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Abstract: Quantifying the uncertainty of wind energy potential from climate mod-

els is a time-consuming task and requires considerable computational resources. A

statistical model trained on a small set of runs can act as a stochastic approximation

of the original climate model, and can assess the uncertainty considerably faster

than by resorting to the original climate model for additional runs. While Gaussian

models have been widely employed as means to approximate climate simulations,

the Gaussianity assumption is not suitable for winds at policy-relevant (i.e., sub-

annual) time scales. We propose a trans-Gaussian model for monthly wind speed

that relies on an autoregressive structure with a Tukey g-and-h transformation, a

flexible new class that can separately model skewness and tail behavior. This tem-

poral structure is integrated into a multi-step spectral framework that can account

for global nonstationarities across land/ocean boundaries, as well as across moun-

tain ranges. Inferences are achieved by balancing memory storage and distributed

computation for a big data set of 220 million points. Once the statistical model was

fitted using as few as five runs, it can generate surrogates rapidly and efficiently

on a simple laptop. Furthermore, it provides uncertainty assessments very close to

those obtained from all available climate simulations (40) on a monthly scale.

Key words and phrases: Big data, nonstationarity, spatio-temporal covariance

model, sphere, stochastic generator, Tukey g-and-h autoregressive model, wind

energy.

1. Introduction

Wind energy is an important renewable energy source in many countries with

no major negative environmental impacts (Wiser et al. (2011); Obama (2017)).

Earth System Models (ESMs) provide physically consistent projections of wind

energy potential, as well as spatially resolved maps in regions with poor obser-

vational coverage. However, these models are (more or less accurate) approx-

imations of the actual state of the Earth’s system, and the energy assessment
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is therefore sensitive to changes in the model input. To address this, geoscien-

tists generate a collection (ensemble) of ESMs to assess the sensitivity of the

output (including wind) with respect to physical parameters and the trajectories

of greenhouse gas concentrations (forcing scenarios). Recently, the role of the

uncertainty due to ESMs’ initial conditions (internal variability) has been iden-

tified as a prominent factor for multi-decadal projections, hence the importance

of quantifying its uncertainty.

The Large ENSemble (LENS) is a collection of 40 runs at the National Center

for Atmospheric Research (NCAR) specifically designed to isolate the role of

internal variability in the future climate (Kay et al. (2015)). The LENS required

millions of CPU hours on a specialized supercomputer, and very few institutions

have the resources and time for such an investigation. Is such an enormous task

always necessary to assess internal variability? While it is absolutely necessary

for quantities at the tail of the climate (e.g., temperature extremes), it is not

always necessary for simpler indicators, such as the climate mean and variance.

As part of a series of investigations promoted by KAUST on the topic of assessing

wind energy in Saudi Arabia, Jeong et al. (2018) introduced the notion of a

stochastic generator (SG), a statistical model that is trained on a small subset

of LENS runs. The SG, or “Stochastic Generator of Climate Model Output”1,

acts as a stochastic approximation of the climate model and, hence, allows for

sampling more surrogate climate runs.2 In their study, the authors present an SG

for the global annual wind, and show that just five runs are sufficient to generate

synthetic runs that are visually indistinguishable from the original simulations

and have a similar spatio-temporal local dependence. However, while this SG

introduced is able to approximate annual global data for the Arabian peninsula

effectively, an annual scale is not useful for wind energy assessments. Thus,

an SG at a finer temporal resolution for the same region is required to provide

policy-relevant results.

An SG for monthly global wind output requires considerable modeling and

computational effort. From a modeling perspective, data indexed on the sphere

and over time require a dependence structure that can incorporate complex non-

stationarities across the entire Earth system; see Jeong, Jun and Genton (2017)

for a recent review of multiple approaches. For regularly spaced data, as is the

case with atmospheric variables in an ESM output, multi-step spectrum models

1This is not to be confused with a Stochastic Weather Generator, which focuses on in-situ data at
a high temporal resolution.

2A brief discussion on the difference between an SG and an emulator is contained in the same work.
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are particularly useful. Such models can provide flexible nonstationary structures

for Gaussian processes in the spectral domain, while maintaining the positive

definiteness of the covariance functions (Jun and Stein (2008)). Recently, Cas-

truccio and Guinness (2017) and Jeong et al. (2018) introduced a generalization

that allows geographical descriptors, such as land/ocean indicators and mountain

ranges, to be incorporated in a spatially varying spectrum.

In addition to the modeling complexity, the computational challenges are

significant, because inferences need to be performed on a big data set. Over the

last two decades, the increase in the size of spatio-temporal climate data sets has

prompted the development of many new classes of scalable models. Of these, fixed

rank methods (Cressie and Johannesson (2008)), predictive processes (Banerjee

et al. (2008)), covariance tapering (Furrer, Genton and Nychka (2006)), and

Gaussian Markov random fields (Rue and Held (2005)) have played a key role in

our ability to couple the feasibility of an inference with the essential information

to be communicated to stakeholders; see Sun, Li and Genton (2012) for a review.

However, even by modern spatio-temporal data set standards, 220 million points

is a considerable size. Thus, inferences require a methodology that leverages

both parallel computing and the gridded geometry of the data. Castruccio and

Genton (2018) provide a framework for a fast and parallel methodology for big

climate data sets. However, the framework has thus far been limited to Gaussian

processes. Whether an extension to non-Gaussian models with such a big data

set is possible (and how) is an open question.

In this study, we propose an SG for monthly winds that is multi-step, spec-

tral, and captures non-Gaussian behavior. We adopt a simple, yet flexible ap-

proach to construct non-Gaussian processes in time: the Tukey g-and-h autore-

gressive process (Xu and Genton (2015); Yan and Genton (2019)), defined as

Y (t) = ξ + ωτg,h{Z(t)}, where ξ is a location parameter, ω is a scale parame-

ter, Z(t) is a Gaussian autoregressive process, and τg,h(z) is the Tukey g-and-h

transformation (Tukey (1977)):

τg,h(z) =

{
g−1{exp(gz)− 1} exp(hz2/2) if g 6= 0,

z exp(hz2/2) if g = 0,
(1.1)

where g controls the skewness and h ≥ 0 governs the tail behavior. A significant

advantage of Tukey g-and-h autoregressive processes is that they provide flexible

marginal distributions, allowing the skewness and heavy tails to be adjusted.

This class of non-Gaussian processes is integrated within the multi-step spectral

scheme to still allow inferences for a very big data set.
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The remainder of the paper is organized as follows. Section 2 describes the

wind data set. Section 3 details the statistical framework with the Tukey g-

and-h autoregressive models and the inferential approach. Section 4 provides a

model comparison, and Section 5 illustrates how to generate SG runs. Section 6

concludes the paper.

2. The Community Earth System Model (CESM) Large ENSemble

(LENS) Project

We work on global wind data from LENS, which is an ensemble of CESM

runs using version 5.2 of the Community Atmosphere Model of the NCAR (Kay

et al. (2015)). The ensemble comprises runs at 0.9375◦× 1.25◦ (latitude × longi-

tude) resolution, with each run under the Representative Concentration Pathway

(RCP) 8.5 (van Vuuren et al. (2011)). Although the full ensemble consists of 40

runs, in our training set, we consider only R = 5 randomly chosen runs for the

SG to demonstrate that only a small number of runs is necessary (a full sen-

sitivity analysis for R was performed in Jeong et al. (2018)). We consider the

monthly near-surface wind speed at 10 m above ground level (U10 variable) for

the period 2006 to 2100. Because our focus is on future wind trends, we ana-

lyze the projections for a total of 95 years. We consider all 288 longitudes, and

discard latitudes near the poles to avoid numerical instabilities, consistent with

previous works. These instabilities aries because of the close physical distance of

neighboring points and the very different statistical behavior of wind speeds in

the Arctic and Antarctic regions (McInnes, Erwin and Bathols (2011)). There-

fore, we use 134 bands between 62◦S and 62◦N, and the full data set comprises

approximately 220 million points (5×1,140×134×288). An example is given in

Figure 1(a–d), where we show the ensemble mean and standard deviation of the

monthly wind speed from the five selected runs, in March and September 2020.

We observe that both means and standard deviations show temporal patterns.

In particular, between the Tropic of Cancer and latitude 60◦N, the mean wind

speed over the ocean in September is stronger than that in March.

For each site, we test the significance of the skewness and kurtosis of the wind

speed over time (Bai and Ng (2005)) after removing the climatology. In many

spatial locations, the p-values are smaller than 0.05, as shown in Figure 1(e) and

(f), indicating that the first two moments are not sufficient to characterize the

temporal behavior of monthly wind over time. Most land points have signifi-

cant skewness and, consistent with Bauer (1996), we observe that monthly wind
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Figure 1. The (a) ensemble mean W(March 2020) =
∑R

r=1 Wr(March 2020)/R, where
R = 5, is the number of ensemble members, and (b) ensemble standard deviation

Wsd(March 2020) =
√∑R

r=1{Wr(March 2020)−W(March 2020)}2/R of the monthly

wind speed (in ms−1). (c) and (d) are the same as (a) and (b), but those in September
2020. The empirical skewness and kurtosis of the wind speed from one ensemble member
after removing the trend are reported in (e) and (f), respectively, but only for locations
where p-values of a significance test are less than 0.05.
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speeds over the ocean are negatively skewed in the tropics, and positively skewed

otherwise. The Tropical Indian Ocean and the Western Pacific Ocean, both areas

with small wind speeds, are exceptions, with a positively skewed distribution.

3. The Space–Time Model

3.1. The statistical framework

It is known that, after the climate model forgets its initial state, each en-

semble member evolves in “deterministically chaotic” patterns (Lorenz (1963)).

Climate variables in the atmospheric module have a tendency to forget their

initial conditions after a short period, after which they evolve randomly, while

still being attracted by the mean climate. Because ensemble members from the

LENS differ only in their initial conditions (Kay et al. (2015)), we treat each one

as a statistical realization from a common distribution. We define Wr(Lm, `n, tk)

as the spatio-temporal monthly wind speed for realization r at the latitude Lm,

longitude `n, and time tk, where r = 1, . . . , R, m = 1, . . . ,M , n = 1, . . . , N , and

k = 1, . . . ,K, and define Wr = {Wr(L1, `1, t1), . . . ,Wr(LM , `N , tK)}>.

To remove the trend in our model, we consider Dr = Wr −W, with W =

(1/R)
∑R

r=1 Wr. The Gaussian assumption for Dr is not, in general, valid at

a monthly resolution (see Figure 1(e–f), Figure S1 for a significance test on the

skewness and kurtosis, and Figure S2 for the Lilliefors and Jarque–Bera normality

tests). Therefore, we apply the Tukey g-and-h transformation (1.1), in which

case, our model can be written as:

Dr = ξ + ω · τg,h(εr), εr
i.i.d.∼ N (0,Σ(θspace−time)), (3.1)

where ξ = ξ ⊗ 1K , with ξ = {ξ(L1, `1), . . . , ξ(LM , `N )}> a vector of the location

parameters, ⊗ the Kroneker product, and 1K a vector of ones of length K. In

addition, ω = ω⊗ 1K , with ω = {ω(L1, `1), . . . , ω(LM , `N )}> the vector of scale

parameters, g = g⊗1K , and h = h⊗1K . Here, g = {g(L1, `1), . . . , g(LM , `N )}>

and h = {h(L1, `1), . . . , h(LM , `N )}> the vectors of the MN parameters for the

Tukey g-and-h transformation at each site. Then, τg,h() represents the element-

wise transformation according to (1.1). Therefore, component-wise, this becomes

Dr(Lm, `n, tk) = ξ(Lm, `n) + ω(Lm, `n)τg(Lm,`n),h(Lm,`n)(ε(Lm, `n, tk)).

We define θTukey = {θT;m,n}m,n, where m = 1, . . . ,M , n = 1, . . . , N and

θT;m,n = {ξ(Lm, `n), ω(Lm, `n), g(Lm, `n), h(Lm, `n)}> are the parameters of the

Tukey g-and-h transformation. Then, we define θspace−time = (θ>time,θ
>
lon,θ

>
lat)
>

as the vector of covariance parameters, which can be divided into temporal,

longitudinal, and latitudinal dependence. The total set of parameters is θ =
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(θ>Tukey,θ
>
space−time)

>. Here, θ is very high dimensional. Hence, we consider a

multi-step inference scheme, as first introduced by Castruccio and Stein (2013),

where the parameters obtained from previous steps are assumed to be fixed and

known:

Step 1. We estimate θTukey and θtime by assuming that there is no cross-

temporal dependence in latitude and longitude.

Step 2. We consider θTukey and θtime fixed at their estimated values and

estimate θlon by assuming that the latitudinal bands are independent.

Step 3. We consider θTukey,θtime, and θlon fixed at their estimated values

and estimate θlat.

This conditional step-wise approach implies some degree of error and un-

certainty propagation across stages. Castruccio and Guinness (2017) provide

guidelines on how to control for the propagation by using intermediate steps

within Step 3. Following the same scheme, we detail the model for each of the

three steps and also describe the inference.

3.2. Step 1: Temporal dependence and inference for the Tukey g-and-h

model

We assume that εr = {εr(t1)>, . . . , εr(tK)>}> in (3.1) evolves according to

a vector autoregressive model of order p (VAR(p)), with different parameters for

each spatial location:

εr(tk) = Φ1εr(tk−1) + · · ·+ Φpεr(tk−p) + SHr(tk),

Hr(tk)
i.i.d.∼ N (0,C(θlon,θlat)), (3.2)

where Φ1 = diag{φ1
Lm,`n

}, . . . ,Φp = diag{φpLm,`n
} are MN ×MN diagonal ma-

trices with autoregressive coefficients, and S = diag{SLm,`n} is a diagonal ma-

trix of the standard deviations. Such a model assumes that there is no cross-

temporal dependence across locations. Figure S3(a) in the Supplementary Ma-

terial provides diagnostics on this assumption. Hence, at each spatial location,

we have a Tukey g-and-h autoregressive process of order p (Yan and Genton

(2019)). The vector of temporal parameters is therefore θtime = {θt;m,n}m,n,

where θt;m,n = (φ1
Lm,`n

, . . . , φpLm,`n
, SLm,`n)>. The vectors θTukey and θtime in

(3.1) are estimated simultaneously using a maximum approximated likelihood

estimation (MALE, Xu and Genton (2015)). Furthermore, because the model

assumes no cross-temporal dependence, θT;m,n and θt;m,n can be estimated in-

dependently and in parallel across m and n.
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Exact likelihood inferences for the Tukey g-and-h autoregressive process are

computationally expensive because the inverse Tukey g-and-h transformation

τ−1
g,h does not have an explicit form (except when either g or h is equal to zero).

The idea of the MALE is to approximate τ−1
g,h using a piecewise linear func-

tion τ̃−1
g,h , which reduces the computational time considerably compared with

calculating τ−1
g,h numerically for each iteration in the optimization. The approx-

imated log-likelihood function l̃ of the monthly residual wind speed time series,

Dr(Lm, `n) = {Dr(Lm, `n, t1), . . . , Dr(Lm, `n, tK)}>, from ensemble r at latitude

Lm and longitude `n, can be written as:

l̃(θT;m,n,θt;m,n | Dr(Lm, `n), )

= fm,n(ε1) + fm,n(ε2|ε1) + · · ·+ fm,n(εK |εK−1, . . . , εK−p)

−K log{ω(Lm, `n)} − h(Lm, `n)

2

K∑
k=1

ε2k

−
K∑
k=1

log

(
exp{g(Lm, `n)εk}+

h(Lm, `n)

g(Lm, `n)
[exp{g(Lm, `n)εk} − 1]εk

)
,

(3.3)

where εk = τ̃−1
g(Lm,`n),h(Lm,`n){(Dr(Lm, `n, tk)− ξ(Lm, `n))/ω(Lm, `n)} and

fm,n(·)/fm,n(·|·) is the corresponding marginal/conditional Gaussian log-

likelihood for the underlying Gaussian AR(p) process with parameters θt;m,n.

For each location and each ensemble, the MALE is obtained by maximizing

(3.3) with the optimal order p selected by the Bayesian information criterion

(BIC). The results are shown in Figure S3(b). For a substantial share of points

(56.1%), p > 0 was selected, underscoring the need for a model with temporal

dependence, even after differencing the original data from the average across

realizations. A map of φ̂1
Lm,`n

, φ̂2
Lm,`n

, and φ̂3
Lm,`n

is shown in the Supplementary

Material (Figure S4), along with the p-values (Figure S5).

Estimated values for θ̂Tukey are shown in Figure 2. Here, ĝ(Lm, `n) and

ĥ(Lm, `n) were estimated with significant nonzero values over many locations (see

Figure S6 for the p-value), and it is apparent how the Gaussian autoregressive

model is not suitable for modeling monthly wind speed.

Once all parameters are estimated, the residuals can be calculated, as follows:

Ĥr(Lm, `n, tk) =
1

Ŝ(Lm, `n)

{
ε̂r(Lm, `n, tk)− φ̂1

Lm,`n ε̂r(Lm, `n, tk−1)

− · · · − φ̂pLm,`n
ε̂r(Lm, `n, tk−p)

}
, (3.4)

where ε̂r(Lm, `n, tk) = τ̂−1

ĝ(Lm,`n),ĥ(Lm,`n)
[{Dr(Lm, `n, tk) − ξ̂(Lm, `n)}/ω̂(Lm, `n)],
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Figure 2. Plot of the estimated parameters θ̂Tukey for the Tukey g-and-h transformation,
(a) location, (b) scale, (c) g, and (d) h.

and τ̂−1

ĝ(Lm,`n),ĥ(Lm,`n)
denotes the inverse Tukey g-and-h transformation at lati-

tude Lm and longitude `n.

The following sections provide a model for the dependence structure of

Hr(tk), that is, a parametrization of C(θlon,θlat) in (3.2). Specifying a valid

model for the entire spherical domain that captures global dependence struc-

tures is a nontrivial task. However, the following steps rely on the Gaussianity

of Hr(tk), and hence require only that we specify the covariance structure.

3.3. Step 2: Longitudinal structure

Here, we focus on θlon; that is, we provide a model for the dependence struc-

ture at different longitudes, but at the same latitude. Because the points are

equally spaced and on a circle, the implied covariance matrix is circulant un-

der a stationarity assumption (Davis (1979)), and is more naturally expressed

in the spectral domain. The wind behavior on a latitudinal band, however, is
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not longitudinally stationary. Recently, an evolutionary spectrum approach that

allows for changing behavior across large-scale geographical descriptors was im-

plemented successfully for global annual temperature and wind speed ensembles

(Castruccio and Guinness (2017); Jeong et al. (2018); Castruccio and Genton

(2018)). Here, we use a similar approach, and model Hr(Lm, `n, tk) in the spec-

tral domain using a generalized Fourier transform across longitude. Indeed, if we

define ι =
√
−1 to be the imaginary unit and c = 0, . . . , N − 1 the wavenumber,

then the process can be represented spectrally as

Hr(Lm, `n, tk) =

N−1∑
c=0

fLm,`n(c) exp(ι`nc)H̃r(c, Lm, tk), (3.5)

where fLm,`n(c) is a spectrum evolving across longitude, and H̃r(c, Lm, tk) is the

spectral process.

To better account for the statistical behavior of wind speed, we implement a

spatially varying model in which ocean, land, and high mountains above 1,000 m

(following Jeong et al. (2018)) are treated as covariates. Therefore, fLm,`n(c)

depends on `n being in a land, ocean, or high mountain domain, with the following

expression:

fLm,`n(c) =


f1
Lm,`n

(c) if (Lm, `n) ∈ high mountain,

f2
Lm,`n

(c)bland(Lm, `n; g′Lm
, r′Lm

) if (Lm, `n) ∈ land,

f3
Lm,`n

(c){1− bland(Lm, `n; g′Lm
, r′Lm

)} if (Lm, `n) ∈ ocean,

(3.6)

where bland(Lm, `n; g′Lm
, r′Lm

) =
∑N

n′=1 Ĩland(Lm, `n; g′Lm
)w(Lm, `n − `n′ ; r

′
Lm

) is

a smooth function (taper) that allows a transition between land and ocean do-

mains. Each of the three components of the spectrum in (3.6) is parametrized

as follows (Castruccio and Stein (2013); Poppick and Stein (2014)): |f jLm,`n
(c)|2 =

ψjLm,`n
{(αjLm,`n

)2+4 sin2(cπ/N)}−ν
j
Lm,`n

−1/2, for j = 1, 2, 3, where (ψjLm,`n
, αjLm,`n

,

νjLm,`n
) are interpreted as the variance, inverse range, and smoothness parame-

ters, respectively, similarly to the Matérn spectrum. The parameters are modeled

so that their logarithm changes continuously and depends linearly on the altitude;

that is, ψjLm,`n
= βj,ψLm

exp[tan−1{ALm,`nγ
ψ
Lm
}], for j = 1, 2, and ψ3

Lm,`n
= β3,ψ

Lm
,

where βj,ψLm
> 0, γψLm

∈ R, and ALm,`n is the altitude at location (Lm, `n). Sim-

ilar notation holds for αjLm,`n
and νjLm,`n

. Hence, the longitudinal parameters

are θlon = {θ`,m}m, where θ`,m = {(βj,ψLm
, γψLm

, βj,αLm
, γαLm

, βj,νLm
, γνLm

, g′Lm
, r′Lm

)>,

j = 1, 2, 3}. Because the θ`,m are independent across m, a model inference

across latitudes can be performed independently using distributed computing.
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To estimate the parameters for this and the next step, we leverage on the

normality of the residuals Hr(Lm, `n, tk) and their indepedence across r. Indeed,

by defining H = (H>1 , . . . ,H
>
R)>, we can provide a restricted likelihood in closed

form at latitude m (Castruccio and Stein (2013)):

2l(θ`,m | H) = KN(R− 1) log(2π) +KN log(R) (3.7)

+(R− 1)K log |Σ(θ`,m)|+
K∑
k=1

R∑
r=1

H>r (tk)Σ(θ`,m)Hr(tk),

where Σ(θ`,m) is the N×N covariance matrix of latitudinal band Lm, as implied

by (3.5) and (3.6).

3.4. Step 3: Latitudinal structure

We now provide a model for the latitudinal dependence. Note that because

the model in (3.5) is independent and identically distributed across r and tk, we

omit these two indices for simplicity. Castruccio and Stein (2013) and later works

have proposed an autoregressive model for H̃(c, Lm) across m (but independent

across c). However, we consider a more general vector autoregressive model

of order 1 (VAR(1)), such that H̃(c, Lm) is also allowed to depend on neigh-

boring wavenumbers. We define H̃Lm
= {H̃(1, Lm), . . . , H̃(N,Lm)}> and the

latitudinal dependence by H̃Lm
= ϕLm

H̃Lm−1
+ eLm

, where eLm

i.i.d.∼ N (0,ΣLm
),

and ϕLm
is an N × N matrix containing the coefficients of the autoregressive

structure across latitude; ΣLm
encodes the dependence for the innovation. To

balance flexibility with computational feasibility, we seek a sufficiently sparse,

but articulated structure for ϕLm
. We propose a banded diagonally dominant

matrix parametrized by aLm
, bLm

∈ (−1, 1), for all m values (the explicit ex-

pression is available in the Supplementary Material), ΣLm
= diag{1− ϕLm

(c)2}
and ϕLm

(c) = ζLm
{1 + 4 sin2(cπ/N)}−ηLm , where ζLm

∈ [0, 1] and ηLm
> 0

for all m. Hence, the latitudinal parameters are θlat = {(aLm
, bLm

, ζLm
, ηLm

)>,

m = 1, . . . ,M}.
We consider 10 sequential subsamples of 95 years (10 years each, except for

the last partition) to reduce the computational burden. We derive an expression

similar to (3.7) for this step, and estimate ζLm
and ηLm

from each of the 10 sub-

samples, as shown in Figure S7 (other estimates of the longitudinal dependence

parameters show similar patterns). Because there is no evidence of a change in

latitudinal dependence over time, we consider the average of the parameter esti-

mates. This value is used to combine multiple latitudinal bands and to generate

surrogates in Section 5. The estimates âLm
and b̂Lm

are also shown in Figure S8.
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3.5. Computational aspects

An inference for a data set indexed by latitude, longitude, time, and realiza-

tion comprising 220 million data points is a daunting task, even when using the

aforementioned stepwise approach, which allows us to reduce the parameter space

and to parallelize the likelihood maximization. Further mitigation of the com-

putational and storage burden in step 3 is achievable by leveraging the gridded

geometry of the data. Indeed, (3.7) can be expressed equivalently in the spectral

domain using a fast Fourier transform of the data (Whittle likelihood, Whit-

tle (1953)), such that the computational complexity is reduced from O(M3N3)

to O(M2N logN) and the storage requirement is reduced from O(M2N2) to

O(M2N).

We used a workstation with 2×12 cores of Intel Xeon E5-2680V3 2.5GHz

processors. Step 1 required approximately 6 hours, step 2 required 29 hours,

and step 3 required 179 hours, for a total of approximately nine days. Inferences

are therefore nontrivial and require considerable computational resources. How-

ever, once the parameters were estimated, generating the 40 statistical surrogates

needed for Section 5 required only 16 minutes on a simple laptop (see the Matlab

Graphical User Interface described in the application).

4. Model Comparison

To validate our proposed model based on the Tukey g-and-h autoregressive

(TGH-AR) process, we compare it with both a Gaussian autoregressive (G-AR)

process and with two models with special cases of spatial dependence structure

from steps 2 and 3, as detailed in Sections 3.3 and 3.4, respectively. In the

Supplementary Material, we provide additional comparisons with a model with

no spatial dependence and one with Gaussian dependence (Figures S9 and S10).

4.1. Comparison with a Gaussian temporal autoregressive process

In our first comparison, note that the G-AR process can be obtained from

(3.1) by assuming ξ = 0, ω = 1, g = 0, and h = 0; therefore, a formal model

selection can be performed. Figure 3 represents the BIC between the two models

at each site from one ensemble member. Positive and negative values indicate a

better and worse model fit of the TGH-AR compared with the G-AR, respectively.

The TGH-AR outperforms the G-AR in more than 85% of the spatial locations,

with a considerable improvement in the BIC score (the map scale is in the order

of 103). Overall, the fit for land sites is considerably better for the TGH-AR, with
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∆ −

fi

fi

×

Figure 3. Map of differences in the BIC between the TGH-AR and G-AR from one
ensemble member.

peaks in the North Africa area near Tunisia and in and around Saudi Arabia, in

the region of study in Section 5. The tropical Atlantic also shows large gains.

4.2. Comparison with submodels of global dependence

The TGH-AR model is also compared with a model with no altitude depen-

dence, that is, where

ψ1
Lm,`n = ψ2

Lm,`n , α
1
Lm,`n = α2

Lm,`n , ν
1
Lm,`n = ν2

Lm,`n =⇒ f1
Lm,`n(c) = f2

Lm,`n(c),

for all m,n, c in (3.6). The model still assumes an evolutionary spectrum with

changing behavior across land/ocean (Castruccio and Guinness (2017)), and is

denoted by LAO. We further compare the TGH-AR with a model with an autore-

gressive dependence across latitudes, that is, a model in which aLm
= bLm

= 0

in the parametrization of ϕLm
in Section 3.4, which we denote as ARL.

Because the LAO and ARL are both special cases of the TGH-AR, a formal

comparison of their model selection metrics can be performed (see Table 1).

There is evidence of a considerable improvement from the LAO to the ARL,

indicating the need to incorporate the altitude when modeling the covariance

structure. The additional smaller (although non-negligible, because the BIC

improvement is approximately 105) improvement from the ARL to the TGH-
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Table 1. Comparison of the number of parameters (excluding the temporal component),
the normalized restricted log-likelihood, and BIC for three different models: LAO, ARL,
and TGH-AR. The general guidelines for ∆loglik/{NMK(R−1)} are that values above
0.1 are considered to be large, and those above 0.01 are modest, but still sizable (Cas-
truccio and Stein (2013)).

Model LAO ARL TGH-AR
# of parameters 1,338 2,142 2,408
∆loglik/{NMK(R− 1)} 0 0.0440 0.0443
BIC (×108) −5.8963 −6.0511 −6.0521

Table 2. 25th, 50th, and 75th percentiles of two difference metrics over ocean, land, and
high mountains near the Indian ocean.

Metric Region 25th 50th 75th

[{∆ew;m,n − ∆̂ARL
ew;m,n}2 − {∆ew;m,n − ∆̂TGH−AR

ew;m,n }2]× 104
ocean 0 0 0
land −14 0 16

mountain −8 5 22

[{∆ns;m,n − ∆̂ARL
ns;m,n}2 − {∆ns;m,n − ∆̂TGH−AR

ns;m,n }2]× 104
ocean −1 1 2
land −2 2 11

mountain −2 1 7

AR underscores the necessity of a flexible model that is able to account for

dependence across both wavenumbers and latitudes.

All three models can also be compared using local contrasts, because the

residuals in (3.4) are approximately Gaussian. We focus on the contrast variances

to assess the goodness of fit of the model in terms of its ability to reproduce the

local dependence (Jun and Stein (2008)):

∆ew;m,n =
1

KR

K∑
k=1

R∑
r=1

{Hr(Lm, `n, tk)−Hr(Lm, `n−1, tk)}2,

∆ns;m,n =
1

KR

K∑
k=1

R∑
r=1

{Hr(Lm, `n, tk)−Hr(Lm−1, `n, tk)}2,

(4.1)

where ∆ew;m,n and ∆ns;m,n denote the east–west and north–south contrast vari-

ances, respectively.

We compare the ARL with the TGH-AR, and compute the squared distances

between the empirical and fitted variances. We find that the TGH-AR shows a

better model fit in the case of the north–south contrast variance, but that there

is no noticeable difference between the two models in the case of the east–west

variance. A representation of these differences for the small region of interest

near South Africa (13.75◦E ∼ 48.75◦E and 30◦S ∼ 4◦N) is given in Figure S11.
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Positive values are obtained when the TGH-AR is a better model fit than is

the ARL; negative values are obtained when the ARL is the better model fit.

Figure S11(a) and (b) shows that dark red colors are more widely spread over

mountains and that no clear difference is shown over the ocean. The results

presented in Table 2 are consistent with the visual inspection. In addition, the

two metrics, particularly, over mountainous areas, show larger values than those

obtained for the ocean areas. In a global mean or median of the metrics, there

is no significant difference between the two models.

5. Generation of Stochastic Surrogates

Once the model is properly defined and validated, we apply it to produce

surrogate runs and train the SG with R = 5 climate runs. A comprehensive

sensitivity analysis on the number of elements in the training set can be found

in Jeong et al. (2018). We use the SG to assess the uncertainty of the monthly

wind power density (WPD), and compare it with the results of the full extent of

the LENS runs.

The mean structure of the model is obtained by smoothing the ensem-

ble mean W, but such an estimate is highly variable. For each latitude and

longitude (i.e., each n and m), we fit a spline W̃ (Lm, `n, tk) that minimizes

the following function (Castruccio and Guinness (2017); Jeong et al. (2018)):

λ
∑K

k=1

{
W (Lm, `n, tk) − W̃ (Lm, `n, tk)

}2
+ (1 − λ)

∑K
k=1

{
∇2W̃ (Lm, `n, tk)

}2
,

where ∇2 is the discrete Laplacian. We impose λ = 0.99 to give significant weight

to the spline interpolant in order to reflect the varying patterns of monthly

wind fields over the next century. For each spatial location, a harmonic re-

gression of a time series may also be used to estimate the mean structure,

but for the sake of simplicity, we opt for a nonparametric description. Once

θ = (θ>Tukey,θ
>
space−time)

> is estimated from the training set, surrogate runs can

be generated easily using Algorithm 1.

We generate 40 SG runs using the proposed model and compare them with

the original 40 LENS runs. As clearly shown in Figures 1(a) and S12(a), the

ensemble means from the training set and the SG runs are visually indistinguish-

able.

We also evaluate both models in terms of their structural similarity index; to

that end, we compare local patterns of pixel intensities that have been standard-

ized for luminance and contrast (Figure S13) (Wang et al. (2004); Castruccio,

Genton and Sun (2019)). We observe that the SG runs from the Tukey g-and-
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Algorithm 1 Generate surrogates

1: procedure Generate surrogates

2: Generate eLm

i.i.d.∼ N (0,ΣLm
) as in Section 3.4.

3: Compute the VAR(1) process H̃Lm
as in Section 3.4.

4: Compute Hr(Lm, `n, tk) from (3.5)

5: Compute εr with equation (3.2), and obtain D̃r from the Tukey g-and-h transfor-
mation (3.1)

6: Obtain the SG run as W̃ + D̃r, where

W̃ = {W̃ (L1, `1, t1), . . . , W̃ (LM , `1, t1), W̃ (L1, `2, t1), . . . , W̃ (LM , `N , tK)}>.
7: end procedure

h case produce maps that are visually more similar to the original LENS runs

than those in the Gaussian case (see also Figure S14 and S15 for the measures

of skewness and kurtosis, and Figure S16 for a visual comparison of the runs in

one location).

We further compare the LENS and SG in terms of the near-future trend

(2013–2046), a reference metric for the LENS (Kay et al. (2015)) that was used

to illustrate the influence of the internal variability on global warming trends.

We compute the near-future wind speed trends near the Indian ocean for each

of the SG and LENS runs. The results are shown in Figure 4(a) and (b). One

can clearly see that the mean near-future wind trends by the SG runs are very

similar to those from the training set of LENS runs.

Next, we assess the wind energy potential. The WPD (in Wm−2) evaluates

the wind energy resource available at the site for conversion by a wind turbine.

The WPD can be calculated as WPD = 0.5ρu3, u = ur(z/zr)
α, where ρ is the air

density (ρ = 1.225 kgm−3 in this study), u is the wind speed at a certain height

z, ur is the known wind speed at a reference height zr, and α = 1/7 (Peterson

and Hennessey Jr (1978); Newman and Klein (2013)). We focus our analysis on

the Gulf of Aden (46.25◦E and 12.72◦N), a narrow channel connecting the Red

Sea to the Indian Ocean characterized by high wind regimes (Yip, Gunturu and

Stenchikov (2017)). In addition, we choose to work on the WPD in 2020 at 80 m,

a standard height for wind turbines (Holt and Wang (2012); Yip, Gunturu and

Stenchikov (2017)).

For completeness, we also considered Gaussian-based SG runs. We refer to

these as the SG-G runs, and our original SG runs as the SG-T runs to distin-

guish between the two. The results for March and September 2020 are shown

in Figure 4(c,d) and (e,f), with the histograms representing both the SG-G and
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Figure 4. Maps of (a) the mean from the SG runs and (b) the ensemble mean from
the near-future (2013–2046) near-surface wind speed trends near the Indian ocean. His-
togram of the distribution of the WPD at 80 m, with the nonparametric density in red
for the 40 SG-G and SG-T runs near the Gulf of Aden (c,d) in March 2020, and (e,f) in
September 2020 (∗ represents the LENS runs, + represents the five LENS runs in the
training set of the SG).
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the SG-T runs, a superimposed estimated nonparametric density in red, and the

LENS runs on top with an asterisk marker. For both cases, all histograms have

right-skewed distributions, as in the distribution of the entire LENS. It is clear

that the distribution resulting from the SG runs is more informative than the

five LENS runs in the training set (see red cross markers on top). Furthermore,

it matches the uncertainty generated by the 40 LENS runs. Figure S17 shows a

comparison for the same location and months in terms of QQ-plots for both our

SG-T model and a model with no spatial dependence. It is apparent how the

spatially dependent model results in a univariate fit closer to the LENS data in

both months.

In Figure 5, we show the boxplots of the distribution of the WPD in 2020

for the LENS against the two SG runs across all months. The point estimates

and ranges of the WPD values from the LENS runs are well-matched by those

from the SGs, with slight misfits in April and November. The importance of such

results cannot be understated: both SG runs are able to capture the inter-annual

WPD patterns and its internal variability in a region of critical importance for

wind farming. The internal variability in the months of high wind activity, such

as July, is such that the WPD can be classified from fair to very high, according

to standard wind energy categories (Archer and Jacobson (2003)). Furthermore,

the SGs can reproduce the same range with as few as five runs in the training

set. Overall, both SG runs perform comparatively well, but we find that the

empirical skewness and kurtosis values from the SG-T runs are more similar

to those of the 40 LENS runs than are the values from the SG-G runs. We

computed the differences of the skewness and kurtosis values between the SG

runs and LENS runs for each month in 2020. Then, we took an average (or

median) of the absolute values of the differences across months. As a result,

we obtained that the average (or median) metrics in the skewness values for

the SG-G and SG-T runs are 0.3572 (0.3576) and 0.3142 (0.2151), respectively.

In addition, the metrics in the kurtosis values were 0.8926 (0.5586) and 0.7948

(0.4531), respectively.

The generation of surrogate runs is fast and can be performed on a simple

laptop, as long as the estimated parameters are provided. We have developed a

Matlab Graphical User Interface (GUI, see Figure S18) that allows an end user

to interactively generate and store several surrogate runs on a simple laptop in

several minutes. The GUI is simple and intuitive, and requires only the stored

estimated parameters, along with the algorithm described in this section for

data generation. Thus, approximately 123 MB is required to generate as many
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Figure 5. Boxplots of the distribution of the WPD at 80 m, in 2020, for 40 LENS runs
and the 40 SG runs based on the Tukey g-and-h and Gaussian cases near the Gulf of
Aden.

ensembles as desired. In contrast, the storage of the five LENS runs required 1.7

GB.

6. Discussion and Conclusion

In this work, we proposed a non-Gaussian, multi-step spectral model for a

global space-time data set of more than 220 million points. Motivated by the

need to approximate computer output with a faster surrogate, we provided a fast,

parallelizable, and scalable methodology to perform inferences on a big data set

and to assess the uncertainty of global monthly wind energy.

Our proposed model relies on a trans-Gaussian process, the Tukey g-and-

h, which allows us to control the skewness and tail behavior using two distinct

parameters. This class of models is embedded in a multi-step approach to allow

for inferences for a nonstationary global model, while also capturing site-specific

temporal dependence. Our results show that it clearly outperforms currently

available Gaussian models.

Our model has been applied as an SG, a new class of stochastic approxima-

tions that uses global models to more efficiently assess the internal variability
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of wind energy resources in developing countries with poor observational data

coverage. Our results suggest that the uncertainty produced by the SG with a

training set of five runs is very similar to that from 40 LENS runs in regions

of critical interest for wind farming. Therefore, our model can be used as an

efficient surrogate to assess the variability of wind energy at the monthly level, a

clear improvement from the annual results presented by Jeong et al. (2018), and

an important step forward using SGs at policy-relevant time scales.

Although we focused on global wind energy assessments, the use of SGs goes

beyond the scope of this application. Indeed, similar models can and have been

proposed in the literature to explore the sensitivity of temperature (Castruccio

and Genton (2016)). The stepwise approach proposed in Section 3 can also

be applied to data sets not related to geoscience, as long as the data suggest

different scales of spatio-temporal dependence. For example, Castruccio, Ombao

and Genton (2018) applied a similar stepwise approach to fMRI data, which

showed spatial dependence at the voxel, regional, and whole-brain level.

Supplementary Materials

The online Supplementary Material provides the additional results described

in the text for Sections 2, 3.2, 3.4, 4, and 5, as well as a Matlab GUI.
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