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Abstract: Tolerance intervals are widely used in industrial applications. So far

attention has been mainly focused on the construction of tolerance intervals for

continuous distributions. In this paper we introduce a unified analytical approach

to the construction of tolerance intervals for discrete distributions in exponential

families with quadratic variance functions. These tolerance intervals are shown to

have desirable probability matching properties and outperform existing tolerance

intervals in the literature.
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1. Introduction

Statistical tolerance intervals are important in many industrial applications
ranging from engineering to the pharmaceutical industry. See, for example, Hahn
and Chandra (1981) and Hahn and Meeker (1991). The goal of a tolerance
interval is to contain at least a specified proportion of the population, β, with a
specified degree of confidence, 1−α. More specifically, let X be a random variable
with cumulative distribution function F . An interval (L(X), U(X)) is said to be a
β-content, (1−α)-confidence tolerance interval for F (called a (β, 1−α) tolerance
interval for short) if

P{[F (U(X)) − F (L(X))] ≥ β} = 1 − α. (1.1)

One-sided tolerance bounds can be defined analogously. A bound L(X) is said to
be a (β, 1−α) lower tolerance bound if P{1−F (L(X)) ≥ β} = 1−α and a bound
U(X) is said to be a (β, 1−α) upper tolerance bound if P{F (U(X)) ≥ β} = 1−α.

Ever since the pioneering work of Wilks (1941, 1942), construction of tol-
erance intervals for continuous distributions has been extensively studied. See,
for example, Wald and Wolfowitz (1946), Easterling and Weeks (1970), Kocher-
lakota and Balakrishnan (1986), Vangel (1992), Mukerjee and Reid (2001), and
Krishnamoorthy and Mathew (2004). Compared with the continuous distribu-
tions, literature on tolerance intervals for discrete distributions is sparse. This is
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mainly due to the difficulty in deriving explicit expression for the tolerance in-
tervals in the discrete case. Zacks (1970) proposed a criterion to select tolerance
limits for monotone likelihood ratio families of discrete distributions. The most
widely used tolerance intervals to date for Poisson and Binomial distributions
were proposed by Hahn and Chandra (1981). The intervals are constructed by a
two-step procedure. See Hahn and Meeker (1991) for a survey of these intervals.

Although tolerance intervals are useful and important, their properties, such
as their coverage probability, have not been studied as much as those of confidence
intervals. As we shall see in Section 2, the tolerance intervals given in Hahn
and Chandra (1981) tend to be very conservative in terms of their coverage
probability. Techniques for the construction of tolerance intervals in the literature
often vary from distribution to distribution.

In this paper, we introduce a unified analytical approach using the Edgeworth
expansions for the construction of tolerance intervals for the discrete distributions
in exponential families with quadratic variance functions. We show that these
tolerance intervals enjoy desirable probability matching properties and outper-
form existing tolerance intervals in the literature. The most satisfactory aspects
of our results are the constancy of the phenomena, and uniformity in the final
resolutions of these problems. Edgeworth expansions have also been used very
successfully for the construction of confidence intervals in discrete distributions.
See Hall (1982), Brown, Cai and DasGupta (2002, 2003), and Cai (2005). Con-
struction of tolerance interval is closely related to the construction of confidence
interval for quantiles. A one-sided tolerance bound is equivalent to a one-sided
confidence bound on a quantile of the distribution. See Hahn and Meeker (1991).
Therefore, the proposed method can be also employed for the quantile estimation
problem.

The paper is organized as follows. We begin in Section 2 by briefly review-
ing the existing tolerance intervals for Binomial and Poisson distributions and
showing that they have serious deficiencies in terms of coverage probability. The
serious deficiency of these intervals calls for better alternatives. After Section 3.1,
in which basic notations and definitions of natural exponential family are summa-
rized, the first-order and second-order probability matching tolerance intervals
are introduced. As in the case of confidence intervals, the coverage probability
of the tolerance intervals for the lattice distributions such as Binomial and Pois-
son distributions contains two components: oscillation and systematic bias. The
oscillation in the coverage probability, which is due to the lattice structure of
the distributions, is unavoidable for any non-randomized procedures. The sys-
tematic bias, which is large for many existing tolerance intervals, can be nearly
eliminated. We show that our new tolerance intervals have better coverage prop-
erties in the sense that they have nearly vanishing systematic bias in all the
distributions under consideration.
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In Section 4, two-sided tolerance intervals are constructed by using one-
sided upper and lower probability matching tolerance bounds. In addition to the
coverage properties, parsimony in expected length of the two-sided intervals is
also discussed. Section Appendix is an appendix containing detailed technical
derivations of the tolerance intervals. The derivations are based on the two-term
Edgeworth and Cornish-Fisher expansions.

2. Tolerance Intervals: Existing Methods

As mentioned in the introduction, we construct tolerance intervals for dis-
crete distributions in the exponential families. In this section we review the ex-
isting tolerance intervals for two important discrete distributions, the Binomial
and Poisson distributions. These tolerance intervals will be used for comparison
with the new intervals constructed in the present paper.

The most widely used method for constructing tolerance intervals for the
Binomial and Poisson distributions was proposed by Hahn and Chandra (1981).
Suppose x is the observed value of a random variable X having a Binomial
distribution B(n, θ) or a Poisson distribution Poi(nθ), and that one wishes to
construct a tolerance interval based on x. The method introduced by Hahn and
Chandra (1981) for constructing a (β, 1−α) tolerance interval (L(x), U(x)) has
two steps.

(i) Construct a two-sided (1 − α)-level confidence interval (l, u) for θ, where l

and u depends on x.
(ii) Find the minimum number U(x) and the maximum number L(x) such that

p(X ≤ U(x)|θ = µ) ≥ 1 + β

2
and p(X > L(x)|θ = l) ≥ 1 + β

2
.

Similarly, a lower (β, 1 − α) tolerance bound L(x) can be constructed by
finding a lower (1 − α) confidence bound of θ, say l, and then deriving the
maximum value L(x) such that pl(X > L(x)) ≥ β.

For this two-step procedure, it is clear that the choice of the confidence
interval used in Step 1 is important to the performance of the resulting tolerance
interval. For any 0 < γ < 1, let zγ = Φ−1(1 − γ) be the 1 − γ quantile of a
standard normal distribution. Hahn and Meeker (1991) suggested (1 − α) level
confidence intervals for the Binomial case,

(l, u)= θ̂ ± zα/2

( θ̂(1 − θ̂)
n

)1/2
, (2.1)

(l, u)=
((

1+
(n−x+1)F(α/2;2n−2x+2,2x)

x

)−1
,
(
1+

n−x

(x+1)F(α/2;2x+2,2n−2x)

)−1
)

,(2.2)
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where F(a;r1,r2) denotes the 1 − a quantile of the F distribution with r1 and r2

degrees of freedom. For the Poisson distribution, the suggested (1−α) confidence
intervals in Hahn and Meeker (1991) are

(l, u) = θ̂ ± zα/2

( θ̂

n

)1/2
, (2.3)

(l, u) =

(
0.5

χ2
(α/2;2x)

n
, 0.5

χ2
(1−α/2;2x+2)

n

)
, (2.4)

where χ2
(a;r1) is a quantile of the chi-square distribution with r1 degrees of free-

dom. The θ̂ in (2.1) and (2.3) denotes the sample mean. The confidence bounds
for one-sided tolerance intervals in both Binomial and Poisson distributions are
given analogously.

Figure 1 presents the coverage probabilities of both the two-sided and one-
sided tolerance intervals for the Binomial and Poisson distributions. It can easily
be seen from the plots that these tolerance intervals are too conservative with
higher or lower coverage probability than the nominal level for both distributions.

As in the case of confidence intervals, the coverage probability of the tol-
erance intervals contains two components: oscillation and systematic bias. The
oscillation in the coverage probability, due to the lattice structure of the Bino-
mial and Poisson distributions, is unavoidable for any non-randomized proce-
dures. However, the systematic biases for the existing tolerance intervals are
significantly larger than we expected. This is partly due to the poor behavior of
the confidence intervals used in the construction of the tolerance intervals. Note
that (2.1) and (2.2) are the Wald and Clopper-Pearson intervals for the binomial
proportion. It is known that these confidence intervals have poor performances.
See, for example, Agresti and Coull (1998) and Brown et al. (2002). It is thus
possible to improve the performance of the tolerance intervals by using better
confidence intervals, like those presented in Brown et al. (2002) for the binomial
distribution.

However, we do not take this approach here. The goal of this paper is to
provide a unified analytical approach to the construction of desirable tolerance
intervals for exponential families with certain optimality properties. The results
show that the Edgeworth expansion approach is a powerful tool for solving this
problem.

In Section 3 we introduce new tolerance intervals using the Edgeworth ex-
pansion. These intervals have better coverage properties in the sense that they
have nearly vanishing systematic bias. Figure 3 presents the coverage probabil-
ities of the proposed two-sided tolerance intervals for the Binomial and Poisson
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Figure 1. Coverage probabilities of the 90%-content, 95% level two-sided
(top two rows) and one-sided (bottom two rows) tolerance intervals for the
Binomial and Poisson distributions with n = 50, where p is the probability
of success for the binomial distribution.
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distributions. Compared with Figure 1, the tolerance intervals certainly have
much better performance than the existing intervals in the sense that the actual
coverage probability is much closer to the nominal level. The detailed derivation
of our tolerance intervals is given in the next section.

3. Probability-Matching Tolerance Intervals

In this section we construct one-sided probability-matching tolerance inter-
vals in the natural discrete exponential family (NEF) with quadratic variance
functions (QVF) by using the Edgeworth expansion. After Section 3.1 in which
basic notations and definitions of natural exponential family are given, we intro-
duce the first-oder and second-order probability matching tolerance intervals in
Section 3.2.

3.1. Natural exponential family

The NEF-QVF family contains three important discrete distributions: Bino-
mial, Negative Binomial, and Poisson (see, e.g., Morris (1982) and Brown (1986).

We first state some basic facts about the NEF-QVF families. The distribu-
tions in a natural exponential family have the form

f(x|ξ) = eξx−ψ(ξ)h(x),

where ξ is called the natural parameter. The mean µ, variance σ2 and cumulant
generating function φξ are, respectively,

µ = ψ′(ξ), σ2 = ψ′′(ξ), and φξ(t) = ψ(t + ξ) − ψ(ξ).

The cumulants are given as Kr = ψ(r)(ξ). Let β3 and β4 denote the skewness and
kurtosis. In the subclass with a quadratic variance function (QVF), the variance
ψ′′(ξ) depends on ξ only through the mean µ and, indeed,

σ2 ≡ V (µ) = d0 + d1µ + d2µ
2 (3.1)

for suitable constants d0, d1, and d2. We denote the discriminant by

∆ = d2
1 − 4d0d2. (3.2)

The notation ∆ is used in the statements of theorems for both the discrete and
the continuous cases, although for all the discrete cases ∆ happens to be equal
to 1. Note that dµ/dξ = ψ′′(ξ) = σ2, so

K3 =ψ(3)(ξ)=
dV

dµ
· dµ

dξ
=(d1+2d2µ)σ2 and K4 =ψ(4)(ξ)=

dK3

dµ
· dµ

dξ
=∆σ2+6d2σ

4.
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Hence,

β3 =
K3

σ3
= (d1 + 2d2µ)σ−1 and β4 =

K4

σ4
= ∆σ−2 + 6d2. (3.3)

Here are the important facts about the Binomial, Negative Binomial, and
Poisson distributions.

• Binomial, B(1, p): ξ = log(p/q), ψ(ξ) = log(1+eξ), and h(x) = 1. Also µ = p,
V (µ) = pq = µ − µ2. Thus d0 = 0, d1 = 1, d2 = −1,

β3 =
1 − 2µ

(µ(1 − µ))1/2
, and β4 =

1 − 6µ + 6µ2

µ(1 − µ)
.

• Negative Binomial, NB(1, p), the number of successes before the first failure:
ξ = log p, ψ(ξ) = − log(1 − eξ), and h(x) = 1, where p is the probability of
success. Here µ = p/q, and V (µ) = p/q2 = µ + µ2, so d0 = 0, d1 = 1, d2 = 1,

β3 =
1 + 2µ

(µ(1 + µ))1/2
, and β4 =

1 + 6µ + 6µ2

µ(1 + µ)
.

• Poisson, Poi(λ): ξ = log λ, ψ(ξ) = eξ, and h(x) = 1/x!. Then µ = λ, V (µ) =
µ, and here d0 = 0, d1 = 1, d2 = 0,

β3 =
1

µ1/2
, and β4 =

1
µ

.

3.2. One-sided tolerance interval

We now introduce the first-order and second-order probability matching one-
sided tolerance intervals. Let X =

∑n
i=1 Xi, where Xi are iid observations from

one of the three distributions discussed in Section 3.1. We denote the distribution
of X by Fn,µ and focus our discussion on the lower tolerance intervals. The upper
tolerance intervals can be constructed analogously. Two-sided tolerance intervals
will be discussed in Section 4.

Similar to confidence intervals, the coverage probability of a lower (β, 1−α)
tolerance interval admits a two-term Edgeworth expansion of the general form

P (1 − Fn,µ(L(X)) ≥ β) = 1 − α + S1 · n−1/2 + Osc1 · n−1/2 + S2 · n−1

+Osc2 · n−1 + O(n−3/2), (3.4)

where the first O(n−1/2) term, S1n
−1/2, and the first O(n−1) term, S2n

−1, are the
first and second order smooth terms, respectively, and Osc1 ·n−1/2 and Osc2 ·n−1

are the oscillatory terms. (The oscillatory terms vanish in the case of continuous
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distributions.) The smooth terms capture the systematic bias in the coverage
probability. See Bhattacharya and Rao (1976) and Hall (1982) for details on
Edgeworth expansions.

We call a tolerance interval first-order probability matching if the first or-
der smooth term S1n

−1/2 vanishes, and call the interval second-order probability
matching if both S1n

−1/2 and S2n
−1 vanish. Note that the oscillatory terms are

unavoidable for any nonrandomized procedures in the case of lattice distribu-
tions. See Ghosh (1994) and Ghosh (2001) for general discussions on probability
matching confidence sets.

Motivated by the discussion given at the end of this section, we consider an
approximate β-content, (1 − α)-confidence lower tolerance bound of the form

L(X) = X + a − b

√
n(d0 +

d1X

n
+

d2X2

n2
) + c, (3.5)

where d0, d1 and d2 are the constants in (3.1), and a, b, and c are constants
depending on α and β such that

L(X) < L(Y ) if X < Y. (3.6)

Remark. The quantity a in (3.5) “re-centers” the tolerance interval and, we see
later, a is important to the performance of the tolerance interval. The quantity
c in (3.5) plays the role of a “boundary correction”. The parameter c is to be
adjusted such that the coefficients S1 and S2 of the smooth terms n−1/2 and
n−1 in (3.4) can be zero. The effect of c can be significant when µ is near the
boundaries.

We use the Edgeworth expansion to choose the constants a, b, and c so
that the resulting tolerance intervals are first-order and second-order proba-
bility matching. The first step in the derivation is to invert the constraint
1 − F (L(X)) ≥ β to a constraint on X of the form X ≤ u(µ, β). Then the
coverage probability of the tolerance interval can be expanded using the Edge-
worth expansion. The optimal choice of the values a, b, and c can then be solved
by setting the smooth terms in the expansion to zero. The algebra involved here
is more tedious than for deriving the probability matching confidence interval.
The detailed proof is given in the Appendix.

Theorem 1. The tolerance interval given in (3.5) is first-order probability match-
ing for the three discrete distributions in the NEF-QVF if

a =
1
6
[(z2

1−β − 1)(1 + 2d2µ̂) + (1 + 3zαz1−β + 2z2
α)(d1 + 2d2µ̂)], (3.7)

b = zα + z1−β , (3.8)



TOLERANCE INTERVALS FOR DISCRETE DISTRIBUTIONS 913

and c = 0, where µ̂ = X/n and σ̂ =
√

d0 + d1µ̂ + d2µ̂2. The tolerance interval
(3.5) is second-order probability matching with a and b given as in (3.7) and (3.8),
and c given by

c =
1

36(zα + z1−β)
{
(−1 + 18d0d2 + 2(−8 + 9d1)d2µ̂ + 2d2

2µ̂
2)z3

1−β

+24d2(d0 + µ̂(d1 + d2µ̂))z2
1−βzα + z1−β[1 + 2d2µ̂(20 + 5d2µ̂ + 24d2µ̂z2

α)

+3d2
1(2 + z2

α) + 18d0d2(−3 + 2z2
α) + 6d1d2µ̂(−5 + 8z2

α)] + zα[d2
1(7 + 2z2

α)

+2d1d2µ̂(5 + 13z2
α) + 2d2(9d0(−1 + z2

α) + d2µ̂
2(5 + 13z2

α))]
}

. (3.9)

Remark. We have focused above on the construction of lower tolerance intervals.
The first order and second order β-content, (1 − α)-confidence upper tolerance
intervals can be constructed analogously as

X + a + b

√
n(d0 +

d1X

n
+

d2X2

n2
), (3.10)

X + a + b

√
n(d0 +

d1X

n
+

d2X2

n2
) + c, (3.11)

respectively, with the same a, b, and c as the lower tolerance intervals.
For all three distributions, b = zα + z1−β . It is useful to give the expressions

of the constants a and c individually for each of the three distributions.

1. Binomial: a =
1
6
(1 − 2µ̂)(zα + z1−β)(2zα + z1−β), and

c = − 1
18

(13z2
α + 11zαz1−β + z2

1−β + 5)(µ̂− µ̂2) +
1
36

(2z2
α + zαz1−β − z2

1−β + 7).

2. Poisson: a =
1
6
(zα + z1−β)(2zα + z1−β) and c =

1
36

(7− z2
1−β + zαz1−β + 2z2

α).

3. Negative Binomial: a =
1
6
(1 + 2µ̂)(zα + z1−β)(2zα + z1−β) and c =

1
18

(13z2
α +

11zαz1−β + z2
1−β + 5)(µ̂ + µ̂2) +

1
36

(2z2
α + zαz1−β − z2

1−β + 7).

We consider the discrete NEF-QVF family because the most important dis-
crete distributions are there. Our results can be generalized to the discrete NEF
family with variance functions of the form V (µ) = d0 +d1µ+d2µ

2 +d3µ
3 +d4µ

4,
because there exists a general solution for V (µ) = 0.

Figure 2 plots the coverage probabilities of the first-order and second-order
probability matching (0.9, 0.95) lower tolerance intervals for n = 50. It is clear
from Figure 2 that for the three discrete distributions, the first and second order
probability matching tolerance intervals have nearly vanishing systematic bias,
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Figure 2. Coverage probabilities of the 90%-content, 95% level of the first
order and second order probability matching lower tolerance bounds for the
Binomial, Poisson and Negative Binomial distributions, with n = 50.

and the second order probability matching interval has noticeably smaller sys-
tematic bias than the first order probability matching interval for the Negative
Binomial distribution. Since there are oscillatory terms for the discrete distribu-
tions in the Edgeworth expansion, we mainly evaluate the performances of the
tolerance intervals in terms of the smooth terms. Here, we evaluate the per-
formance of a tolerance interval by checking if their coverage probabilities can
approximate the nominal level well. The coverage probability of the proposed
one-sided tolerance interval can be closer to the nominal level than that of the
existing tolerance intervals, comparing Figure 2 with Figure 1.
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The motivation for considering the form (3.5) is briefly described as follows.
Let X1, . . . , Xn be a sample from a normal distribution N(µ, σ2). Wald and
Wolfowitz (1946) introduced the β-content, (1−α)-confidence tolerance interval

[X̄ −
√

n − 1
χ2

n−1,α

tS, X̄ +

√
n − 1
χ2

n−1,α

tS], (3.12)

where X̄ and S are the sample mean and sample standard deviation, respectively,
χ2

n−1,α is the α−quantile of the chi-squared distribution with n − 1 degrees of
freedom, and t is the solution of the equation∫ 1√

n
+t

1√
n
−t

1√
2π

e−x2/2dx = β.

To make a better analogy between the NEF-QVF families and normal cases,
we first attempt to rewrite the tolerance interval in (3.12) in terms of X =∑n

i=1 Xi under N(nµ, nσ2). Note that (3.12) implies

1 − α ≈ P (Φµ,σ(X̄ +

√
n − 1
χ2

n−1,α

tS) − Φµ,σ(X̄ −
√

n − 1
χ2

n−1,α

tS) ≥ β),

where Φµ,σ denotes the cdf of the N(µ, σ2) distribution. Since

Φµ,σ(X̄ ±
√

n − 1
χ2

n−1,α

tS) = Φnµ,
√

nσ(nµ +
√

n(X̄ − µ) ±
√

n − 1
χ2

n−1,α

t
√

nS), (3.13)

and replacing µ by the lower or upper limits of a β-confidence confidence interval
(X̄ − z(1−β)/2S/

√
n, X̄ + z(1−β)/2S/

√
n) for µ, we have the tolerance interval

[X−(

√
n − 1
χ2

n−1,α

t+(1− 1√
n

)z(1−β)/2)
√

ns, X+(

√
n − 1
χ2

n−1,α

t+(1− 1√
n

)z(1−β)/2)
√

ns]

under the N(nµ, nσ2) distribution.
For the NEF-QVF families, by the Central Limit Theorem, and adopting

the method in the normal case by identifying d0 + d1X/n + d2X
2/(n2) as s2,

an approximate β-content, (1 − α)-confidence tolerance lower bound and upper
bound are X − A and X + A, respectively, where A = (

√
n − 1/χ2

n−1,αt + (1 −
1/
√

n)z(1−β)/2)
√

n(d0 + d1X/n + d2X2/n2). More generally, we consider toler-
ance bounds of the form

L(X) = X + a − b

√
n(d0 +

d1X

n
+

d2X2

n2
) + c

U(X) = X + a + b

√
n(d0 +

d1X

n
+

d2X2

n2
) + c

with suitably chosen constants a, b, and c.
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Figure 3. Coverage probabilities of the 90%-content, 95% level of the first
order and second order two-sided probability matching tolerance intervals
for the Binomial, Poisson and Negative Binomial distributions, with n = 50.

4. Two-sided Tolerance Interval

We have derived the optimal one-sided first-order and second-order probabil-
ity matching tolerance intervals in Section 3, and is natural to consider two-sided
tolerance intervals. However, it is difficult to obtain optimal choices for the values
of a, b, and c for a two-sided tolerance interval using the same approach. A key
step in the derivation of the one-sided intervals given in Section 3 is the inversion
of the constraint 1 − F (L(X)) ≥ β to X ≤ u(µ, β). Similarly, for a two-sided
tolerance interval, it is necessary to invert the constraint

Fn,µ(U(X)) − Fn,µ(L(X)) ≥ β (4.1)
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Figure 4. Expected lengths of the 90%-content, 95% level of the two-sided
tolerance interval based on (2)(solid, binomial) and (3)(dotted, binomial),
the tolerance interval based on (4)(solid, Poisson) and (5)(dotted, Poisson),
the first order probability matching two-sided tolerance interval (dashed) and
the second order probability matching two-sided tolerance interval (long-
dashed) for Binomial (left panel) and Poisson (right panel) distributions,
with n = 50. For the Poisson distribution, the dashed and long-dashed lines
almost overlap.

in terms of X. This is theoretically difficult.
We thus take the alternative approach of using one-sided upper and lower

tolerance bounds. Let U(1+β)/2(X) and L(1+β)/2(X) be the upper and lower
probability matching ((1+β)/2, 1−α) tolerance bounds, respectively. We propose
to use the interval

(L(1+β)/2(X), U(1+β)/2(X)) (4.2)

as a β-content, (1 − α)-confidence two-sided tolerance interval.
Figure 3 plots the coverage probabilities of two-sided (0.9, 0.95) tolerance

intervals built from the first-order and second-order probability matching tol-
erance bounds. The coverage probabilities for the two-sided tolerance intervals
are calculated exactly for the three discrete distributions. By comparing Figure
3 with Figure 1, it is clear that the performance of these two-sided intervals is
better than that of existing two-sided tolerance intervals in the case of Binomial
and Poisson distributions. The coverage probability of the proposed two-sided
tolerance intervals oscillates in the center from 0.95 to 0.96 with a systematic bias
less than 0.01. In contrast, the coverage probability of the two-sided tolerance
intervals in Figure 1 oscillates in the center from 0.975 to 0.99 with a systematic
bias greater than 0.025.

In addition to coverage probability, parsimony in length is also an important
issue. Figure 4 compares the expected length of the two new tolerance intervals
with that of the two intervals discussed in Section 2. It is clear that the expected
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length of the proposed tolerance intervals is less than that of the existing toler-
ance intervals. Thus, based on both coverage probability and expected length,
the tolerance intervals derived from our analytical approach outperform existing
tolerance intervals.
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Appendix. Proof of Theorem 1

We begin by introducing notation and a technical lemma. All three discrete
distributions under consideration are lattice distributions with the maximal span
of one. Lemma 1 below gives the Edgeworth expansion and Cornish-Fisher ex-
pansion for these distributions. The first part is from Brown et al. (2003). For
details on the Edgeworth expansion and Cornish-Fisher expansion, see Esseen
(1945), Petrov (1975), Bhattacharya and Rao (1976), and Hall (1982).

Let X1, . . . , Xn be iid observations from a discrete distribution in the NEF-
QVF family. Denote the mean of X1 by µ and the standard deviation by σ. Let
β3 = K3/σ3 and β4 = K4/σ4 be the skewness and kurtosis of X1, respectively. Set
X =

∑n
1 Xi and Zn = n1/2(X̄ − µ)/σ, where X̄ = X/n. Let Fn(z) = P (Zn ≤ z)

be the cdf of Zn and let fn,µ,β = inf{x : P (X ≤ x) ≥ 1−β} be the 1−β quantile
of the distribution of X.

Lemma 1. Suppose z = z0 + c1n
−1/2 + c2n

−1 + O(n−3/2), where z0, c1 and c2

are constants. Then the two-term Edgeworth expansion for Fn(z) is

Fn(z) = Φ(z0) + p1(z)φ(z0)n−1/2 + p2(z)φ(z0)n−1 + Osc1 · n−1/2 + Osc2 · n−1

+O(n−3/2), (A.1)

where Osc1 and Osc2 are bounded oscillatory functions of µ and z, and

p1(z) = c1 +
1
6
β3(1 − z2

0), (A.2)

p2(z) = c2 −
1
2
z0c

2
1 +

1
6
(z3

0 − 3z0)β3c1 −
1
24

β4(z3
0 − 3z0)

− 1
72

β2
3(z5

0 − 10z3
0 + 15z0), (A.3)

p3(z) = −c1 +
1
6
β3(z2

0 − 3). (A.4)
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The two-term Cornish-Fisher expansion for fn,µ,β is

fn,µ,β = nµ − z1−β(nσ2)1/2 +
1
6
(1 + 2d2µ)(z2

1−β − 1)

+
[

1
72

(z3
1−β − z1−β) +

1
9
(d2µ + d2

2µ
2)(2z3

1−β − 5z1−β)

−σ2

4
d2(z3

1−β − 3z1−β)
]
(nσ2)−1/2 + Osc3 + Osc4 · n−1/2 + O(n−1), (A.5)

where Osc3 and Osc4 are bounded oscillatory functions of µ and β.

We focus on the smooth terms and ignore the oscillatory terms in (A.1) and
(A.5) in the following calculations.

Proof of Theorem 1. It follows from (3.6) that 1−F (L(X)) ≥ β is equivalent
to L(X) ≤ fn,µ,β and to X ≤ u(µ, β), where

u(µ, β) =
1

(1 − b2d2n−1)

{
−a +

1
2
b2d1 + fn,µ,β + bDn

}
(A.6)

with

Dn =
{

d0n + n−1fn,µ,β(nd1 + d2fn,µ,β) − ad1 +
1
4
b2d2

1 + c − 2ad2fn,µ,βn−1

+ (a2 − b2c)d2n
−1 − b2d0d2

}1/2

. (A.7)

The coverage of the tolerance interval is then

P (1 − Fn,µ(L(X)) ≥ β) = P (X ≤ u(µ, β)) = P (Zn ≤ zn), (A.8)

where Zn = (X − nµ)/
√

nσ2 and zn = (u(µ, β) − nµ)/
√

nσ2.
To derive the optimal choices for a, b, and c, we need the Edgeworth expan-

sion of P (Zn ≤ zn) as well as the expansion of the quantile fn,µ,β given in Lemma
1. By (A.5), the term d0n + n−1fn,µ,β(nd1 + d2fn,µ,β) in (A.7) is equal to

nσ2 − (nσ2)1/2(d1 + 2d2µ)z1−β +
1
6
(d1 + 2d2µ)(1 + 2d2µ)(z2

1−β − 1)

+σ2d2z
2
1−β + O(n−1/2). (A.9)

It then follows from (A.5), (A.7) and (A.9), and the Taylor expansion

(x + ε)1/2 = x1/2 +
1
2
x−1/2ε − 1

8
x−3/2ε2 + O(x−5/2ε3)
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for large x and small ε, that

Dn=(nσ2)1/2 − 1
2
(d1 + 2d2µ)z1−β +

{
− 1

2
(d1 + 2d2µ)a +

1
8
b2d2

1 +
1
2
c

+
1
12

(1+2d2µ)(d1+2d2µ)(z2
1−β−1)− 1

2
b2d0d2−

1
8
(d2

1−4d0d2)z2
1−β

}
(nσ2)−1/2

+O(n−1).

Note that (1−b2d2n
−1)−1 = 1+b2d2n

−1 +O(n−2). Using this and the above
expansion for Dn, we have

zn = (b − z1−β) +
{

1
6
(1 + 2d2µ)(z2

1−β − 1) − 1
2
(d1 + 2d2µ)z1−βb

+(
1
2
d1 + d2µ)b2 − a

}
σ−1n−1/2

+
{

1
4
d2(3z1−β − z3

1−β)σ2 +
1
9
(d2µ + d2

2µ
2)(2z3

1−β − 5z1−β)

+
1
72

(z3
1−β − z1−β) + (b − z1−β)b2d2σ

2 + [−1
2
a(d1 + 2d2µ) +

1
8
b2d2

1

−1
2
b2d0d2 +

1
2
c +

1
12

(1 + 2d2µ)(d1 + 2d2µ)(z2
1−β − 1)

−1
8
(d2

1 − 4d0d2)z2
1−β ]b

}
σ−2n−1 + O(n−3/2)

≡ (b − z1−β) + c1n
−1/2 + c2n

−1 + O(n−3/2). (A.10)

It then follows from the Edgeworth expansion (A.1) for P (Zn ≤ zn) given in
Lemma 1 that b needs to be chosen as b = zα + z1−β in order for the coverage
probability of the tolerance interval to be close to the nominal level 1−α. With
this choice of b, and using the notation in (3.4) for the Edgeworth expansion of
P (Zn ≤ zn), the coefficients for the smooth terms are

S1 = [c1 +
1
6
β3(1 − z2

α)]φ(zα), (A.11)

S2 =
{

c2 −
1
2
zαc2

1 +
1
6
(z3

α − 3zα)β3c1 −
1
24

β4(z3
α − 3zα)

− 1
72

β2
3(z5

α − 10z3
α + 15zα)

}
φ(zα). (A.12)

First-order probability matching interval: To make the tolerance interval
first-order probability matching, we need S1 ≡ 0, or equivalently c1 = 1

6β3(z2
α−1).
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This leads to

a =
1
6
[(z2

1−β − 1)(1 + 2d2µ) + 3zα(zα + z1−β)(d1 + 2d2µ) + σβ3(1 − z2
α)]

=
1
6
[(z2

1−β − 1)(1 + 2d2µ) + (1 + 3zαz1−β + 2z2
α)(d1 + 2d2µ)]. (A.13)

However, µ is unknown. We replace µ by µ̂ in a and set c = 0. It is straightfor-
ward to verify that there is no first-order effect by replacing µ with µ̂ in (A.13),
and that

X + a − b

√
n(d0 +

d1X

n
+

d2X2

n2
), (A.14)

with a and b given in (3.7) and (3.8), is first-order probability matching lower
bound.

Second-order probability matching interval: To make the interval second-
order probability matching, we need both S1 ≡ 0 and S2 ≡ 0. We can find the
value of c from (A.10), (A.11) and (A.12). However, a was assumed to be a
constant not depending on X in the original derivation of zn. While in (A.14), a

is a function of X and this has a second-order effect. We thus need to consider
tolerance bound of the form (3.5) with a given in (3.7) and b given in (3.8), and
to redo the analysis to find the optimal c. Set h1 = (1/6)(d2((z2

1−β − 1) + 3(zα +
z1−β)zα))+2d2/2(1−z2

α) and h2 = (1/6)[(z2
1−β−1)+3d1zα(zα+z1−β)+d1(1−z2

α)].
Then (3.5) can be rewritten as

L(X) = X[1 + 2h1n
−1] + h2 − (zα + z1−β)

√
n(d0 +

d1X

n
+

d2X2

n2
) + c.

It follows from (3.6) that 1 − F (L(X)) ≥ β if and only if X ≤ u∗(µ, β), where

u∗(µ, β)=
fn,µ,β+ 1

2d1(zα+z1−β)2−h2+2h1n
−1fn,µ,β−2h1h2n

−1+(zα+z1−β)D∗
n

(1 + 2h1n−1)2 − d2(zα + z1−β)2n−1
,

(A.15)

D∗
n =

{
d0n + n−1fn,µ,β(nd1 + d2fn,µ,β) +

d2
1

4
(zα + z1−β)2 − h2d1 + c

−d0d2(zα + z1−β)2 + 4h1d0 + [4d0h
2
1 + 2fn,µ,β(h1d1 − h2d2)

+(h2
2d2 − 2h1d1h2) + (4h1 − (zα + z1−β)2d2)cn]n−1 + 4h2

1cn
−2

}1/2

.(A.16)



922 TIANWEN TONY CAI AND HSIUYING WANG

It then follows from (A.5) that

D∗
n = (nσ2)1/2 +

1
2
(d1 + 2d2µ)z1−β +

{
1
12

(1 + 2d2µ)(d1 + 2d2µ)(z2
1−β − 1)

+zα(zα − 2z1−β)(
1
8
d2

1 −
1
2
d0d2) +

1
2
c − 1

2
d1h2 + 2d0h1 − d2µh2

+d1h1µ

}
(nσ2)−1/2 + O(n−1).

Note that [(1+2h1n
−1)2−d2(zα+z1−β)2n−1]−1 = 1− [4h1−(zα+z1−β)2d2]n−1+

O(n−2). Set z∗n = (u∗(µ, β)− nµ)/
√

nσ2. It then follows from (A.15), after some
algebra, that

z∗n = zα +
1
6
(d1 + 2d2µ)(z2

α − 1)σ−1n−1/2

+
{
− σ2d2

12
[z2

1−β(3z1−β + 4zα) + 2z3
α + z1−β(−9 + 6z2

α)]

+
1
72

[(1 + 16d2µ(1 + d2µ))z3
1−β − z1−β(1 − 36c + 4d2µ(10 + 16d2µ + 3d2µz2

α)

+3d1(2 + z2
α)(d1 + 4d2µ)) + 3zα(12c + 12d1d2µz2

α + d2
1(2 − 5z2

α)

−4d2
2µ

2(2 + z2
α))]

}
(nσ2)−1 + O(n−3/2).

The Edgeworth expansion in Lemma 1 then leads to the choice of c given at (3.9)
when µ̂ is replaced by µ. Since µ is unknown, µ is replaced by µ̂ in (3.9). It can
be verified directly that resulting tolerance interval is second-order probability
matching.
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