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Abstract: Interval scale grouped data have peculiar structures of their own rights

among various archetypes of polytomous data that deserve special statistical treat-

ments. Maximum likelihood type approaches along with heteroscedastic and trans-

formation models are adapted to take into account this kind of architecture with

current state-of-art computation capabilities. Meanwhile, misclassification rates in-

stead of sum of squared residuals are suggested for model fitting and selection in

light of the data formation. Successful applications of these methods are demon-

strated by a set of empirical data regarding the endotracheal tube size selection for

small children in the emergency room of a hospital.
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1. Introduction

There are three prototypes in polytomous (or grouped) data with categorical
responses, namely nominal, ordinal and interval scales. They are investigated in
depth by McCullagh and Nelder (1989). However, the categorical responses of
interval scales are ordered by the clear-cut values of boundary points, that is, the
lower and upper bounds. The information contained in the interval scales is more
than ordinal scales because the boundaries between adjacent categories of ordinal
scales are not ambiguous. Hence, if we assign any artificial numbers or labels
to categories and perform analysis based on these artifacts, we sacrifice the gen-
uine information contained in interval scales to that contained in ordinal scales.
Furthermore, the beginning and ending categories may be censored (Turnbull
(1976)). The regions of the first and the last categories may be unbounded. It is
difficult to assign synthetic numbers or labels to left or right censored category.
Therefore, we will use the lower and upper bounds of each category to implement
analysis directly rather than utilize factitious numbers or labels.

The boundary points of all the categories define the territories. The lower and
upper bounds of any category must be used simultaneously in order to specify
the regions definitely. One way to evaluate the information contained in each
category is to utilize the probability of each interval. The combined information
of a full set of data can be described by the accumulate probabilities of all the
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observed intervals. By maximizing the accumulated probabilities, we can obtain
a maximum likelihood estimator (MLE) for the parameters relating response and
explanatory variables. Similar ideas can be at least traced back in the literature
to Lindley (1950). A recent survey can be found in Heitjan (1989). Because of
the constraints of computing power in the past, most researchers have restricted
themselves to finding the MLE based on representative values on intervals, such
as midpoints or means of intervals, and then doing the first order correction
by the analogous Sheppard correction. In the literature of experimental design,
the MLE with representative values without taking account of the censoring
mechanism is called as the “quick and dirty method” (Hamada and Wu (1991)).
It was demonstrated that this may lead to wrong decisions in highly fractionated
experiments. However, if it is used with care, it may still reach a quality decision.
This is demonstrated in Section 3. Thus, a neutral terminology for this kind of
approach can be the regula falsi MLE, that is, the MLE with false position.
The terminology regula falsi is borrowed from numerical methods where it is
used to describe secant-like approximation of derivatives in the Newton-Raphson
method. It must be used with caution.

As a matter of fact, with the growing power of computation, one can per-
form the MLE directly without any difficulty. This will be demonstrated in this
article. Besides, the idea of MLE can be conveyed in advance with modern com-
putation abilities. We will go further to have MLE cope with heteroscedastic
and transformation models. Heteroscedastic and transformation models have
been discussed admirably in Carroll and Ruppert (1988). Nevertheless, there
are simpler ways to access interval scale grouped data. We will illustrate the
methods in the following sections.

Because the pairs of lower and upper bounds are used instead of assigned
numbers or labels, it is not suitable to use the sum of squared residuals to measure
the goodness-of-fit of model. As the response variables are classified into cate-
gories, it is reasonable to use misclassification rates to detect model fitness. This
criterion also provides guidelines for model selection and it will be demonstrated
by an empirical study.

2. Empirical Data Set

This empirical study investigated the endotracheal tube (ETT) size selection
for small children in emergency rooms of hospitals (Wong, Chen, Wu, Chang,
Hsieh and Tan (1995)). There are 533 children that went through oral ETT
general anesthesia for minor pediatric surgery in the emergency rooms of Chang
Gung Memorial Hospital at Taiwan during October 1993 to August 1994. Their
ages (to the nearest six months), body weights (in Kilograms), body lengths
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(i.e. heights, in centimeter), circumferences of the right fifth fingers (in centime-
ter), head girths (in centimeter) and genders were collected. These variables are
recorded because they are reported to be very relevant in the literature (Wong,
Chen, Wu, Chang, Hsieh and Tan (1995)). We will use these variables as predic-
tor variables. For simplicity, we will use the number 0 to represent a girl and 1
for a boy.

Polyvinyl chloride ETT’s made by the Mallinckrodt Laboratory in U.S.A.
were used. The internal diameters (ID’s) and external diameters (ED’s) of ETT’s
are listed in Table 1.

Table 1. The ID’s and ED’s of Mallinckrodt ETT’s (unit: mm).

ID 3.5 4.0 4.5 5.0 5.5 6.0 6.5
ED 4.9 5.6 6.2 6.9 7.5 8.2 8.7

Firstly, an ETT was selected by experience so that it can pass through the
glottis without any difficulty. Then an anesthesiologist monitored the air leakage
when the ventilation circuit was set to a 20-25 cm H2O inflation pressure. If
the air leakage was minimal, this ETT size was the right size and recorded.
Otherwise, a bigger size was chosen and tested via the same procedures. The
right ETT sizes will be response variables. They are discrete. Furthermore, if a
5.0 mm ID (6.9 mm ED) ETT is the right size for a children, it indicates that the
unobserved true trachea size is between 6.9 and 7.5 mm ED ETT’s. Therefore,
the response variables actually are interval scales instead of ordinal scales.

Traditionally, the ID’s of ETT’s have been used as standard sizes for selec-
tion. However, the ED’s are the real boundaries for the unobserved true trachea
size. Therefore, we will investigate the selection rules based on the ED’s of ETT’s.

3. Maximum Likelihood Estimates

Suppose the unobserved response variables Y ∗
i are independently and not

identically distributed (i.n.i.d.) from a location and scale distribution density
f(xiβ, σi) for i = 1, . . . , n, where the location is related to the predictor variables
xi, a 1 by p row vector, and the parameters β, a p by 1 column vector, are
what we are interested in. The scale parameter σi has a positive value. Thus
the unknown parameters are denoted by θ, which includes β and the parameters
σi. If σi = σ, for all i, then this is a homoscedastic model and θ = (β, σ);
otherwise, it is heteroscedastic. These setups are more general than those of
generalized linear models in that the expectation values of Y ∗

i are not required
to exist. Thus, for instance, the family of Cauchy distributions can be included.
Meanwhile, the location and scale density can be asymmetric or skewed.
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The observed responses are the lower bounds and upper bounds of Y ∗
i , Y L

i

and Y U
i . That is, Y ∗

i is only known to fall in the interval bounded by Y L
i and Y U

i .
When the interval of Y ∗

i is left censored, Y L
i = −∞ and −∞ < Y ∗

i ≤ Y U
i . If the

interval is right censored, Y U
i = ∞ and Y L

i < Y ∗
i < ∞. For convenience, we will

denote all kinds of intervals as (Y L
i , Y U

i ]. Therefore, the information contained
in the intervals can be described by cell probabilities, Pθ(Y L

i < Y ∗
i ≤ Y U

i ), which
is just the probability of observed intervals. The information for the complete
random samples is the accumulation of cell probabilities,

∏
Pθ(Y L

i < Y ∗
i ≤ Y U

i ),
which is the joint probability of all observed intervals. We will call this term the
likelihood of all observed intervals. Hence, the MLE is defined as

θ̂ = argmax
n∏

i=1

Pθ(Y L
i < Y ∗

i ≤ Y U
i ), (1)

where the maximization is taken over the constrained set of arguments. For
homoscedastic models, θ = (β, σ) and the MLE is

(β̂, σ̂) = argmax
σ>0

n∏
i=1

{F [(Y U
i − xiβ)/σ] − F [(Y L

i − xiβ)/σ]}, (2)

where F (·) is the distribution function of the density f(·). For example, if the
underlying distribution is a normal distribution, then the MLE is

(β̂, σ̂) = argmax
σ>0

n∏
i=1

{Φ[(Y U
i − xiβ)/σ] − Φ[(Y L

i − xiβ)/σ]}, (3)

where Φ(·) is the cumulative distribution function of a standard normal den-
sity. This optimization can be solved by the EM algorithm (Dempster, Laird,
and Rubin (1977)). Due to the constraints in the optimization problem, the
approaches in the literature of constrained optimization are possible alternatives
(Fletcher (1987)). They are accessible in numerical computation software, such
as MATLAB, S-PLUS, . . . .

In heteroscedastic models, the variance function can be assumed to be σi =
ς(xi, β, η), for some additional nuisance parameters η, and η may contain more
than one parameter. For instance, there are some functional forms suggested in
literature as follows:

σi = (1+ | xiβ |)η (Box and Hill (1974)), (4)

σi = φexp(λxiβ) and η = (φ, λ) (Bickel (1982)), (5)

σi = (1 + (xiβ)2)1/2 (Jobson and Fuller (1980)). (6)
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The MLE of θ = (β, η) for heteroscedastic models becomes:

(β̂, η̂) = argmax
n∏

i=1

{F [(Y U
i − xiβ)/σi] − F [(Y L

i − xiβ)/σi]}, (7)

where the maximization of arguments is taken over the constrained sets of pa-
rameters.

The existence of the MLE can be assured by the unimodality of the likeli-
hood (Dharmadhikari and Joag-dev (1988)). If the finite valued Y L

i and Y U
i take

values in c0 = {c0
1, c0

2, . . . , c
0
m+1}, where m is a positive integer, Pratt (1981)

demonstrated the logconcavity in (β, c0
1, c0

2, . . . , c0
m+1) for homoscedastic mod-

els with σ = 1. Burridge (1981, 1982) showed that the likelihood function is
logconcave in (β/σ, 1/σ) for homoscedastic models if and only if the density
f is logconcave, which can be proved directly by the results of Prekopa (1973)
as well. However, for heteroscedastic models with logconcave densities f , one
can not obtain such nice results. It is necessary to check case by case. For non
logconcave densities f , it is also necessary to check unimodality. For example,
Copas (1975) has proved the unimodality of the location and scale Cauchy fam-
ily. Silvapulle and Burridge (1986) have given necessary and sufficient conditions
for the existence of a solution when there are grouped and ungrouped data at
the same time. These conditions can be validated by linear programming meth-
ods. The uniqueness of the MLE can be established if the likelihood function is
strictly logconcave. If the local maximizer of the likelihood function also satisfies
the Kuhn-Tucker conditions, then it is the global maximizer in the constrained
parameter space (e.g. see Fletcher (1987)). In practice, this can be programmed
easily using the available constrained optimization subroutines in software pack-
ages. For instance, we will use MATLAB to perform the computation in the
following analysis.

In order to see the major difference between the MLE and regula falsi MLE,
we will perform a comparison study based on the empirical data. Suppose we use
the lower bounds of ED’s of ETT’s as responses, i.e. Y ∗

i = Y L
i ; then this MLE for

β, namely β̂, using lower bounds only is a regula falsi estimator of the actual MLE.
Assuming that the empirical data come from a homoscedastic normal density,
f(xiβ, σ) = N(xiβ, σ), then, the regula falsi MLE using lower bounds only is
equivalent to the ordinary least squared (OLS) estimate using lower bounds in
this case. The OLS fits the lower bounds quite well with R2 = 82% and the
P-value for the F test is .0001, from the analysis of variance (ANOVA) results
using the SAS package as shown in Table 2. The estimated coefficients, standard
errors, and P-values are reported in Table 3. The t tests in Table 3 indicate that
the gender and finger circumferences may be deleted in model selection. For the
purpose of comparison, we keep all possible explanatory variables.
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Table 2. The ANOVA results of OLS with the lower bounds of ED’s.

Sum of Mean
Source DF Squares Square F Value Prob>F
Model 6 261.83990 43.63998 411.911 0.0001
Error 526 55.72712 0.10595

C Total 532 317.56702

Root MSE 0.32549 R-square 0.8245
Dep Mean 6.76266 Adj R-sq 0.8225

C.V. 4.81307

Table 3. The estimated coefficients, standard errors, and P-values of OLS
with the lower bounds of ED’s.

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob> |T|

INTERCEP 1 2.625777 0.29916343 8.777 0.0001
AGE 1 0.008760 0.00192808 4.543 0.0001

WEIGHT 1 0.029918 0.00903041 3.313 0.0010
HEIGHT 1 0.018435 0.00302502 6.094 0.0001
FINGER 1 0.121069 0.05939629 2.038 0.0420
HEAD 1 0.029067 0.00778688 3.733 0.0002

GENDER 1 −0.035581 0.03866031 -0.920 0.3578
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Figure 1. The standardized residual pair plot against case numbers of OLS
fitting using lower bounds
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The residual plot of Y L
i − xiβ̂ against case numbers looks fine. All the

routine statistical tests and diagnoses show that the fitting status is quite good.
However, this OLS fitting using lower bounds only is a serious under-fitting as
the responses get close to the upper bounds Y U

i . Therefore, the R2 statistics
does not reflect this situation and is not a good measure for goodness-of-fit for
interval scale grouped data. The residual plot using the lower bounds only does
not reveal the true fitting status for interval scale data.
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Figure 2. The standardized residual pair plot against fitted values of OLS
fitting using lower bounds

In order to take into account of both residuals of lower and upper bounds,
the pairs of corresponding residuals for lower and upper bounds are displayed and
connected as in Figure 1. The residuals are divided by the estimated standard
error, σ̂, to obtain the standardized residuals in Figure 1. There are 533 line
segments in total. The line segments have open endings at the bottom and close
endings at the top. The lengths of line segments depend on the distance between
contiguous categories. If the line segment intersects the zero line, it means that
the fitted value xiβ̂ is bigger than the lower bound, Y L

i , and less than or equal to
the upper bound, Y U

i . The selection of ETT for this patient will be correct based
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on the OLS fitting. If the line segment is above the zero line, then Y L
i ≥ xiβ̂ and

the selection of ETT is underestimated. Similarly, if the line segment is below
the zero line, then Y U

i < xiβ̂ and the selection of ETT is overestimated. Hence,
there are 258 cases (48%) correctly classified, 263 cases (49%) under-classified,
and 12 cases over-classified (2%). Among 263 under-classified cases, 250 cases
(47%) are underestimated by 1 category and 13 cases (2%) are underestimated
by 2 categories. All 12 over-classified cases are overestimated by 1 category.
The total misclassification rate, including under- and over- classification cases, is
275/533 = 52%! This example exhibits that the misclassification rate is indeed a
convincing measure of goodness-of-fit in interval scaled polytomous data. In order
to find out the misclassified status in every group, we can plot the standardized
residual pairs against fitted values in Figure 2. In each group, the slop of residual
pairs is −1 because the residuals, Y L

i − xiβ̂ or Y U
i − xiβ̂, plus fitted values, xiβ̂,

are the same within each group. The residual pair plot in Figure 2 is more
informative than Figure 1 in exposing the fitting status.

A simple way to correct the above approach is to use the middle value,
(Y L

i +Y U
i )/2, as the response after we recognize the censoring nature of the data

formation. Fortunately, the upper bound of this observed data is bounded and
this approach works well for this data set. The ANOVA results are similar to
those in Table 2. The R2 increases from 82.45% in Table 2 to 82.60% only. The
routine statistical tests and diagnoses are similar to those of OLS fitting with
lower bounds only with slightly higher significance. However, the misclassified
cases are reduced significantly to 168 cases (32%)! There are 85 cases (16%)
underclassified by 1 category and 83 cases (16%) overclassified by 1 category.
The phenomenon of underclassification by 2 categories disappears. The residual
pair plot is more centralized around the central line than that in Figure 2. The
middle values are much better than the lower (or upper) bounds in representing
the intervals. The resulting regression fits and predicts the middle points of the
intervals, not the lower bounds of the intervals. Hence, the regula falsi MLE
with middle points can lead to suitable fitting and prediction. A more refined
approach for the regula falsi MLE can use the imputation values as in Hamada
and Wu (1991). Hence, the regula falsi MLE must be used carefully.

Alternatively, the MLE can be applied to configure the bona fide information
contained in the pairs of lower and upper bounds. Fitting MLE with homoscedas-
tic models in the empirical data set, one can obtain the standardized residual
pair plot in Figure 3. The residual pairs are central around the zero line. More
precisely, there are 84 cases (16%) under-classified by 1 category and 86 cases
(16%) over-classified by 1 category. Therefore, the total misclassification rate
has been reduced from 52% to 32%! Furthermore, the serious underestimation
phenomenon in OLS with lower bounds only has been conformed into an even
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distribution. The cases that have been underestimated by 2 categories are cor-
rected at the same time. To see the details of the situation of misclassification
in each group, one can check Figure 3. In practice, this can provide finer adjust-
ments in each group for different fitted values. Furthermore, one can actually pull
out those misclassified cases and carry out the diagnosis. Therefore, the regula
falsi MLE must be used with caution because it may lead to wrong decisions if
one does not use proper representation values for censored data. The MLE will
always account for the censoring mechanism.
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Figure 3. The standardized residual pair plot against fitted values of MLE
fitting

4. Transformation Models

Suppose the original responses Y ∗
i are not i.n.i.d. from a location and scale

distribution density. One can search for a transformation so that the transformed
responses come from a location and scale density. That is, we suppose that there
exists an unknown increasing function, H(·), such that Yi = H(Y ∗

i ) are i.n.i.d.
from g(xiβ, σi) for i = 1, . . . , n. Thus, the possible class of distribution functions
for the responses can be larger than the family of location and scale distributions.
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For instance, this unknown transformation can be a shifted power transformation
(Box and Cox (1964)), then the whole problem setup is parametric. If this
unknown transformation is only assumed to be increasing, then the setup is
semiparametric. This kind of idea has been applied in practice, such as the
signal-detection theory in psychology (Dorfman and Alf (1968, 1969)).

MLE can be applied to transformation models in the same fashion. Suppose
that the finite valued Y L

i and Y U
i belong to the set c0 = {c0

1, c0
2, . . . , c

0
m+1}; then

the transformed values are ci = H(c0
i ). Without loss of generality, we assume

c0
1 < c0

2 < · · · < c0
m+1 and c1 < c2 < · · · < cm+1. We also set H(−∞) = −∞

and H(∞) = ∞. For a power transformation with shift, one needs to esti-
mate the power and shift parameters at the same time. For an arbitrary in-
creasing transformation, one also needs to estimate the nuisance parameters,
{c1, c2, . . . , cm+1}, at the same time. Since the number of nuisance parameters,
m+1, is fixed and does not increase with sample size, n, it will not cause any trou-
ble in estimation. For instance, the MLE with a semiparametric transformation
model (MLE/STM) is

θ̂ = argmax
n∏

i=1

Pθ(CL
i < Yi ≤ CU

i ), (8)

where CL
i = H(Y L

i ) and CU
i = H(Y U

i ), which take values in the set of {c1, c2,
. . . , cm+1}. Take a homoscedastic MLE/STM, σi = σ, for all i, as an example.
Then θ=(β, σ, c1, c2, . . . , cm+1) and we have

(β̂, σ̂, ĉ1, ĉ2, . . . , ĉm+1)

= argmax
σ>0, c1<c2<···<cm+1

n∏
i=1

Pθ(CL
i < Yi ≤ CU

i )

= argmax
σ>0, c1<c2<···<cm+1

n∏
i=1

{G[(CU
i − xiβ)/σ] − G[(CL

i − xiβ)/σ]}, (9)

where G(·) is the distribution function of the density g(·). The constrained
optimization over c1 < c2 < · · · < cm+1 can be performed via reparametrization
by θ = (β, σ, c1, d1, d2, . . . , dm), where di = ci+1− ci, for i = 1, . . . , m, are the
increments of boundary points. Then the estimator can be obtained by solving
the constrained optimization problem,

(β̂, σ̂, ĉ1, d̂1, d̂2, . . . , d̂m)

= argmax
σ>0, d1>0, d2>0, dm>0

n∏
i=1

{G[(CU
i − xiβ)/σ] − G[(CL

i − xiβ)/σ]}. (10)



TRANSFORMATION MODELS FOR INTERVAL SCALE DATA 851

Similarly, one can consider heteroscedastic MLE/STM. MLE with power trans-
formation models (MLE/PTM) can be utilized as well. Other types of transfor-
mation models can be considered equally. We will call this kind of MLE with
transformation models MLE/TM. The existence and uniqueness of MLE/TM
follows analogous arguments to those of MLE.

Applying MLE/STM to the empirical data, we will assume that the trans-
formed responses, Yi, follow a logistic density with location parameters xiβ and
scale parameters σi = 1, for all i. The choice of logistic distribution is just
to demonstrate that this popular distribution can be combined into MLE/STM
with ease. Other choice of distributions can be associated with MLE/STM with-
out any difficulty. The standardized residual pair plot is shown in Figure 4. In
particular, the residual pairs are jacked up mostly in the first and last categories,
which are results of the transformation of scales. Consequently, the misclassifica-
tion rates is reduced to 159 cases (30%)! There are 82 cases (15%) underestimated
by 1 category and 77 cases (14%) overestimated by 1 category.
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Figure 4. The standardized residual pair plot against fitted values of MLE/STM fitting

5. Theoretical Properties

We will demonstrate the asymptotic results for MLE/STM in homoscedastic
models, equation (10), for illustration. Similar results can be obtained for other
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cases in the same way. Since the boundary values of response categories are nui-
sance parameters, we can assume that the boundary values of adjacent categories
are connected without loss of generality. Suppose that there are a fixed number
of response categories and the finite valued CL

i = H(Y L
i ) and CU

i = H(Y U
i ) be-

long to the set c = {c1, c2, . . . , cm+1}. Now θ = (β, σ, c1, d1, d2, . . . , dm), where
dj = cj+1− cj , for j = 1, . . . , m. One can obtain the asymptotic consistency and
normality of MLE/STM, θ̂.

Theorem 1. Suppose that the true parameter, θ0, is in the constrained parameter
space, Θ.

(1) Under the conditions C1–C5 in Hoadley (1971), θ̂ →P θ0.
(2) Consider the conditions N1–N9 in Hoadley (1971). In particular, the condition

N7 assumes that the average Fisher information matrix converges to a positive
definite information matrix, I(θ), for all θ ∈ Θ. Then n1/2(θ̂ − θ0) →D

N(0, I
−1(θ0)).

Proof. Define a new random variable Zi from Yi = H(Y ∗
i ) as follows,

Zi =

{
j, if cj < Yi ≤ cj+1, j = 1, . . . ,m,

0, otherwise,

for i = 1, . . . , n. Then the probability density function of Zi is a multinomial
distribution with cell probabilities, {G[(cj+1 −xiβ)/σ]−G[(cj −xiβ)/σ]}, for all
j = 1, . . . ,m. The random variables, Zi, for all i = 1, . . . , n, are i.n.i.d. Since the
likelihoods of Yi are the same as those of Zi, one can prove this theorem based
on Theorems 1 and 2 in Hoadley (1971).

Mixed types of interval scale grouped and ungrouped data can be handled
by the product of cell probabilities and probability densities (or masses); the
idea of maximum likelihood can go through without any difficulty (see Burridge
(1981) for instance). Actually, the asymptotic results in Theorem 1 also hold for
the maximum likelihood type estimator in this case using the results in Hoadley
(1971) after combining the Borel measure and counting measure into a new dom-
inated measure.

6. Discussion

Throughout this article, we distinguish the critical differences between inter-
val scaled and other scaled polytomous data. The idea of MLE can be enhanced
in interval scaled polytomous data with current computation ability. Equipped
with heteroscedastic and transformation models, MLE can be more powerful.
The improvements of MLE over regula falsi MLE (or OLS) can be detected by
misclassification rates, including under- and over- classification rates. Together
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with the standardized residual pair plots, one can explore the real status of model
fitting in each category. These are demonstrated in the empirical studies in this
article. Further analyses of this empirical data are studied in Lu, Hsieh, Chang
and Wong (1996).

As for the computation aspects, the other technique available is the EM algo-
rithm in Dempster, Laird, and Rubin (1977). Because of the constraint nature of
MLE, especially the increasing orderings of the transformation in MLE/STM, we
considered constrained optimization methods. The methods considered here can
be generalized to multivariate responses as in Burridge (1982). Combination of
interval scale grouped and ungrouped data can be managed in the same fashion.
Utilizing the likelihoods of observed intervals, we can go ahead with the MLE
type approach with better model fitting and selection for interval scale grouped
data.
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