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DATA WITH MEASUREMENT ERROR
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Abstract: A logistic model relating the rates of transition between two states to

a vector of covariates is considered. Measurement error on the binary state vari-

able can lead to severely biased parameter estimates. Estimation procedures which

adjust for measurement error are proposed for different measurement models. Com-

plex sampling designs are allowed for. The procedures are illustrated using data

from the U.S. Panel Study of Income Dynamics, where the response is whether

an individual is in a job with a union contract. It is found that adjusting for

measurement error can be important.
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1. Introduction

In the analysis of longitudinal survey data it is often of interest to estimate
a transition rate, the proportion of units in the population in one state on one
occasion which flow into another state on the successive occasion. For example,
labour market analysts may be interested in the 3 × 3 matrix of transitions
between the states: employed, unemployed, and not in the labour force (Abowd
and Zellner (1985)). For analytical purposes, it is often of interest to study how
rates vary across different subgroups of the population. For example, in the case
of labour force states it may be of interest to study the dependence of transition
rates on sex, age and region.

Transition rates are proportions and so may be estimated in the usual way
from survey data. The off-diagonal cells of transition matrices are often rela-
tively rare, however, and so, as the number of subgroups increases, the sample
sizes upon which some estimates are based can become small, implying large
sampling errors. In this case some modelling of the relation between the rates
and the covariates defining the subgroups is desirable. In Section 2, we describe
a logistic model for representing the dependence of transition probabilities on
covariates for the case of two states and two occasions. Similar models have been
applied to longitudinal data in both biostatistical applications (e.g. Korn and
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Whittemore (1979), Muenz and Rubinstein (1985), Bonney (1987)) and econo-
metric applications (e.g. Hsiao (1986), Sect. 7.4; Maddala (1987)). Our approach
to model fitting follows Roberts et al. (1987) and allows for a complex sampling
scheme.

Measurement error is a major problem when estimating transition rates from
survey data. Random errors in measured states can lead to severe upward bias
in standard estimators of the proportions moving between different states. A
number of alternative estimators have been proposed which use reinterview data
to reduce this bias (Meyer (1988)). The aim of this paper is to extend this work
to the estimation of the logistic models referred to above. Specifically, in Section
5 we extend the measurement error model of Chua and Fuller (1987) and propose
inference procedures which adjust for measurement error, provided estimates of
the parameters of the measurement error process are available from reinterview
studies.

2. The Model

Consider a finite population of size N , which is fixed over two occasions
t = 1, 2 and is partitioned into I cells (also fixed over time) by the levels of one
or more factors defined at t = 1. Let yt be a binary indicator variable for the
two states and let Nijk be the number of units in cell i for which y1 = j and
y2 = k(i = 1, . . . , I; j = 0, 1; k = 0, 1).

We assume a superpopulation model under which N is fixed and E(Nijk) =
Nφijk(i = 1, . . . , I; j = 0, 1; k = 0, 1) and focus attention on the transition rates
in different cells i between states at t = 1 and t = 2:

πij = φij1/φij.,

where
φij. = φij0 + φij1, i = 1, . . . , I; j = 0, 1.

The superpopulation model would arise if units fall into cells i and take values
y1 = j and y2 = k with probabilities φijk = pr(y1 = j, y2 = k, cell i). In this
case πij is the conditional probability pr(y2 = 1|y1 = j, cell i) of moving from
state j at t = 1 to state 1 at t = 2 for units in cell i. Under independence
between units Nijk would be multinomially distributed with parameters N and
φijk. Dependence between units because of clustering may, however, lead to
departures from a multinomial distribution. We take as our objective to study
the dependence of the transition rates πij on i and j and consider the following
logistic model:

πij = F (xijβ), i = 1, . . . , I; j = 0, 1, (1)
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where F (t) = et/(1 + et), the xij are 1× s vectors of known constants and β is a
s×1 vector of unknown parameters. Note that (1) may be expressed alternatively
as

log[πij/(1 − πij)] = xijβ. (2)

Some special cases of this model are given below to illustrate its interpretation,
but first we record some notation. For a series of 1×ρ vectors, aij(i = 1, . . . , I; j =
0, 1), let [aij ] denote the 2I×ρ matrix with rows a10, a11, a20, a21, . . . , aI0, aI1. Let
X = [xij], l = [lij ], π = [πij ], φ = [φij ], f(β) = [fij(β)], where lij = log[πij/(1 −
πij)], fij(β) = F (xijβ). Then (1) may be re-expressed as

π = f(β), (3)

and (2) may be re-expressed as
l = Xβ. (4)

Examples of Models
(i) Constant transition rates

Let s = 2, xij = (1, j) and β = (β1, β2)′. Then the transition rates πi0 and
πi1 take the constant values F (β1) and F (β1 + β2) respectively for all cells
i.

(ii) Additive model
Let s = r + 2, xij = (1, zi, j) and β = (β1, β

′
2, β3)′, where zi is a 1× r vector

of known constants derived from the factor levels defining the I cells and β2

is an r × 1 vector of unknown parameters. For example, the cells may arise
from crossing I/2 age groups by 2 sexes and zi may be (ai, a

2
i , si) where ai

is the midpoint of the age group and si is a dummy variable representing
sex for cell i. The ratio of the odds that y2 = 1 given y1 = 1 versus y1 = 0
is exp(β3) which is constant across cells.

(iii) Separate models for different previous states
Let s = 2r + 2, xij = (1, zi, j, jzi) and β = (β1, β

′
2, β2, β

′
4)

′, where zi is as
in (ii). This model allows for interaction between y1 and cell i. Transition
rates are now πi0 = F (β1 + ziβ2) and πi1 = F [(β1 + β3) + zi(β2 + β2)].

(iv) Saturated model
Let s = 2I and suppose X is nonsingular. Then there is a 1-1 mapping
between π and β since (4) may be inverted to give β = X−1l.

In general, we take β to be the vector of parameters of interest. As set out above,
β is only well defined if model (1) holds. In practice, however, it may still be of
interest to fit a model, such as the main effects model in (ii), even if that model
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only holds approximately. For a more general definition when model (1) does not
necessarily hold, we let β be the solution to∑

i

∑
j

xijφij.[fij(β) − πij] = 0. (5)

In order that a unique solution to (5) exists we assume:
A1: X has full rank s

A2: 0 < φij. < 1, 0 < πij < 1, i = 1, . . . , I; j = 0, 1.
Clearly the true β solves (5) when (1) holds. In general, β may be interpreted
as follows (cf Scott and Wild (1989), p.194). Let

εij = fij(β) − πij (6)

be the model approximation error for cell i and yi = j. This will be zero if (1)
holds. Suppose x includes an intercept term so xij = (1, x̃′

ij)
′ and let (ε, x̃) be

random variables taking values (εij , x̃ij) with probabilities φij.(i = 1, . . . , I; j =
0, 1). Then (5) is equivalent to the constraints that E(ε) = 0, Cov(ε, x̃) = 0, i.e.
β is defined so that the implied approximation errors have zero means and are
uncorrelated with the covariates across cells.

As an alternative interpretation, note that if the Nijk are multinomially dis-
tributed with parameters N and φijk then the likelihood equations for estimating
β in model (1), were all the Nijk to be observed and the φij. to be unconstrained,
are ∑

i

∑
j

xij[Nij.fij(β) − Nij1] = 0, (7)

where Nij. = Nij0 + Nij1. Dividing by N and taking expectations gives (5), so
that in this case β may be interpreted as the limit in probability as N → ∞ of
the ‘census estimator’ of β solving (7).

3. Estimation

Let N̂ijk be an estimator of Nijk based upon the survey data. The estimator
may involve weighting adjustments to allow for unequal sampling fractions or
for differential nonresponse or to achieve arithmetic consistency under rotating
designs as in the maximum likelihood or raking ratio estimators of Chambers et
al. (1988) and Holt and Skinner (1989). Consider an asymptotic framework in
which N and a suitably defined sample size n increase, but where I and the φijk

are fixed. Let

N̂ij. =
∑
k

N̂ijk, φ̂ij. = N̂ij./N̂ , π̂ij = N̂ij1/N̂ij., N̂ =
∑

i

∑
j

N̂ij ,
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φ̂ = [φ̂ij.], π̂ = [π̂ij ].

We assume:
A3: (π̂′, φ̂′) is consistent for (π′, φ′) and the asymptotic distribution as n → ∞
of

√
n[(π̂′, φ̂′)′ − (π′, φ′)′] is normal with mean vector zero and covariance matrix

V [(π̂′, φ̂′)′] =

[
V (π̂), C(π̂, φ̂)

C(φ̂, π̂), V (φ̂)

]
. (8)

This covariance matrix may reflect features of a complex sampling design, such
as stratification and clustering. The distribution in A3 may in general reflect
both a randomised sampling scheme and the superpopulation model.

Given φ̂ and π̂, β may be estimated by the solution β̂ of equations (5) with φij.

and πij replaced by φ̂ij. and π̂ij respectively. Under assumptions A1, A2 and A3,
β̂ is consistent for β whether or not the logistic model holds. In order to derive an
expression for the asymptotic covariance matrix of β̂ we now define some further
notation. For a series of scalars aij(i = 1, . . . , I; j = 0, 1) let diag[aij ] denote the
2I×2I diagonal matrix with diagonal elements a10, a11, . . . , aI0, aI1. Let D(φ̂) =
diag[φ̂ij.], D(φ) = diag[φij.],D(ε) = diag[εij ], ∆ = diag[φij.fij(β){1 − fij(β)}].
Then β̂ solves the estimating equations

X ′D(φ̂)f(β̂) = X ′D(φ̂)π̂, (9)

(c.f. Roberts et al. (1987), equation 2.3). The asymptotic covariance matrix of β̂

is given by:
V (β̂) = n−1(X ′∆X)−1X ′ ∑ X(X ′∆X), (10)

where ∑
= [D(φ),D(ε)]V [(π̂′, φ̂′)′][D(φ),D(ε)]′. (11)

The term D(ε) allows for lack of fit of the logistic model. If the model holds
then D(ε) = 0,

∑
reduces to D(φ)V (π̂)D(φ) and V (β̂) reduces to an expression

analogous to equation (2.4) of Roberts et al. (1987). Given an estimator of
V [(π̂′, φ̂′)′], V (β̂) may be estimated by substituting φ̂, π̂ and β̂ for φ, π and β

respectively in ∆ and
∑

. The estimation of V [(π̂, φ̂′)′] will typically employ
survey sampling techniques, as described by Wolter (1985).

Example: Simple random sampling
Suppose n units are selected from the population by simple random sampling,

and nij. and nij1, the sample quantities analogous to Nij. and Nij1, are observed
(i = 1, . . . , I; j = 0, 1). Then the likelihood equations are, by analogy to (7):∑

i

∑
j

xij [nij.fij(β) − nij1] = 0,
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which corresponds to taking φ̂ij. = nij./n, π̂ij = nij1/nij. in (9). Then π̂ and φ̂ are
asymptotically uncorrelated (C(π̂, φ̂) = 0), V (π̂) = diag[πij(1−πij)φ−1

ij. ], V (φ̂) =
D(φ)−φφ′, and from (11),

∑
= diag[πij(1− πij)φij.] + D(ε)[D(φ) −φφ′]D(ε). If

the logistic model holds, then
∑

= ∆ and V (β̂) = n−1(X ′∆X)−1, the standard
formula.

4. The Effect of Measurement Error

Let us now consider the effect of measuring y1 and y2 with error. Let y∗1 and
y∗2 denote the observed variables measuring y1 and y2 respectively. Measurement
error arises if misclassification of the states at t = 1 or t = 2 occurs, that is if
(y∗1, y∗2) �= (y1, y2). Let N̂∗

ijk be the estimator of Nijk which takes the same form
as N̂ijk in section 3 but with (y1, y2) replaced by (y∗1, y∗2). Let φ̂∗

ijk = N̂∗
ijk/N̂

∗,
where N̂∗ =

∑ ∑ ∑
N̂∗

ijk, and similarly define N̂∗
ij., φ̂

∗
ij., π̂

∗
ij, φ̂

∗, π̂∗, and D(φ̂∗)
analogously to their non-asterisked versions. We assume that an asterisked ver-
sion A3∗ of A3 holds with (π̂∗′ , φ̂∗′) being consistent for (π∗′ , φ∗′), where π∗ = [π∗

ij]
and φ∗ = [φ∗

ij.]. The distribution involved in the statement of A3∗ now involves
not only the randomised sampling scheme and the model generating y1 and y2

but also a measurement error model (misclassification mechanism) generating
y∗1 and y∗2 from y1 and y2. We may interpret the elements of π∗ and φ∗ as
π∗

ij =pr(y∗2 = 1|y∗1 = j, cell i) and φ∗
ij. =pr(y∗1 = j, cell i). Under general mis-

classification mechanisms there is no reason why (π∗
ij , φ

∗
ij.) should be the same as

(πij, φij.).

If β̂∗ is the solution of estimating equations (9) with φ̂ and π̂ replaced by φ̂∗

and π̂∗ repectively, then β̂∗ will be consistent for the solution β∗ of the equations:

X ′D(φ∗)f(β∗) = X ′D(φ∗)π∗, (12)

provided π∗ and φ∗ obey the asterisked version of A2. In general, β∗ will not
equal β unless φ∗ = φ and π∗ = π. Hence, measurement error induces bias even
in large samples.

5. Adjustment for Measurement Error

The nature of the measurement error adjustment will depend on the speci-
fication of the measurement error model which will in turn depend, in practice,
on the nature and extent of the validation data available. In order to specify
our measurement error model we first define φ∗

ijk by extending the assumption
that φ̂∗

ij. is consistent for φ∗
ij. to assume that φ̂∗

ijk is consistent for φ∗
ijk, where

φ∗
ij0 + φ∗

ij1 = φ∗
ij.. We suppose that only cross-sectional validation data is avail-

able in which case it is natural, following e.g. Abowd and Zellner (1985), to make
the following assumption:
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A4 (independent measurement errors within cells):

φ∗
ijk =

1∑
l=0

1∑
m=0

θ1
ij1θ

2
ikmφilm, (13)

where θt
ijk =pr(y∗t = j|yt = k, cell i) is the probability of misclassifying state k

as state j in cell i at time t. Without longitudinal validation data it is difficult
to know how to specify a model for dependent errors, although some sensitivity
analysis to departures from independence is possible (Singh and Rao (1995)).

Letting θt(i), φ(i) and φ∗(i) denote the 2 × 2 matrices with jkth elements
θt
ijk, φijk and φ∗

ijk respectively, (13) may be reexpressed as φ∗(i) = θ1(i)φ(i)θ2(i)′.
If estimators θ̂t(i) of the θt(i) are available from validation studies then an ad-
justed estimator of φ(i) is

φ̌(i) = [θ̂t(i)]−1φ̂∗(i)[θ̂2(i)′]−1, (14)

where the ikth element of φ̂∗(i) is φ̂∗
ijk. An adjusted estimator of β is then

obtained by solving (5) with φij. and πij replaced by φ̌ij. and π̌ij = φ̌ij1/φ̌ij.

respectively, where φ̌ijk, is the jkth element of φ̌(i) and φ̌ij. = φ̌ij1 + φ̌ij2. As-
suming consistency of θ̂t

ijk for θt
ijk, the adjusted estimator will be consistent, and

its asymptotic covariance matrix is as defined by (10) and (11), where V [(π̂′, φ̂′)′]
is replaced by the asymptotic covariance matrix of the vector of π̌ij and φ̌ij.. This
matrix can be estimated by the δ-method provided an estimate of the covariance
matrix of the θ̂∗ijk is available.

A problem with this approach is that the values of φ̌∗
ijk implied by (14) may

fall outside the interval [0,1], a situation which may often arise since the φ̂∗(i)
are likely to display appreciable sampling variability, given that this is the reason
that a logistic model is being used in the first place. This suggests either imposing
a constrained inference procedure or considering a narrower measurement error
model specification. One such more restricted assumption, following Chua and
Fuller (1987), is
A5 (unbiased measurement error): φ∗

ij. = φij., φ
∗
i.k = φi.k i = 1, . . . , I, j =

0, 1, k = 0, 1. In order to study the impact of this assumption, it is conventient
to define

αt
i = pr(y∗t = 1|yt = 0, cell i)/pr(y∗t = 1| cell i), (15)

which measures the ‘amount’ of measurement error at time t in cell i. A con-
sequence of the unbiasedness condition is that the right-hand side of (15) is
unchanged if 1 is replaced by 0 and vice-versa. It follows from the assumption
that the measurement errors are both independent and unbiased that

π∗
ij = (1 − α1

i )(1 − α2
i )πij + [1 − (1 − α1

i )(1 − α2
i )]φi.1/φ1... (16)
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Given an estimator γ̃i of γi = [(1−α1
i )(1−α2

i )]
−1 (see Fuller (1990), for the case

when α1
i = α2

i ) we may estimate πij by

π̃ij = γ̃iπ̂
∗
ij − (γ̃i − 1)π̂∗

i , (17)

where π̂∗
i = (φ̂∗

i0.π̂
∗
i0 + φ̂∗

i1.π̂
∗
i1)/(φ̂

∗
i0 + φ̂∗

i1.). (18)

An adjusted estimator of β is then obtained by solving (5) with φij. and πij

replaced by φ̂∗
ij. and π̃ij respectively, that is X ′D(φ̂∗)f(β̂) = X ′D(φ̂∗)π̃, where

π̃ = [π̃ij ]. Letting γ = (γ1, . . . , γI)′ and γ̃ = (γ̃1, . . . , γ̃I)′, we make the further
assumption:
A6: n1/2(γ̃ − γ) → N [0, V (γ̂)] in law as n → ∞ and γ̃ is asymptotically indepen-
dent of (π̂∗′ , φ̂∗′).

The assumption of independence seems plausible if the γ̃i are derived from
a separate study. The asymptotic distribution of γ̃ is indexed by n in order to
simplify results, even though the separate study may be based on a very different
sample size. Since φ̂∗ and π̃ are consistent for φ∗ = φ and π respectively, β̃ is
consistent for β.

Note that the computation of β̃ only requires a simple adjustment to standard
packages, such as PROC CATMOD in SAS, which obtain maximum likelihood
estimates of logit models. Such packages require as standard input the design
matrix X, the sample size n, the vector of cell proportions φ̂∗ and the vector of
response proportions π̂∗. Only the last of these needs adjusting to π̃, which from
(17) and (18) is simply obtained by multiplying π̂∗ by a block diagonal matrix,
the elements of which depend on γ̃ and φ̂∗. Then the standard computational
procedure will generate β̃, although, of course, the associated standard errors
and test procedures will be incorrect.

As a heuristic way of thinking about this adjustment procedure, note that
in (16) measurement error shrinks π∗

ij towards φi.1/φi.., a weighted average of
πi0 and πi1, so that the effect of y1 on y2 in cell i, as measured by πi1 − πi0, is
attenuated by a factor γ−1

i (0 < γ−1
i ≤ 1):

π∗
i1 − π∗

i0 = γ−1
i (πi1 − π∗

i0).

The aim of the adjustment is to disattenuate this effect by setting

π̃i1 − π̃i0 = γ̃i(π̂∗
i1 − π̂∗

i0). (19)

The asymptotic covariance matrix of β̃, normalised by n1/2, is given by expression
(10) with V [(π̂′, φ̂′)′] in (11) replaced by the (normalised) asymptotic covariance
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matrix of (π̃′, φ̂∗′)′. Writing π̃ = g(π̂∗, φ̂∗, γ̃) and assuming A6 and that π̂∗ and
φ̂∗ obey the asterisked version of A3, we have

V (π̃) = ∇πV (π̂∗)∇′
π + 2∇πC(π̂∗, φ̂∗)∇′

φ + ∇φV (φ̂∗)∇′
φ + ∇γV (γ̃)∇′

γ , (20)

C(π̃, φ̂∗) = ∇φV (φ̂∗) + ∇πC(π̂∗, φ̂∗),

where ∇π,∇φ and ∇γ are the first partial derivative matrices of g(π∗, φ, γ) with
respect to π∗, φ and γ respectively. Each of these matrices is block diagonal with
diagonal element matrices ∇πi(2 × 2),∇φi(2 × 2), and ∇γi(2 × 1) respectively
(i = 1, . . . , I), where the elements of ∇πi,∇φi and ∇γi are

∇πijl = γiδjl − (γi − 1)φil./φi.. j, l = 0, 1,

∇φijl = −(γi − 1)π∗
il(1 − φil./φi..)/φi.., j, l = 0, 1,

∇γij = π∗
ij − (π∗

i0φi0. + π∗
i1φi1.)/φi.., j = 0, 1,

and where φi.. = φi0. + φi1. and δjl is the Kronecker delta. Given consistent esti-
mators of V [(π̂∗′ , φ̂∗′)′] and V (γ̃), a consistent estimator of V (β̃) may be obtained
by substituting π̂∗, φ̂∗, γ̃ and β̃ for π∗, φ, γ and β respectively in ∇π,∇φ,∇γ,∆ and
D(φ), and substituting f(β̃) − π̃ for ε in D(ε).

Whilst the adjustment in β̃ removes the inconsistency in β̂∗, there may be an
associated cost in terms of increased variance. There are two ways in which V (β̃)
can be increased by measurement error. First, there is the uncertainty arising
out of estimation of γ, which affects V (β̃) through the term V (γ̃) in (20). This
arises even if all the γi = 1 and there is no measurement error. For in this case,
∇φ = 0,∇π = I and ∇γ has elements ∇γij = πij −φi.1/φi... Hence, V (β̃) has the
same form as V (β̂∗) except that V (π̂∗) is replaced by V (π̂∗) + ∇γV (γ̃)∇′

γ and
so V (β̃) − V (β̂∗) is a non-negative definite matrix. Often γ̃ will be based on a
reinterview study with much smaller sample size than the study on which π̂∗ is
based and so the error in estimating γ could, in principle, increases the variance
of β̃ compared to β̂∗ substantially.

Second, measurement error could increase V (β̃), even if V (γ̃) = 0, via the
terms γi appearing in ∇π and ∇φ. For example, if V (γ̃) = 0, then from (19)
the adjusted estimator π̃i1 − π̃i0 of the contrast πi1 − π10 has variance γ2

i times
the variance of the unadjusted estimator. Whilst one might conjecture that,
in practice, the adjusted estimators will tend to have higher variance than the
unadjusted estimators even when V (γ̃) = 0, this is not necessary theoretically.

For example, supposed that the parameter of interest is Ψ = πi1 + 3πi0 and
that φi0./φi.. = φi1./φi.. = 0.5, γ̃i = 2, V (φ̂∗) = 0, V (γ̃) = 0; then the unadjusted
estimator is Ψ̂∗ = π̂∗

i1 +3π̂∗
i0 and the adjusted estimator is Ψ̃ = π̃i1 +3π̃i0 = 4π̂∗

i0.

If π̂∗
i1 and π̂∗

i0 are uncorrelated and π̂∗
i1 has much greater variance than π̂∗

i0, then
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Ψ̂∗ will have greater variance than Ψ̃. Such an example could easily be extended
to a comparison of β̃ and β̂∗.

6. An Example

We now illustrate the application of the proposed methods on data from
the U.S. Panel Study of Income Dynamics (PSID). Table 1 cross-classifies the
variable:

y∗t = 1 if individual is recorded to be in job covered by union contract

= 0 otherwise

for the two years t = 1 (1983) and t = 2 (1987), based on men in the self-
weighting ‘Survey Research Centre sample’ (Hill (1992), p.9) who are currently
working in both years but are not self-employed nor working for government.

Table 1. Sample counts for observed variables

In union job in 1987 (y∗
2)

No(0) Yes(1)
In union No(0) 684 33
job in 1983
(y∗

1) Yes(1) 43 191

Two factors which might be expected to affect transitions between the states
are considered. The first factor is age, which is divided into four categories,
18-29, 30-34, 35-44 45+, which are of roughly equal size for the sample con-
sidered. The second factor partitions employment sectors into two categories,
roughly according to tendency to be unionized. The first less-unionized category
includes professional, managerial, sales and farming employment. The second
more-unionized category includes manual and clerical employment. These two
factors together define I = 8 cells.

Because of difficulties in identifying strata and clusters in the available data
file, we ignore here the complexity of the sampling design and assume simple
random sampling. Fitting alternative logistic models with y∗2 as the response
and examining the likelihood-ratio chi-squared statistic suggests a model with
xij = (1, j, age(2), age(3), age(4), work, j.age(2), j.age(3) j.age(4), where j is
the value of y∗1, age(2)-age(4) are binary indicators representing the age factor
and ‘work’ is a binary indicator of the second factor. Thus the model includes
an interaction between age and y∗1, which reflects the fact that as age increases
there is declining mobility either from y∗1 = 0 to y∗2 = 1 or from y∗1 = 1 to
y∗2 = 0. On the other hand, there seems little evidence of an interaction between
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y∗1 and the second factor or between the two factors. Parameter estimates and
standard errors are given in the first three columns of Table 2. The standard
errors labelled ‘model-based’ set D(ε) = 0 in (11), whereas those labelled ‘robust’
allow for non-zero ε. The fact that these two sets of standard errors are similar
provides further evidence that the model represents a reasonable approximation.

Table 2. Parameter estimates for logistic model

Measurement error ignored Adjusted for measurement
error

Covariate Estimated Standard Error Estimated Standard
Coefficient Model- robust Coefficient Error

based
Constant −2.81 0.34 0.33 −2.75 0.33
y1 3.13 0.44 0.44 3.61 0.48
age(2) −0.69 0.47 0.47 −1.11 0.49
age(3) −1.02 0.53 0.53 −1.74 0.54
age(4) −0.93 0.53 0.53 −2.26 0.55
y1age(2) 0.80 0.65 0.65 1.19 0.71
y1age(3) 1.92 0.75 0.74 2.74 0.80
y1age(4) 2.54 0.76 0.76 4.76 0.84
work 0.63 0.30 0.29 0.32 0.29

One source of information on measurement error is the PSID Validation
Study (Bound et al. (1990), Hill (1992), p.29) This study involved comparing
responses to the PSID instrument with company records for a sample of workers
from one large firm. A cross-classification of validated and survey responses on
the reponse variable in 1987 is given in Table 3.

Table 3. Survey responses by responses from validation study in 1987

In union job in survey (y∗
2)

No(0) Yes(1)
In union job in No(0) 140 8
Validation Study
(y2) Yes(1) 2 302

Assuming that the misclassification matrices for each cell i in the validation
study and the general population are the same and that errors are independent
(assumption A4) and identically distributed over time, observed counts in Table
1 are adjusted according to the approach in (14) to the first table in Table 4.
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Table 4. Adjusted counts under alternative measurement models

Common Misclassification Unbiased Errors, common
Matrices α

y2 y2

No(0) Yes(1) No( 0) Yes(1)
y1 No(0) 764 -8 695 22

Yes(1) 3 192 32 202

Under this measurement model, it appears that essentially all the observed
transitions can be explained by measurement error and hence there is no pur-
pose in continuing to fit a logistic model. As an alternative measurement model
suppose that measurement errors are now not only independent and identically
distributed over time but they are also unbiased (assumption A5) in both the
general population within cells and in the Validation Study. We estimate the
parameter α in (15) from the 2 × 2 table in Table 3 by numerically maximis-
ing the likelihood under a multinomial model with equal marginal distributions.
The estimate is α̂ = 0.051 (with a standard error calculated from the observed
information matrix of 0.016) and the Pearson chi-squared test statistic for the
hypothesis of unbiased measurement error is 3.6 on 1 d.f. (not significant at a
95% level). Assuming that α (rather than the entire misclassification matrix) is
the same in the Validation Study and within each cell in the general population
and is the same over time, the adjusted count matrix, following the approach in
(17) and summing across cells, is the second table in Table 4. This adjustment
is quite different from the first and implies a more moderate adjustment of Table
1. The reason for the difference is that the marginal distribution of y∗2 is very
different in the Validation Study and the general population. Hence assuming
unbiased measurement errors with common α in both populations implies very
different misclassification matrices.

Extending the adjustment under the unbiased error model to the logistic
model following the approach in Section 5 and assuming a common α over all cells
gives the adjusted estimates in Table 2. Note that even though the adjustment
may appear small with α̂ only equal to 0.05, the effect on the coefficients of age
and of the interaction between age and y1 are very marked. For example, the
estimated ratio of the odds of staying in a job covered by a union contract for
men aged 45+ compared to men aged 18-29 rises from about 5 to about 12 as we
adjust for measurement error. The adjusted standard errors allow for the error in
estimating α and it is reassuring that these are not much larger than the original
standard errors.
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