri-

bution with zero mean, unity variance and correlations ,07(12) = cor(Wr(k), Ws(k)),



11

where

1
pgg) = 01(2,4) =a P§3) = P24 = b, P23 = szx = ab,

2 2 1
P§2) = P:(;4) =0 Pgs) = Pé4) = ab, 1054) = Pés) = ab, and

2 1 1 1 1
Py =5t = a.piy = b, ply = ply = pl) = ab.

Following the arguments used by (Cheng | (1969) to obtain the orthant prob-
abilities of four normal variables with certain specific forms of correlation

matrices, we can show
Ji =97 + (4n)H{arcsin(b) + arcsin(b/2)} + (47?) " {arcsin(b)* — arcsin(b/2)?},
Jy =97 + (2m) " arcsin(b/2) + 72 /O e arcsin[sin(z) /{1 + 2 cos(2x)}]dz,
Jz = 97! + (87) '{arcsin(b) + 3arcsin(b/2)} + (47°) 7! [
/O e arcsin ( sin(z) [{2 cos(2z) + 3} /{2 cos(2z) + 1}] )dz
i /0 T s (sin(e) [{2cos(2r) — 1) /{6 cos(22) +3)]"72) d

arcsin(b)
+/ arcsin{sin(a:)/fi}d:v} .
0

Under the alternative, cov(x) = (1 — p)I, + p1,1} and cov(y) = (1 —p)I, +

p1,1;. Thus, by the fact |af| = [|8] = 1,

b= {1+0(1)}pa’1,6"1,.
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as p — 0. Using the fact arcsin(z) = {1 + o(1) }z as x — 0, we can show
arcsin(b) + arcsin(b/2) + 2 arcsin(b/2) — {arcsin(b) + 3 arcsin(b/2)} = 0,
arcsin(b)? — arcsin(b/2)* = {3/4 + o(1)}b%,
arcsin(b/2)
/ arcsin[sin(z) /{1 + 2 cos(2z)}]dz = {1/24 + o(1)}b?,
0
arcsin(b/2)
/ arcsin (sin(z) [{2 cos(2z) + 3} /{2 cos(2z) + 1}] ) dx
0
arcsin(b/2) /s
—2/ arcsin <sin(m) [{2 cos(2z) — 1} /{6 cos(2x) + 3}]" > dx
0
arcsin(b)
+/ arcsin{sin(z)/3}dr = {7/24 + o(1)}v?,
0

as p — 0. Therefore, as p — 0, Ji+J,—2J3 = {1+0(1) }p*(a™1,871,)?/(127?),

which indicates

PCGy) = {1/020) +oDl ) /BGSM(aTlpBqu)Qdad@

- 2
"\pu

which yields (S4.3). Similar to (S4.6]), we can show that

mBKR(x, y) = (1,7,) " / / (i + T — 25 dexdB,
QesSpr-1 cSa—1

where J; = F{I(a"x; < a™x3)[(a"x; < a"x3)[(B"y1 < B y1)I(B"y2 <
B'ya)}, Js = E{l(a™x; < a™x3)[(a™y < a™x3)[(Bys < BTye)[(Bys <
Bye)} and J, = E{I(a"™x; < a™x3)[(a"xy < a'x3)I(B"y1 < B'y5)[(B7ys <

B"ys)}. Using similar arguments to those in the derivation of Jy, J; and

Js, we can obtain (S4.4)).
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In what follows, we consider (S4.5). From the proof of equivalent ex-

pression of distance correlation (reported later), we can show

DC(x,y) = {Var(aTX)Val"(ﬁTY)}l/Q/ﬁ s 1/04 spt

DC{a"x/var'/*(a"x), B"y /var'/*(8"y) }dp(er)du(B),

where p(-) will be defined as in (S6.8). Clearly, var{a™x/var'/?(a™x)} =
var{B"y /var'/?(3"y)} = 1. Let © = cov{a"x/var'/?(a"x), 3"y /var'/?(3"y)}.

According to Theorem 7 of Székely et al. | (2007)),

DC{aTx/varl/Z(aTx), ﬁTy/Varl/z(BTy)}
= 4r(Oarcsin© + {1 — ©2}/2 — Qarcsin(0/) — {4 — ©2}1/2 4+ 1)

v@2

It is noted that var(a™x)var(8"y) = 1+o(1) and © = {1+0(1) }pa™1,8"1,,

as p — 0. This, together with the preceding equation, yields ([S4.5).

S5. Proof of Theorem 4

We start with proving the first statement. By definition, it suffices to

show lim inf pr{nlg(\?(x, y) > ¢t¢ | Hi} =1, as n — oo. Define
c—00 (x,y)eUrC(c) ’
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P/’VC(X, y) = Ty + Ty — 2T5, where

Ty = n ) ang(x; — Xk, X; — xp)ang(yi — Vi, ¥, — Vi),
ij,k=1

'1’:2 = n75 Z ang(xi — Xp, X5 — Xr)ang(Yk — Yy — yr>7
i,5,k,l,r=1

Ty = nt Y ang(x; — X, %; — x)ang(yi — Yi, Ye — ¥1)-
,7,k,l=1

Because of 0 < ang(+,) <,
pr{nPC(X,y) > Gan | Hi} = {1+ 0,(1)}pr{nPC(x,y) > ¢/ | H1}.

From Theorem 1 of Zhu et al. | (2017), F/’E(x, y) equals

()Y { / / [Fuala™s. B'y) ~ Fila’x) BBy} dadﬂ} ,
i=1 Oecsr—t Joesa!

where ﬁm, 131 and ]/7\2 stand for the empirical distributions of (a*x,3"y),

(a™x) and (8"y), respectively. For convenience, let us denote by Fj o,

Fy and F} the distributions of (a'x,3%y), (a’x) and (3"y), respectively.

By the fact Fio(s,t) — Fy(s)Fy(t) = {Fia(s,t) — Fi(s)Fa(t)} + {Fya(s, t) —

Fra(s, )}~ {Fy(s) = Fa (s HE2 ()~ Fa ()} —{ Fi ()= Fy () o ()= F () { (1)~

F5(t)}, and Minkowski’s inequality, it holds

(PC(x, y)}?

< {PC(x,y)}?+2r{ sup |Fia(s,t) — Fia(s,t)| + sup|Fi(s) — Fi(s)|
s,t,a,,g 50
+s%> |Fy(t) — Fy()]} (S5.7)
t,
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where P/’ah(x, y)=n"1>" N; with

N = (17) 7! /a Sp—1 /ﬁ Sa-1 {Fia(a™;, 5TYz‘)—Fl(aTXi)F2(5Ty%')}2dadB'

As a result,

pr{nPC(x,y) > ¢°¢ | H,} >

1- pr{ sup |ﬁ1’2(s,t) — Fio(s,t)| + sup |Fy(s) — Fi(s)|

SvtvauB

T sup | Ba(t) = Fy(t)] = ({PC(x, )}/ = o) /(27) | Hy

0

>1— pif P Fra(s,t) — Fra(s, 1)) > ({PC(x, ¥)}2 = Con)/(67) | Hy]
s,t, X,

—pr{sup By () ~ Fi(s)] 2 {PC(x,¥) — can}/(67) | Hi} — prfsup (1)

t0

~Fa(t)] = (FC(x,3)}7* = o)/ (67) | H1],
where o, = (¢£9)"?/n. Define the event A by
A= {)@h(xa y) — PC(x,y)| < 27'PC(x, Y)} :
By noting PC(x,y) > cn~! and Isah(x, y) > PC(x,y)/2 under A,

pr{ sup |Fis(s,t) — Fia(s,1)] > ({PC(x,y)}2 = cn)/(67) | Hy}

s,t,a,ﬁ
< pr{ Supﬁ |Z/7\1,2(s,t) — Fia(s,t)] > cl/Qn_l/Q/(67r21/2) — Can/(6m) | Hi} +pr(A° | Hy).
s,t, O,

Since P/’a(x, y) is a degenerate U-statistic with the bounded kernel under

Hy, one can find an universal constant C,, such that C,/n > sz,n‘ Taking
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¢ > (22042 + ¢5)? with ¢y — oo and using the generalization by Wolfowitz

(1954) of the Glivenko-Cantelli theorem, we have

lim  sup  pr{ sup |ﬁ172(s,t)—F172(3,t)| > M2 ) (672 o/ (67) | H} =0,
eI (x)EUPC(S)  orau 3

as n — 00. On the other hand, an application of Chebyshev’s inequality

yields

pr(A°| Hy) < 4{PC(x,y)} *n 'var(N)

< ' E(ND{PC(x,y)} ? = n*n {PC(x,y)}

IN

™/,
where we use the fact Ny < 72/4 and F(N;) = PC(x,y). This further gives

lim sup pr(A°| Hy) =0.

0 (xy)eUPC (e)

Consequently,

, A .
lim sup  pr{ sup |[Fia(s,t) — Fia(s,t)| > {PC(x, y)}l/2 — Can)/(6m) | H1} = 0.

TN (xy)EUPC(D)  spa3

Similarly, we can obtain

tim sup  pr{sup |Fy(s) = Fi(s)] 2 ({PC (e, 3)} 2 = 0,)/(6m) | i} =0, and

€7 (x,y)eUr c)

lim  sup  pr{sup |]32(t) — K] > ({f)au(ig Y)}/? = can)/(6) | Hi} = 0.

IO (xy)eUPC(e) 13
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A summation of these results yields lim inf pr{f/’a(x, V) > Gan |

€00 (x,y)eUP (c)

Hy} > 1—0(1). In analogy with the notation of PC(x,y), we write

P

mBKR(x,y) = Wy + Wy — 2Ws,

where

Wi = ot ) ang(xi — xg, %) — Xe)ang(yi — Ye, ¥ — Y1),
1,5,k l=1

Wo = n™° > ang(xi — X, %; — X,)ang(V — Y, ¥ — ¥s),
i,3,k,l,r,s=1

Wy = n™® ) ang(x; — x,%; — X)ang(yi — ¥r. Yr — ¥r).
ik lr=1

Employing arguments similar to those for proving Theorem 1 of |Zhu et al.

(2017), mBKR(x,y) also has the elegant V-statistic representation. That
is, Irm(x, y) is further equal to

(nYp7q) " zn: Zn: [/

i=1 j=1 “O

/ {ﬁl,Q(aTXi; ﬁTYj)
esr—t JoxeSa!
~Fi(a"x)Fa(8"y,)} dadB]

By the standard theory of U- and V-statistics, apply techniques parallel

to those used in the proof of lim inf )pr{f’@(x, Y) > Gan | Hi} >

=00 (x,y)eUFC (e

1 —o(1) to complete the proof of the first assertion.
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On the other hand, let us define /D\(/j(x, y) = Ry + Ry — 2R, where

R = n)  |lxi —xillys — yill.

i,j=1
n

Ry = n* Y i = xgllllye — will.

5.k, =1

Ry = n® > |lxi —x;llllyi = yxll-

1,7,k=1

By the standard theory of U and V-statistics,, it suffices to show lim inf
=00 (x,y)€UP (c)
pr{n/]j\é()g y) > ¢l | Hi} = 1, as n — oo. Invoking the following proof

for equivalent expression of distance correlation, we can also show that

—

DCGy) = O/} [ [ [ ] (Rualst) - Bio)Ra)dsitdads,
eSi-1 JaesSr—1 JR! JR!
where 7,,7,,7, and 7, will be defined as in (S6.8). This, together with

Minkowski’s inequality and (56.8)), yields

DC(x,y) < DC(x,y) +

1/2
{{%’n;/ (T 74)} / / / AX(a, B, s, t)dsdtdadﬁ} ,
€Se-1 Jaxesr-1 JRL JR!

where Aa, B, s,t) =| Fia(s,t) — Fy(s)Fy(t) — {Fia(s,t) —Fi(s) Fy(t)} ] .
By the boundedness of Fy(-), Fy(+), Fy(-) and Fy(+), it is straightforward to

show that

A, B,5,t) < | Fia(s,t) — Fia(s,t) | +2 | Fi(s) — Fi(s) |

12| Fy(t) — B(t) | -
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Since (a + b+ ¢)? < 3(a® + b? + ¢?), we have

sup A%(a, B, 5,1)

a,,@,s,t
< 3 sup | Fia(s.t) — Fia(s,t) 2 +12 sup | Fi(s) — Fi(s)
OC,,B,s,t a,ﬁ,s,t
+12 sup | Fy(t) — Fy(t) |
a,,@,s,t

Since the supports of x and y are bounded, i.e., max(||x|],|y||) < C for
some positive constant C' > 0, and |af = [|B]] = 1, we have max(|
o™ || By |) < CY2, which implies max(Qq) — min(Qq) < 202
and max(g) — min(Qg) < 202, Here Qg and Qg are the supports
of a™x and 3"y, respectively. That is, fﬂa fQ,B ldsdt < 4C < oo. Clearly,
f,@esrl Javesr—1 1dp(e)dp(B) = 1 < co. In other words, there exist a posi-

tive constant C; such that

DC(x,y)
—1/2 ~ ~
S DC (X, y) + 01 sup ‘ Fl?g(S,t) — FLQ(S,t) | +Cl sup | F1(8> — Fl(S) |
a,ﬁ,s,t a,s,t
+Cy sup | Fa(t) — Fa(t) | .

,B,s,t

Apply arguments similar to those for dealing with (S5.7) to complete the

proof. 0O
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S6. Equivalent Expression of Distance Correlation Given in (1.2)

Simple algebraic calculation yields that

+0o0
la—=b|lc—d| = / {I(a§s<b)](c§s<d)+[(a§s<b)](d§s<c)

o0

+ Ib<s<a)l(c<s<d)+Ib<s<a)l(d<s< c)}dsdt.
This, together with Fubini’s theorem, entails that

Ela™ —a™x || By — B'y2 |= 4/F32(s,t)dsdt + 2/F1,2(s,t)dsdt

+ Z/Fl(s)Fg(t)dsdt—4/F1(5)F172(3,t)dsdt—4/Fg(t)FLg(s,t)dsdt,

Following similar arguments, we can show that

Ela™; —a™ || By — BYys |= 4/F1(5)F2(t)F122(3,t)dsdt
— Q/Fl(s)Fl,g(s,t)dsdt — 2/F12( t)dsdt — 2 (t)Fi2(s,t)dsdt

— 2/F1(8)F2(t)2dsdt+/F1 2 (s, t)dsdt+3/ 1(s)Fy(t)dsdt,

and

Ela™, — o' | E| By — By, |= 4 / (5) Falt )dsdt—4/F1(s)F22(t)dsdt
4 / F2(s)Fy(t)dsdt — 4 / Fo(t) Fua(s, t)dsdt + 4 / F2(s)F2(t)dsdt.

Combining the three above results, we obtain that F | a™x; — a"xy ||

B'y1—B'y: | +B | a"xi—axy | B | B'y1—B'ys | —2E | axi—a™x, |
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BTY1 - ﬁTY:s ! equals

4 /_ Z /_ Z{F1,2<s,t) — Fy(s)By())2dsdt.

In addition,

/aeSpl | x| du(e) = [|x]|/7, and /ﬂe&zl | 8%y | du(B) = |ly|l/A,

where 7, = /7 (p—1)I'{(p—1)/2}/{2T'(p/2)} and p is the uniform distribu-
tion on the surface of the unit sphere. Thus, DC(x,y) can be re-expressed

equivalently as

%/7%; //36&11 /aespl {E(l a'x; —a'x,y || By = By:2 )+ E(| a'x1 — a’x, |)
E(| B'y1 = 8%y: |) = 2B(| a"x1 — a™x; || By1 — B"ys ) fdp(c)du(B)
+oo  pFoo
- {7;)7;/(7T27p7q)} /ﬁeSq—l /aeSP—l /Oo - {Fy5(s,t) — Fi(s)Fy(t) }dsdtdod3.

(56.8)

This completes the proof. 0O
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