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Abstract: Degradation analysis can be used to assess reliability when few or even no

failures are expected in a life test. In this paper, we use a simple but useful degra-

dation model to compare degradation analysis and traditional failure-time analysis

in terms of asymptotic efficiency. The comparisons consider a range of practical

testing situations and provide insight into the trade-offs between these two meth-

ods of estimating the quantiles of the time-to-failure distribution. We investigate

the effect that the number of inspections, the amount of measurement error, and

the quantile of interest have on the asymptotic variances of the quantile estima-

tors. Although measurement error can induce some loss of precision in degradation

analysis, our comparisons show that, except in extreme cases, degradation analysis

provides more precision than traditional failure-time analysis.

Key words and phrases: First crossing time, life data analysis, measurement error,

relative efficiency.

1. Introduction

Traditional failure-time analysis (FTA) methods for estimating component
reliability record only the time-to-failure (for units that fail) or the running time
(for units that do not fail). In life tests for high reliability components there will
be few or no failures, making reliability assessment difficult. Degradation analysis
(DA) is an alternate approach that uses a sequence of degradation measures
to assess reliability. Lu and Meeker (1993) discuss a particular approach to
degradation analysis. Nelson (1990, chapter 11) discusses other methods for
analyzing degradation data, particularly with acceleration. In this paper we use
a simple, but physically reasonable, degradation model to compare DA and FTA.
This degradation model implies a lognormal distribution for the corresponding
time-to-failure distribution. We use the ratio of the asymptotic variances of
estimators of a quantile of the time-to-failure distribution to compare DA and
FTA.
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Suzuki, Maki and Yokogawa (1993) (SMY) also compare degradation and
failure-time analysis, but use different assumptions about how data become avail-
able, focus on different quantities of interest, and use a somewhat different model.
In particular,
• SMY do not let the ability to observe degradation depend on the level of

degradation (in some applications, units must be removed from service due to
failure or for safety reasons).

• SMY evaluate the ability to estimate mean time to failure, while our evalua-
tions are for selected percentiles of the time-to-failure distribution.

• SMY deal with an accelerated degradation model. We are concerned with tests
and inferences under a specified set of conditions.

2. Models

2.1. Degradation model

We assume a degradation model in which the degradation level is propor-
tional to time with a degradation rate that is random from unit to unit. More
specifically, we assume that measured degradation = exp(Θ)×time×exp(ε) which
implies the following simple path model: Y = Θ + x + ε, Θ ∼ N

(
µΘ, σ2

Θ

)
, ε ∼

N
(
0, σ2

ε

)
, where Y = log(measured degradation), Θ = log(degradation rate),

x = log(time), ε is the measurement error, and Θ and ε are independent. We
assume that “failure” occurs when actual degradation (Θ+x) reaches a specified
critical level Dc, that is, when Θ + x = Dc.

2.2. Time-to-failure model

From the degradation model in Section 2.1 the random log time-to-failure can
be expressed as X = Dc − Θ ∼ N

(
Dc − µΘ, σ2

Θ

)
. Therefore, the time-to-failure

distribution is lognormal with parameters µ
X

= Dc − µΘ and σ
X

= σΘ.

3. Data, Estimation and Asymptotic Variances

In this section we define the inspection data used in the comparison, we
give estimators of the model parameters, and we provide expressions for the
asymptotic variances of these estimators. For both the DA and FTA methods, we
assume fixed log inspection times x1, . . . , xm. For DA we observe a degradation
level (plus noise) at each inspection. At each inspection in FTA we observe the
number of units that have failed up to the current inspection.

3.1. Degradation analysis
3.1.1. Degradation inspection data

In some situations degradation will result in a sudden catastrophic failure.
Typically, however, there is not an exact relationship between the level of degra-
dation and the catastrophic failure. In other situations, performance degrades
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more gracefully. Then, service life of a unit would end around the time that
degradation has caused system performance to reach a specified level. In such
situations failure can be defined as some observed level of system performance
or in terms of actual degradation on a component that can be measured, with
some degree of measurement error. In either case, it may be necessary to replace
a degrading unit after degradation has reached a specified level, either because
of loss of adequate functionality or for safety reasons. In some reliability studies,
this will restrict the time of observation.

In our comparison, we assume that there are m planned inspection times at
log(times) x1, . . . , xm. The actual number mΘi of inspections on a unit is random
and depends on the unit’s log(degradation rate) = Θi as follows: mΘi = j (j =
2, . . . ,m − 1) if the unit “fails” between inspection times xj and xj+1 (i.e., if
Θi + xj < Dc ≤ Θi + xj+1), mΘi = m when the unit survives beyond xm (i.e.,
Θi + xm < Dc). Finally, when Θi + x2 > Dc, we assume that measurements
are available on the unit at x1 and x2. This would be realistic if we get a signal
at the time that Θ + x exceeds Dc (e.g., we detect loss of performance), even
though there is not a catastrophic failure and we cannot observe Θ + x directly.
Having two inspections on each unit insures that the parameters Θ and σε can
be estimated for each unit.

Thus, have data Yij = Θi + xj + εij, j = 1, . . . ,mΘi , 2 ≤ mΘi ≤ m, where
εij is the measurement error for the jth inspection on the ith unit.

In situations with large measurement error, our criterion for stopping obser-
vations will not provide a description of the actual stop-observation rule. The
description is, however, useful for comparing DA and FTA for situations when
observation is limited by high levels of degradation.

3.1.2. Two-stage estimation of the degradation parameters

We use the two-stage estimation procedure described in Lu and Meeker
(1993) to estimate the model parameters for DA. In the first stage, least squares
estimation gives

Θ̂i =
1

mΘi

mΘi∑
j=1

(Yij − xj),

σ̂2
εi =

1
mΘi − 1

mΘi∑
j=1

[
Yij − (Θ̂i + xj)

]2
.

By linear model normal theory, the conditional distributions of Θ̂i and σ̂2
εi, given

Θi, are Θ̂i ∼ N
(
Θi, σ

2
ε /mΘi

)
and (mΘi − 1)σ̂2

εi/σ
2
ε ∼ χ2

mΘi
−1, where Θi and mΘi

are realizations of Θ and mΘ, respectively.
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We use σ̂2
Θ̂i

= σ̂2
εi/mΘi to estimate σ2

Θ̂i
= Varε(Θ̂i|Θi), the variance due to

measurement error for a realized value of Θi. Taking the variability of random
effects into account, the unconditional distribution of Θ̂i has mean E (Θ̂i) = µΘ

and variance Var(Θ̂i) = σ2
Θ + σ2

Θ̂
, where σ2

Θ̂
= E (σ̂2

Θ̂i
) = E Θ[E ε(σ̂2

Θ̂i
|Θi)] =

E Θ(σ2
ε /mΘi) = σ2

ε E Θ(1/mΘi). Note that expectations without a subscript need
to be taken with respect to the joint distribution of Θ and ε.

In Stage 2 of the DA estimation procedure, we combine (Θ̂i, σ̂
2
Θ̂i

), i = 1, . . . , n

into µ̂Θ =
∑n

i=1 Θ̂i/n and σ̂2
Θ̂

=
∑n

i=1 σ̂2
Θ̂i

/n. Then, because E (Θ̂i) = µΘ and

E (σ̂2
Θ̂i

) = σ2
Θ̂
, we have E (µ̂Θ) = µΘ and E (σ̂2

Θ̂
) = σ2

Θ̂
. Let S2

Θ =
∑n

i=1(Θ̂i −
µ̂Θ)2/(n − 1) denote the sample variance of the Stage 1 estimates of Θ. This
sample variance, E (S2

Θ) = σ2
Θ+σ2

Θ̂
, reflects both the measurement error variance

and the unit to unit random values of Θ. Therefore, we estimate σ2
Θ by σ̂2

Θ =
S2

Θ − σ̂2
Θ̂
. If σ̂2

Θ < 0, setting σ̂2
Θ = 0 is a special case of the approach used in Lu

and Meeker (1993), originally suggested by Amemiya (1985).

3.1.3. Variance-covariance matrix for DA
Noting that µ

X
= Dc − µΘ and σ

X
= σΘ, we take µ̂[DA]

X = Dc − µ̂Θ and
σ̂[DA]

X = σ̂Θ. In Appendix A, we show that the asymptotic variance-covariance
matrix for the DA estimators can be expressed as

Var

(
µ̂[DA]

X

σ̂[DA]
X

)
=

σ2
X

n

(
V [DA]

11 V [DA]
12

V [DA]
12 V [DA]

22

)
.

Appendix B gives computational expressions for V [DA]
11 , V [DA]

12 , and V [DA]
22 and shows

that they depend on the “standardized” inspection times zj = (xj − µ
X

)/σ
X

,
j = 2, . . . ,m−1, and the variability ratio Rσ = σε/σΘ, the ratio of measurement
error variation versus random effect variation.

3.2. Failure-time analysis
3.2.1. Failure-time data

Because DA uses inspections during the test, we also assume the use of
inspections in FTA. The data consist of the number of observed failures in each
interval. We let n1 denote the number of units failed before log time x1, let nj

denote the number of units failed between inspections at log times xj−1 and xj,
j = 2, . . . ,m, and let nm+1 denote the number of units that survived to the last
inspection xm. Note that n =

∑m+1
j=1 nj.

3.2.2. Maximum likelihood estimation of model parameters
Detailed discussion of maximum likelihood estimation for failure-time data

can be found, for example, in Lawless (1982) or Nelson (1982). For the inspec-
tion failure-time data, the maximum likelihood estimates µ̂[FTA]

X and σ̂[FTA]
X are
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obtained by maximizing the log likelihood of n test units:

L = n1 log Φ(z1) +
m∑

j=2

nj log
[
Φ (zj) − Φ (zj−1)

]
+ nm+1 log[1 − Φ(zm)],

where zj , j = 1, . . . ,m, are the standardized inspection times defined at the end
of Section 3.1.3.

3.2.3. Variance-covariance matrix for FTA

The asymptotic variance-covariance matrix of the FTA maximum likelihood
estimators can be expressed as

Var

(
µ̂[FTA]

X

σ̂[FTA]
X

)
=

σ2
X

n

(
V [FTA]

11 V [FTA]
12

V [FTA]
12 V [FTA]

22

)
.

Meeker (1986) gives expressions for computing V [FTA]
11 , V [FTA]

12 , and V [FTA]
22 and

shows that these quantities depend only on the standardized inspection times zj,
j = 1, . . . ,m.

3.3. Asymptotic variances of x̂[DA]
p and x̂[FTA]

p

The p quantile of the log time-to-failure distribution is xp = µ
X

+ upσX

where up = Φ−1(p) is the standard normal p quantile. The DA estimator of
xp is obtained from x̂[DA]

p = µ̂[DA]
X + upσ̂

[DA]
X . The asymptotic variances of these

estimators are

Var(x̂[DA]
p ) = Var(µ̂[DA]

X + upσ̂
[DA]
X )

= Var(µ̂[DA]
X ) + 2upCov(µ̂[DA]

X , σ̂[DA]
X ) + u2

pVar(σ̂[DA]
X ).

The corresponding asymptotic variance factor (VF) is

VF[DA](p) =
n

σ2
X

Var(x̂[DA]
p ) = V [DA]

11 + 2upV
[DA]
12 + u2

pV
[DA]
22 .

To compute Var(x̂[FTA]
p ) and VF[FTA], we use exactly the same formulas with FTA

substituted for DA.

3.4. Relative efficiency

To compare DA and FTA, we use an (asymptotic) relative efficiency (RE)
computed as the ratio of the asymptotic variances of the estimated p quantile of
time-to-failure distribution for the DA and FTA methods

RE =
Var(x̂[FTA]

p )
Var(x̂[DA]

p )
=

VF[FTA](p)
VF[DA](p)

=
V [FTA]

11 + 2upV
[FTA]

12 + u2
pV

[FTA]
22

V [DA]
11 + 2upV

[DA]
12 + u2

pV
[DA]
22

.
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4. Comparison and Discussion

4.1. Test plans used in comparisons

Meeker (1986) evaluates and compares different methods of planning inspec-
tions in life tests and suggests that “equal-probability-spacing” has good statis-
tical properties and provides a convenient method for comparing alternative life
test plans. Here, we also use the “equal-probability-spacing” inspection times to
compare DA and FTA. With the “equal-probability-spacing” inspections, the
expected number of units failed is the same within each inspection interval.
The “equal-probability-spacing” standardized log inspection times are specified
in terms of zj = Φ−1[(j/m)PF ], j = 1, . . . ,m, where PF is the expected pro-
portion of failures by the last log inspection time xm. The actual log inspection
times are related to the standardized inspection times through xj = µ

X
+ zjσX

,
j = 1, . . . ,m. For purposes of comparison, the “equal-probability-spacing” in-
spections have the advantage of being easy to characterize and specify because
they depend only on specification of m and PF .

The variance factor VF[DA](p) is a function of PF ,m,Rσ, and p, and
VF[FTA](p) is a function of PF ,m, and p. Thus the RE is a function of PF ,m,Rσ,
and p. We compared the DA and FTA methods by computing and graphing
VF[DA](p), VF[FTA](p), and RE for all combinations of the following factors:

• The time-to-failure distribution quantiles of interest: p = .01, .02, . . . , .99.
• The expected proportion of failures (i.e., proportion exceeding Dc) before the

last inspection: PF = .1, .2, . . . , .9.
• The variability ratio: Rσ = .1, .5, 1, 2, 5.
• The number of inspections: m = 3, 5, 10, 20, 50, 100.

4.2. Comparison figures

Figures 1 to 3 provide the results for a subset of these combinations:
• The first plot in Figure 1 shows VF[FTA](p) versus p with m = 10 inspections,

with separate lines for different values of PF . This plot, for the lognormal
distribution, is similar to the plot given in Meeker and Nelson (1976) of the
variance factor of the estimated quantile of the Weibull time-to-failure dis-
tribution for censored data and continuous inspection. The other plots in
this figure show VF[DA](p) versus p with the same number of inspections with
variability ratios Rσ = .5, 2, 5.
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Figure 1. Variance factors for estimated quantiles.
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Figure 2. Degradation analysis versus failure-time analysis: Rσ = .1, .5 and
m = 10, 100.
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Figure 3. Degradation analysis versus failure-time analysis: Rσ = 2, 5 and
m = 10, 100.

• Figures 2 and 3 plot RE versus p for several values of PF for all combinations
of variability ratios Rσ = .1, .5, 2, 5, and number of inspections m = 10, 100.

4.3. Discussion

Figure 1 shows, for FTA, that
• VF[FTA](p) decreases and then increases as p increases. There is less precision

for estimating quantiles that are remote from PF .
• The effect of different PF on VF[FTA](p) is stronger when estimating larger

quantiles; there is more spread on the right-hand side than on the left. This
indicates that precision drops off rapidly when extrapolating into the upper
tail of the time-to-failure distribution.

The following points can be seen most clearly in graphs of VF[FTA](p) versus
PF which, to save space, are not shown here.
• With continuous inspection, VF[FTA](p) is strictly decreasing as a function of

PF because as more test units fail, more information about the time-to-failure
distribution becomes available and, hence, we can estimate the quantile of the
time-to-failure distribution more precisely.

• With only interval-information on the time to failure, VF[FTA](p) decreases as
PF increases over most of the range of PF , but it is possible for VF[FTA](p) to
increase slightly beginning at some point after PF exceeds p. This is a result of
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the limited information from the discrete inspection data. For example, in the
extreme case with only m = 2 inspections, as the last inspection time becomes
large, the resulting data from that inspection is unimportant to estimate a
small quantile. This is the reason that there is some crossing of lines in the
plot of VF[FTA](p) versus p in Figure 1.

The plots in Figure 1 also shows, for DA, that
• As with the FTA plots, the plots of VF[DA](p) versus p also have a “U” shape.
• VF[DA](p) increases as PF increases. This general behavior is opposite to that

for the FTA. This is because increasing PF is equivalent to increasing the
test length and, hence, with constant m, reducing the expected number of
inspections before the actual degradation crosses Dc. The effect is smaller
when the measurement error ratio Rσ is small.

Figures 2 to 3, which focus on the RE of DA versus FTA, show that
• RE usually decreases as PF increases. This is because, as explained earlier, in-

creasing the test length with the same number of inspections generally provides
more information for FTA, but less information for DA.

• Especially when Rσ is small, RE is much larger when estimating quantiles in
the upper tail of the time-to-failure distribution, particularly for smaller PF .
This shows the advantage of DA over FTA when extrapolating into the upper
tail of the time-to-failure distribution.

• From Figure 2, when the variability ratio is small (e.g., Rσ = .1 or .5), the
number of inspections has little effect on RE.

• With large Rσ, RE drops well below 1 for some combinations of PF and p.
• In Figure 3, however, we see that the number of inspections can compensate

for a large value of Rσ (e.g., Rσ = 5). With high measurement error variability,
for many combinations of PF and p, DA can provide better precision than FTA
only if the number of inspections is large enough. Meeker (1986) shows that
increasing m beyond 10 has little effect on the precision of FTA estimates.

• Figure 3 also shows that RE begins to decrease with p, particularly for large
p. This is because, as seen in Figure 1, VF[DA](p) increases with p more rapidly
than VF[FTA](p) for large p.

5. Concluding Remarks

In this paper we compare DA and FTA methods in terms of asymptotic
variance factors and relative efficiency of the estimators of quantiles of time-
to-failure distribution. From the figures and discussion, we can summarize the
comparison as follows
• As the PF increases, there are different effects for FTA and DA. For FTA the

expected proportion of failures increases with PF , increasing precision. For
the DA, however, the expected number of inspections before failure decreases
as PF increases, causing a decrease in precision.
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• Even with large measurement error variability, DA performs better than the
FTA, provided there are enough inspections to compensate for the measure-
ment error variance.

• The results show that DA is especially better suited than the FTA to make
inference on the quantiles that are larger than PF .

The advantages of DA do not come entirely for free. For FTA we need to
specify a time-to-failure distribution. For DA we need to specify a degradation
model, implying a time-to-failure distribution. In either case data can be used
to assess the adequacy of the model within the range of the data. In terms of
statistical efficiency, DA has its biggest advantages when estimating quantiles
of failure probabilities beyond the range of the data. With either FTA or DA,
there will be potential for substantial model error (or bias) in estimates that
extrapolate beyond the range of the data. Because DA offers more precision in
these estimates we could, outside the range of the data, expect less robustness
with the use of an inadequate model. On the other hand, degradation modeling
should, whenever possible, be tied closely to the physics of failure, providing
more confidence for degradation models than is typical in the commonly used
curve-fitting techniques of FTA (which are, of course, adequate for interpolative
inferences).

Although working with different data and model assumptions, our conclu-
sions are consistent with those of Suzuki, Maki, and Yokogawa (1993). Also,
their results, based on a model with terms allowing for fixed-effect curvature in
the degradation paths, suggest that similar conclusions would be obtained if our
setup were extended to include terms for curvature in the degradation paths.

In this paper we have provided evaluations of asymptotic variance factors
for a range of degradation testing situations, giving a general picture of the
effect that the various factors have on estimation precision. To answer specific
questions about the design of such experiments (i.e., length of test and sample
size) it is useful to do specific computations of asymptotic variances. Also, at
the expense of having to use more computer time, asymptotic evaluations can be
supplemented with Monte Carlo simulation to allow evaluations without having
to rely on asymptotic approximations.

In our comparisons we have not accounted for the fact that there may be
different costs for obtaining time-to-failure and degradation data. In many (but
not all) situations, degradation measurements result in more expense. The cost
varies, depending on the situation. Often the larger part of the cost is in metrol-
ogy research or needed capital equipment needed to make measurements. In
many other situations it involves painstaking disassembly and measurement. In
many electronic tests, however, the cost of taking measurements is extremely low
because the measurement work is done by computer recording of the signals that
directly input from test equipment.
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Appendix

A. Expected Values, Variances and Covariances for the Two Stage
Estimators

In this appendix we derive the asymptotic expected values and variance-
covariance matrices of the two–stage estimators µ̂[DA]

X , σ̂[DA]
X . Recall that µ̂[DA]

X =
Dc − µ̂Θ and (σ̂[DA]

X )2 = σ̂2
Θ = S2

Θ − σ̂2
Θ̂
, where µ̂Θ =

∑n
i=1 Θ̂i/n, S2

Θ =∑n
i=1(Θ̂i − µ̂Θ)2/(n − 1), and σ̂2

Θ̂
=
∑n

i=1 σ̂2
Θ̂i

/n. For any fixed i, Θ̂i and σ̂2
Θ̂i

are independent. Also, units i and k (i �= k) are independent, which implies, for
example, that Cov(Θi,Θk) = Cov(Θ̂i, Θ̂k) = Cov(Θ̂i, σ̂

2
Θ̂k

) = 0.

A.1. Expected values

First, we show that µ̂[DA]
X , (σ̂[DA]

X )2 are unbiased estimates of µ
X

, σ2
X

.

E (µ̂[DA]
X ) = Dc−E (Θ̂i)=Dc−E Θ

[
E ε(Θ̂i|Θi)

]
=Dc−E Θ(Θi)=Dc−µΘ =µ

X
,

E
[
(σ̂[DA]

X )2
]

= E (S2
Θ)−E (σ̂2

Θ̂
)=σ2

Θ + σ2
Θ̂
− σ2

Θ̂
=σ2

Θ =σ2
X

.

Using a Taylor series expansion, up to terms of order n−1, σ̂[DA]
X = σΘ + (σ̂2

Θ −
σ2

Θ)/(2σΘ).

A.2. Variance-covariance matrices

In this section we show that, up to terms of order n−1,

Cov

(
µ̂[DA]

X

σ̂[DA]
X

)
=

σ2
Θ

n

[
V [DA]

11 V [DA]
12

V [DA]
12 V [DA]

22

]
,

where V [DA]
11 = 1 +

σ2
Θ̂

σ2
Θ

(1)

V [DA]
12 = − 1

σ3
Θ

CovΘ(Θi, σ
2
Θ̂i

) (2)

V [DA]
22 =

1
2σ4

Θ

{
(σ2

Θ + σ2
Θ̂
)2 + VarΘ(σ2

Θ̂i
) + 2CovΘ

[
(Θi − µΘ)2, σ2

Θ̂i

]

+E Θ

( σ4
Θ̂i

mΘi − 1

)}
. (3)
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Note that σ2
Θ̂i

= Varε(Θ̂i|Θi) = σ2
ε /mΘi , which is a random variable because mΘi

depends on the random Θ.
The limiting expressions for V [DA]

11 , V [DA]
12 , and V [DA]

22 , as σ2
Θ̂
→ 0 (which hap-

pens when m → ∞ or σε → 0) are V [DA]
11 = 1, V [DA]

12 = 0, and V [DA]
22 = 1/2. As

expected, these limiting values are equal to the values for the corresponding com-
ponents V [FTA]

11 , V [FTA]
12 , and V [FTA]

22 in the failure-time analysis case when PF = 1
(no right censoring) and m = ∞ (continuous inspection). To derive the V [DA]

ij ,
we made repeated use of the following results:
• Let W,R,S be given random variables that have finite second moments. Then

(see, Searle, Casella and McCulloch (1992, page 461)):

Cov(W,R) = Cov[E (W |S),E (R|S)] + E [Cov(W,R|S)] (4)

Var(W ) = Var[E(W |S)] + E[Var(W |S)] (5)

• If W has mean µW , variance σ2
W , and finite third moment, then Cov(W,W 2)

= E [(W − µW )3] + 2σ2
W µW . To show this, expand the third moment on the

right-hand side and simplify. Then, when W is symmetrically distributed,
E [(W − µW )3] = 0 and Cov(W,W 2) = 2σ2

W µW .

Derivation of Var(µ̂[DA]
X )

Var(µ̂[DA]
X ) = Var(Dc − µ̂Θ) = Var(µ̂Θ) =

1
n

Var(Θ̂i)

=
1
n

{
VarΘ[E ε(Θ̂i|Θi)] + E Θ[Varε(Θ̂i|Θi)]

}
=

1
n

{
VarΘ(Θi) + E Θ(σ2

Θ̂i
)
}

=
1
n

(σ2
Θ + σ2

Θ̂
)

=
σ2

Θ

n
V [DA]

11 .

Derivation of Cov(µ̂[DA]
X , σ̂[DA]

X )

Using the delta method approximation, for large n, one gets

Cov(µ̂[DA]
X , σ̂[DA]

X ) = Cov(Dc−µ̂Θ, σ̂Θ)=−Cov(µ̂Θ, σ̂Θ)≈− 1
2σΘ

Cov(µ̂Θ, σ̂2
Θ)

= − 1
2σΘ

Cov(µ̂Θ, S2
Θ − σ̂2

Θ̂
)

= − 1
2σΘ

[
Cov(µ̂Θ, S2

Θ) − Cov(µ̂Θ, σ̂2
Θ̂
)
]
. (6)

To simplify the expression on the right-hand side, observe that
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Cov(µ̂Θ, S2
Θ) = Cov

[
µ̂Θ,

1
n − 1

( n∑
i=1

Θ̂2
i − nµ̂2

Θ

)]

≈ 1
n

[ n∑
i=1

Cov(µ̂Θ, Θ̂2
i ) − nCov(µ̂Θ, µ̂2

Θ)
]

=
1
n

[ 1
n

n∑
i=1

Cov(Θ̂i, Θ̂2
i ) − nCov(µ̂Θ, µ̂2

Θ)
]

=
1
n

[
Cov(Θ̂i, Θ̂2

i ) − nCov(µ̂Θ, µ̂2
Θ)
]

≈ 3
n

CovΘ(Θi, σ
2
Θ̂i

). (7)

Equation (7) follows from

Cov(Θ̂i, Θ̂2
i ) = E

[
(Θ̂i − µΘ)3

]
+ 2µΘ(σ2

Θ + σ2
Θ̂
)

= 3CovΘ(Θi, σ
2
Θ̂i

) + 2µΘ(σ2
Θ + σ2

Θ̂
)

and the approximation (obtained by ignoring terms of order n−2)

Cov(µ̂Θ, µ̂2
Θ) = E [(µ̂Θ − µΘ)3] +

2
n

(σ2
Θ + σ2

Θ̂
)µΘ

=
1
n2

E
[
(Θ̂i − µΘ)3

]
+

2
n

(σ2
Θ + σ2

Θ̂
)µΘ

≈ 2
n

(σ2
Θ + σ2

Θ̂
)µΘ.

Now,

Cov(µ̂Θ, σ̂2
Θ̂
) = Cov

( 1
n

n∑
i=1

Θ̂i,
1
n

n∑
i=1

σ̂2
Θ̂i

)
=

1
n2

n∑
i=1

Cov(Θ̂i, σ̂
2
Θi

)

=
1
n

CovΘ(Θi, σ
2
Θ̂i

) (8)

which holds because Cov(Θ̂i, σ̂
2
Θ̂i

) = CovΘ[E ε(Θ̂i|Θi),E ε(σ̂2
Θ̂i
|Θi)]+E Θ[Covε(Θ̂i,

σ̂2
Θ̂i
|Θi)] = CovΘ(Θi, σ

2
Θ̂i

). Substituting (7) and (8) into (6) and simplifying gives

Cov(µ̂[DA]
X , σ̂[DA]

X ) =
σ2

Θ

n

[
− 1

σ3
Θ

CovΘ(Θi, σ
2
Θ̂i

)
]

=
σ2

Θ

n
V [DA]

12 .
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Derivation of Var(σ̂[DA]
X )

Var(σ̂[DA]
X ) = Var(σ̂Θ) ≈ 1

4σ2
Θ

Var(σ̂2
Θ) =

1
4σ2

Θ

Var(S2
Θ − σ̂2

Θ̂
)

=
1

4σ2
Θ

[
Var(S2

Θ) + Var(σ̂2
Θ̂
) − 2Cov(S2

Θ, σ̂2
Θ̂
)
]
. (9)

Now,

Var
(
S2

Θ

)
≈ 1

n

{
E
[
(Θ̂i − µΘ)4

]
− (σ2

Θ + σ2
Θ̂
)2
}
, (10)

where

E
[
(Θ̂i − µΘ)4

]
= 3(σ2

Θ + σ2
Θ̂
)2 + 3VarΘ(σ2

Θ̂i
) + 6CovΘ(Θ2

i , σ
2
Θ̂i

) − 12µΘCovΘ(Θi, σ
2
Θ̂i

).

The approximation in (10) ignores terms of order lower than n−1 and it follows
from the variance of the moment statistics (see Kendall and Stuart (1987, page
322, equation 10.9)).

Using (5), it is easy to see that

Var(σ̂2
Θ̂
) =

1
n

[
VarΘ(σ2

Θ̂i
) + 2E Θ(

σ4
Θ̂i

mΘi − 1
)
]
. (11)

By using the delta method we obtain, for large n, Cov(µ̂2
Θ, σ̂2

Θ̂
)≈Cov(2µΘµ̂Θ, σ̂2

Θ̂
)

= 2µΘCov(µ̂Θ, σ̂2
Θ̂
) = (2/n)µΘCovΘ(Θi, σ

2
Θ̂i

). Also, we can compute

Cov(Θ̂2
i , σ̂

2
Θ̂i

) = CovΘ

[
E ε(Θ̂2

i | Θi),E ε(σ̂2
i | Θi)

]
+ E Θ

[
Covε(Θ̂2

i , σ̂i | Θi)
]

= CovΘ(Θ2
i + σ2

Θ̂i
, σ2

Θ̂i
) = CovΘ(Θ2

i , σ
2
Θ̂i

) + VarΘ(σ2
Θ̂i

).

From these results it follows that

Cov(S2
Θ, σ̂2

Θ̂
) = Cov

[ 1
n − 1

(
n∑

i=1

Θ̂2
i − nµ̂2

Θ), σ̂2
Θ̂

]

≈ 1
n

[
Cov(

n∑
i=1

Θ̂2
i , σ̂

2
Θ̂
) − Cov(nµ̂2

Θ, σ̂2
Θ̂
)
]

=
1
n

[
Cov(Θ̂2

i , σ̂
2
Θ̂i

) − nCov(µ̂2
Θ, σ̂2

Θ̂
)
]

≈ 1
n

[
CovΘ(Θ2

i , σ
2
Θ̂i

) + VarΘ(σ2
Θ̂i

) − 2µΘCovΘ(Θi, σ
2
Θ̂i

)
]
. (12)

After substituting (10)-(12) into (9) and simplifying, we obtain Var(σ̂[DA]
X ) =

(σ2
Θ/n)V [DA]

22 .
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B. Computational Formulas for the Factors V [DA]

ij

Observe that (1)-(3) can be expressed as follows:

V [DA]
11 = 1 +

R2
σ

m
E Θ(rΘi), (13)

V [DA]
12 =

R2
σ

m
CovΘ(Zi, rΘi), (14)

V [DA]
22 =

1
2

[(
1 +

R2
σ

m

)2
+
(R2

σ

m

)2
VarΘ(rΘi)

+2
R2

σ

m
CovΘ(Z2

i , rΘi) +
(R2

σ

m

)2
E Θ

( r2
Θi

mΘi − 1

)]
, (15)

where Rσ = σε/σΘ, rΘi = m/mΘi , and Zi = −(Θi − µΘ)/σΘ = (Xi − µX )/σX

is the standardized log time-to-failure of the ith unit. For example, using σ2
Θ̂i

=
σ2

ε /mΘi , one gets

V [DA]
12 =− 1

σ3
Θ

CovΘ(Θi, σ
2
Θ̂i

)=
σ2

ε

mσ2
Θ

CovΘ

(
− Θi − µΘ

σΘ
,

m

mΘi

)
=

R2
σ

m
CovΘ(Zi, rΘi).

All expected values, covariances, and variances on the right-hand side of (13)-(15)
can be obtained from E Θ[r2

Θi
/(mΘi−1)] and expectations of the form E Θ(Z l

ir
k
Θi

),
where l = 0, 1, 2 and k = 0, 1, 2. For example, CovΘ(Zi, rΘi) = E Θ(ZirΘi) −
E Θ(Zi)E Θ(rΘi) and

E Θ

( r2
Θi

mΘi − 1

)
=

m∑
j=2

(m

j

)2 1
j − 1

∫
Aj

φ(z)dz (16)

E Θ(Z l
ir

k
Θi

) =
m∑

j=2

(m

j

)k
∫

Aj

zlφ(z)dz, (17)

where φ(·) is the standard normal pdf, A2 = {z ≤ z2}, Aj = {zj−1 < z ≤ zj}
for j = 3, . . . ,m − 1, Am = {z > zm−1}, and z2, . . . , zm−1 are standardized log
inspection times defined by zj = (xj − µ

X
)/σ

X
. All of the integrals needed for

(16) and (17) can be computed easily from the formulas in the following table.
Columns 3 and 4 of this table were obtained by substituting the standard normal
density and integrating by parts.

j
∫

Aj
φ(z)dz

∫
Aj

zφ(z)dz
∫

Aj
z2φ(z)dz

2 Φ(z2) −φ(z2) −z2φ(z2) + Φ(z2)

3, . . . , m − 1 Φ(zj) − Φ(zj−1) −[φ(zj) − φ(zj−1)] − [zjφ(zj) − zj−1φ(zj−1)]

+ [Φ(zj) − Φ(zj−1)]

m 1 − Φ(zm−1) φ(zm−1) zm−1φ(zm−1) + [1 − Φ(zm−1)]
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