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Abstract: Longitudinal data are very common in biomedical and clinical research,

for example, CD4+ cell responses and viral load responses in AIDS clinical research.

It is challenging to do inference for the whole trajectory of these longitudinal data

if a parametric function is not available to model the trajectories. In this paper we

develop an area-under-the-curve (AUC) based nonparametric method to compare

the two groups of longitudinal data under both fixed and random designs. The

proposed test does not involve any smoothing. The method is also applicable to

one-sample problems. The test statistic is based on the maximum deviation of the

weighted averages of AUCs between two groups. The weight functions are used to

account for censored or early drop-out subjects. For both cases that the number

of measurements per subject goes to infinity and is finite, we show that the test

statistic processes converge weakly to Gaussian processes, where for the case of

the number of measurements per subject going to infinity, a nonparametric mixed-

effects model is considered. A Monte Carlo method is developed to generate the

distribution of test statistics. Simulations show that the test is valid and promising.

We applied the test to compare CD4+ responses over time between two treatment

groups in an AIDS clinical trial.

Key words and phrases: Censoring, confidence bands, fixed and random designs,

nonparametric maximum deviation tests, nonparametric mixed-effects, one and

two-sample problems.

1. Introduction

Longitudinal data arise frequently in biomedical and clinical research. Lin-
ear and nonlinear parametric models for longitudinal data have been intensively
studied in the past two decades. Good surveys can be found in the books by
Diggle, Liang and Zeger (1994), Davidian and Giltinan (1995) and Vonesh and
Chinchilli (1996). Recently nonparametric and semiparametric models for lon-
gitudinal data have been paid a great attention due to the needs of scientific
research and the lack of development in this area. Among others, these works
include semiparametric methods by Moyeed and Diggle (1994) and Zeger and
Diggle (1994), nonparametric kernel and spline methods by Hoover, Rice, Wu
and Yang (1998), Wu, Chiang and Hoover (1998) and Scheike and Zhang (1998).
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Martinussen and Scheike (1999, 2000, 2001) and Lin and Ying (2001) have devel-
oped complete nonparametric methods based on the estimates of the cumulative
regression functions without involving any smoothing.

In this paper, we propose a test based on the concept of area under the curve
(AUC) to compare the longitudinal responses between two treatment groups. The
development of the methodology is motivated by an AIDS clinical study in which
the investigators want to compare the immune responses (measured by CD4+ cell
counts) in HIV-1 infected children between two treatment groups. Children in
cohort 1 were treated with a lower dose antiviral therapy while children in cohort
2 were treated with a higher dose of the same therapy. We plot the changes in
CD4+ cell counts from baseline to 48 weeks for all subjects in Figure 1 (a). Note
that it is difficult to model the CD4+ cell response by a parametric function and
the CD4+ cell counts for each patient are correlated over time. A nonparametric
longitudinal model is a natural choice.

Consider a random sample of n subjects. For the ith subject, i = 1, . . . , n,
let Yi(t) be the response variable at time t. The response curves follow the
nonparametric regression model

Yi(t) = η(t) + εi(t), a ≤ t ≤ b, i = 1, . . . , n, (1.1)

where η(t) is the mean response curve and εi(t) is a zero-mean stochastic process.
The response curve for subject i is observed at times {toij , j = 1, . . . , ni}. The
area under the mean curve is defined as

∫ t
a η(s) ds for each t ∈ [a, b]. The concept

of AUC has been widely used in pharmacokinetics/pharmacodynamics where the
AUC is the area under the drug-concentration-time curve and is used to measure
the total drug exposure in the body of a patient (Rowland and Tozer (1995)). The
AUC of HIV-1 RNA copies (viral load) was also used to measure the cumulative
effect of a response in AIDS clinical trials (Weinberg and Lagakos (2000)).

Scheike and Zhang (1998), Scheike, Zhang and Juul (1999) and Scheike
(2000) have proposed use of the cumulative function to compare two nonparamet-
ric functions. The proposed method for longitudinal data in Scheike and Zhang
(1998) involves smoothing of two groups of curves. Thus, the test is sensitive to
the degree of smoothing or smoothing parameters. Scheike (2000) suggested us-
ing the cumulative Priestley-Chao estimator to construct the test for comparing
two curves for i.i.d. data. Martinussen and Scheike (1999, 2000, 2001) and Lin
and Ying (2001) recently considered the varying-coefficient regression models for
longitudinal data and have shown that the cumulative function is much easier to
estimate, and more efficient for inferences, than the regression function itself.

We propose an AUC based nonparametric method to compare the two groups
of longitudinal data under both fixed and random designs. The test statistic is
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based on the maximum deviation of the weighted averages of the AUCs between
the two groups. The weight functions account for individuals who are censored or
drop out early from the study. To derive the asymptotic distribution of the test
statistics, we consider two cases. One case is that the number of measurements
per subject goes to infinity where a nonparametric mixed-effects model is consid-
ered, and another is the case of a finite number of measurements per subject. For
both cases, we show that the test statistic processes converge weakly to Gaussian
processes. A Monte Carlo method is developed to generate the distribution of
test statistics. Our method does not involve any smoothing and a parametric
function is not assumed for the underlying response variable. Simulations show
that the test is valid and promising. The difference between the proposed method
and the aforementioned methods derived from the estimates of the cumulative
functions is that our tests are constructed from the AUCs of all subjects, which
brings in the subject-specific feature of longitudinal data. Further, we study the
case where the number of measurements per subject goes to infinity, in addition
to the finite number of measurements per subject, see Hoover and Wu (2001).
Our method is also applicable to one-sample problems. Fortran subroutines and
Splus functions for implementing the tests are ready to use.

The paper is organized as follows. Section 2 contains a description of an
individual area under the curve and the random process constructed from the
weighted individual AUCs. The weak convergence of the random process is de-
rived. In Section 3, we propose tests for both one and two sample cases. The
AUC-based confidence bands are also discussed. Relevant asymptotic results are
presented. Section 4 presents some simulation results for both fixed and random
design, and we illustrate the proposed method by an application example from
an AIDS clinical study for comparing CD4+ cell counts between two treatment
groups. All proofs are relegated to Section 5.

2. Area Under the Curve (AUC)

In model (1.1), let {Yi(t), εi(t), i = 1, . . . , n} be independent identically dis-
tributed (i.i.d.) random processes. We consider both random and fixed de-
signs. Let {toij , j = 1, . . . , ni, i = 1, . . . , n} be independently distributed ac-
cording to a density function f(t), a ≤ t ≤ b. Let ti1 < ti2 < . . . < tini be
the ordered values of {toij , j = 1, . . . , ni} for each i and ti0 = a be the en-
try time of the study. For random designs, the response curve for the sub-
ject i is observed at {tij , j = 1, . . . , ni} and the observed response values are
yij = Yi(tij), j = 1, . . . , ni. For fixed designs, all subjects are observed at the
same time intervals, {t1j , j = 1, . . . , n1}. The number of observations taken on
the ith subject by time t is Ni(t) =

∑ni
j=1 I(tij ≤ t), where I(·) is the indicator
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function. In the longitudinal studies, subjects are followed over a period of time
and the responses are taken at different time points. It is not surprising that
some subjects may drop out of the study early. For example, if a patient under
a certain treatment is supposed to visit a clinic monthly to measure CD4+ cell
counts for a period of one year, the patient may drop out of the study after a
few visits due to loss of follow-up or death. Let Ci be the end of follow-up time
or censoring time for the ith subject. Then the responses for the ith subject can
only be observed at the time points before Ci. Assume that {Ci, i = 1, . . . , n} are
independent identically distributed and independent of {tij} and {yij}. Through-
out the paper, for notational convenience, we drop the index i in the expectation
E{Xi(t)} when Xi(t)’s are identically distributed.

Note that there is a unique relationship between the mean curve function
η(t) and the AUC function,

∫ t
0 η(s) ds, a ≤ t ≤ b. The area under each individual

curve over time reflects the sample information of the response curve. One of
the simple estimation methods of the area under an individual curve is by the
trapezoidal rule, which is the area under the curve connecting the observed time
and response points through straight line segments (Rowland and Tozer (1995)).
The estimation of the area under the curve for subject i between a and t, for
a ≤ t ≤ b, is given by

AUCi(t) =
Ni(t)∑
j=1

[0.5(yij−1 + yij)(tij − tij−1)] + yiNi(t)(t− tiNi(t)). (2.1)

Let ξi(t) = I(Ci ≥ t). We define the weighted average of AUCs for n subjects as

AUC(t) =
n∑

i=1

wi(t)AUCi(t), (2.2)

where wi(t) = ξi(t)/
∑n

i=1 ξi(t) is the weight function. Note that
∑n

i=1 wi(t) = 1.
The AUC(t) is the average of areas under the curves that are still not cen-
sored at the time t. As t increases, the number of curves that are not cen-
sored decreases. Other choices of weight functions are possible, for example,
wi(t) = ξi(t)Ni(t)/

∑n
i=1 ξi(t)Ni(t). Under random design, this weight function

puts more weight on curves that have more measurements observed before time
t. In our simulation study (not shown here), we found that, when the variation
in the numbers of measurements among subjects is large under random designs,
the tests using the weight function with Ni(t) are more powerful. For simplicity
of theoretical treatment, we only consider wi(t) = ξi(t)/

∑n
i=1 ξi(t).

It is expected that when the number of the design time points is large, the
AUC(t) approximates the area under the mean curve

∫ t
0 η(s) ds well, while this
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may not be the case when the number of the design time points is small. We
discuss both situations. Consider the nonparametric mixed-effects version of
(1.1) with the following error process decomposition:

εi(t) = vi(t) + ei(t), (2.3)

where vi(t) is a mean-zero process satisfying |vi(t)−vi(s)| ≤ Li|t−s|, Ev4
i (a) <∞,

EL4
i < ∞ and ei(t) is a white noise process with continuously differentiable

variance. Under the nonparametric mixed-effects model, the population mean
response is η(t) while the subject-specific mean response for individual i is η(t)+
vi(t). The random effect vi(t) also induces correlation among observations within
subject i. Examples of (2.3) include the specification ε(tij) = vi + Zij and
ε(tij) = m(t)vi + Zij , where {vi} are i.i.d. mean zero random effects, {Zij} are
i.i.d. mean zero measurement errors and m(t) satisfies a Lipschitz condition. The
nonparametric mixed-effects model has been very useful in modelling longitudinal
data; see Shi, Weiss and Taylor (1996), Rice and Wu (2001) and Wu and Zhang
(2002).

The following large sample properties of AUC(t) hold for both random and
fixed designs.
Theorem 1. Suppose f(t) is positive, continuously differentiable and bounded
below on [a, b], the distribution of C is continuous with P (C > b) > 0, and η(t)
on [a, b] satisfies |η(t) − η(s)| ≤ L|t− s|, t, s ∈ [a, b], for some constant L > 0.

(a) Case with infinite ni: Under (2.3), n1/2
(
AUC(t) − ∫ t

a η(s) ds
)

converges
weakly to a zero-mean Gaussian process G1(t) on [a, b], with covariance function
at t and t′ equal to E

(∫ t
a v(s) ds

∫ t′
a v(s) ds

)
, as n→ ∞ and

∑
1≤i≤n(nni)−1/2 →

0. The covariance function of G1(t) can be estimated consistently by

ψ̂(t, t′) = n
n∑

i=1

wi(t)wi(t′)
(
AUCi(t) −AUC(t)

) (
AUCi(t′) −AUC(t′)

)
. (2.4)

(b) Case with finite ni: Assume that E
{
supa≤t≤b Y

4(t)
}
< ∞ and {ni}

are i.i.d. Then n1/2
(
AUC(t) − E{AUC(t)}

)
converges weakly to a zero-mean

Gaussian process G2(t) on [a, b], with covariance function at t and t′ equal to
E{[AUC(t)−E(AUC(t))][AUC(t′) −E(AUC(t′))]}, as n→ ∞. The covariance
function of G2(t) can be estimated consistently by using (2.4).

When the number of measurements per subject goes to infinity as in part
(a), the individual AUCi(t) is mainly composed of the population mean AUC,∫ t
a η(s) ds, of all individual curves and the AUC of the random effect curve vi(t).
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In the case when the number of measurements per subject is bounded, the con-
tribution to the variance of AUC(t) by the measurement error part ei(t) cannot
be ignored. The term E{AUC(t)} is the mean AUC of all individual curves
obtained by connecting observation points consisting of the observed time and
response pairs.

3. Area Under the Curve Tests

The aim of this study is to develop simple nonparametric tests for compar-
ison of nonparametric regression functions of longitudinal data without relying
on smoothing. We consider two groups of data generated by (1.1) on the time
interval [a, b] and let superscript k = 1, 2 index the groups. The censoring times
are generated independently from the distributions P (C(k) ≤ t), k = 1, 2, respec-
tively. The tests are considered for two cases, (1) fixed and random designs with
a large number of design time points, and (2) fixed and random designs with
finite number of design time points. A nonparametric test for the null hypoth-
esis H0 : η(1)(t) = η(2)(t), a ≤ t ≤ b, may be based on comparing the weighted
averages of AUCs for the two sets of longitudinal data. Define the process

U(t) = (n(1) + n(2))1/2
(
AUC(1)(t) −AUC(2)(t)

)
. (3.1)

Various test statistics may be based on U(t). For example, one may take U(b)
as a test statistic, it compares the weighted averages of areas under the curves
for the two groups at the end of study. This test may lose power when the two
regression functions η(k)(t), k = 1, 2, cross over each other and lose information
on those curves that are censored before the end of study, but it should have
good power otherwise. Under H0 and conditions given in Theorem 2 below, this
test statistic has an asymptotic normal distribution, with its variance estimated
consistently by

σ̂2(b) = (n(1) + n(2))
n(1)∑
i=1

(w(1)
i (b))2

(
AUC

(1)
i (b) −AUC(1)(b)

)2

+(n(1) + n(2))
n(2)∑
i=1

(w(2)
i (b))2

(
AUC

(2)
i (b) −AUC(2)(b)

)2
. (3.2)

Thus the test based on U(b)/σ̂(b) is a simple normal test and requires little
computing time. In the following, we focus on

T = sup
a≤t≤b

|U(t)|. (3.3)

The test based on T looks to detect any departure from the null hypothesis, the
L2-test is an alternative with a similar aim. Unlike the test based on U(b), the
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asymptotic null distribution of T or the L2-test statistic is intractable. Here we
apply a Monte Carlo simulation method proposed by Lin, Wei and Ying (1993)
to generate the distribution of the test statistics. Let Z(k)

1 , . . . , Z
(k)

n(k) , k = 1, 2, be
i.i.d. standard normal random variables. Define

U∗(t) = ((n(1)+n(2))/n(1))
1
2

[
(n(1))

1
2

n(1)∑
i=1

w
(1)
i (t)

(
AUC

(1)
i (t)−AUC(1)(t)

)
Z

(1)
i

]

−((n(1) + n(2))/n(2))
1
2

[
(n(2))

1
2

n(2)∑
i=1

w
(2)
i (t)

(
AUC

(2)
i (t)−AUC(2)(t)

)
Z

(2)
i

]
. (3.4)

For both random and fixed designs, the distribution of the random process U(t)
can be approximated by the conditional distribution of the random process U∗(t)
given the observed data sequence.

Theorem 2. Assume that the conditions of Theorem 1 hold for both regression
models and that n(k)/(n(1) + n(2)) → λk with 0 < λk < 1, k = 1, 2.

(a) Case with infinite ni: Under H0, the processes U(t) and U∗(t) converge
weakly to the same zero-mean Gaussian process on [a, b], assuming that the con-
ditions in (a) of Theorem 1 are satisfied for both data sets.
(b) Case with finite ni: In addition to the conditions in (b) of Theorem 1,
assume that n(1)

i and n
(2)
i have the same distribution and that f (1)(t) = f (2)(t).

Then the processes U(t) and U∗(t) converge weakly to the same zero-mean Gaus-
sian process on [a, b] under H0.
In both (a) and (b), the weak convergence of U∗(t) is regarded as the conditional
convergence given the observed longitudinal data sequences.

Let T ∗ = supa≤t≤b |U∗(t)|. The critical value of the test statistic T of size α
may be estimated by, say tα, the (1−α) quantile of {T ∗

r , r = 1, . . . , B} obtained by
repeatedly generating B independent samples of i.i.d. normal random variables

Z
(k)
1 , . . . , Z

(k)

n(k), k = 1, 2, while holding the observed data fixed, where T ∗
r is the

rth copy of T ∗, r = 1, . . . , B, and B is the number of repeated bootstrap samples.
The null hypothesis H0 is rejected at the significant level α if T > tα.

Consider ∆AUC(t) =
∫ t
a(η(1)(s) − η(2)(s)) ds under the conditions of (a) of

Theorem 1, and ∆AUC(t) = E{AUC(1)(t)} − E{AUC(2)(t)} under the con-
ditions of (b) of Theorem 1. From Theorem 1 and the proof of Theorem 2,
(n(1) + n(2))1/2(AUC(1)(t) − AUC(2)(t) − ∆AUC(t)) and U∗(t), given the ob-
served data sequence, converge weakly to the same zero-mean Gaussian process.
Hence, the maximum deviation test T is an omnibus test which is consistent
against all alternatives Ha for which η(1)(t) �= η(2)(t) for some t ∈ [a, b], provided
the conditions in Theorem 1 are satisfied for both models.
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Let σ̂2(t) be similarly defined according to (3.2). From its uniform consis-
tency under Theorem 1, an asymptotic (1−α) level uniform confidence band for
∆AUC(t) is given by{

AUC(1)(t) −AUC(2)(t)
}
± cασ̂(t)(n(1) + n(2))−1/2, (3.5)

where cα is the estimate of the (1 − α) quantile of supa≤t≤b |U∗(t)/σ̂(t)|. This
last term can be obtained similarly by repeatedly generating i.i.d. normal random
variables while holding the observed data fixed.

The procedures proposed above can be easily adapted to the one-sample
case. The uniform confidence band for

∫ t
a η(s) ds or E{AUC(t)} based on one

sample longitudinal data is

AUC(t) ± cα(ψ̂(t, t))1/2n−1/2, (3.6)

where cα is the estimate of the (1 − α) quantile of supa≤t≤b |U∗
1 (t)/(ψ̂(t, t))1/2|,

with U∗
1 (t) = n1/2∑n

i=1wi(t)
(
AUCi(t) −AUC(t)

)
Zi and ψ̂(t, t) given in (2.4).

Again, cα can be estimated by repeatedly generating independent samples of
i.i.d. normal random variables while holding the observed data fixed.

4. Simulations and An Example

In this section we present an extensive simulation study examining the lev-
els and powers of the maximum deviation AUC test and apply the test to an
AIDS clinical study comparing CD4+ counts under two different treatment regi-
mens. Simulations are conducted for both fixed and random designs and for both
uncensored and censored follow-up times.

4.1. Simulations

Let Y (k)(t) = η(k)(t) + ε(k)(t), 0 ≤ t ≤ 1, k = 1, 2, be the regression models
from which two samples of longitudinal data are drawn, respectively. To examine
the levels of the tests, the mean regression functions are taken to be sin(2πt)
and sin(4πt). Four pairs of mean regression functions (see Table 2) are used
to examine the powers. These alternatives attach different smoothness to the
curves and different monotonicity. For convenience, we choose equal sample sizes
for both groups. The number of subjects is taken to be 30, 50 and the number of
repeated measurements per subject is taken to be 5, 10, 20. In Tables 1−3, the
first number under sample size is the number of subjects and the second number
is the number of measurements per subject. For fixed design, each subject is
followed up at fixed equal time intervals on [0, 1] while for random design, the
follow-up times for each subject are the ordered values of independent identically
distributed uniform random variables on [0, 1]. For fixed design, censoring times
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are generated from a uniform (0, 5) distribution, about 20% subjects drop out
before the end of follow-up time (t = 1). For random uniform design, censoring
times are generated from a uniform (0, 0.5(1 − 1/(ni + 1)), distribution and this
yields approximate 20% censoring, where ni is the number of measurements for
the ith subject.

Table 1. Empirical size for 500 simulations at 0.05 nominal level for fixed
and random design, with error processes (1) and (2).

0% censoring 20% censoring
Function Sample size Error (1) Error (2) Error (1) Error (2)
Fixed design
sin(2πt) (30, 5) 6.4 5.8 8.0 5.4

(30, 10) 5.4 5.2 6.0 5.6
(30, 20) 4.4 3.8 5.2 3.6
(50, 5) 5.4 5.4 5.6 4.2
(50, 10) 5.2 4.8 5.0 5.8
(50, 20) 5.8 6.8 5.6 6.6

sin(4πt) (30, 5) 4.2 6.2 5.4 5.6
(30, 10) 6.0 6.2 5.2 4.2
(30, 20) 4.8 3.2 8.2 6.2
(50, 5) 6.2 4.8 6.0 5.0
(50, 10) 5.2 4.4 4.4 7.8
(50, 20) 6.8 6.0 5.0 5.4

Random design
sin(2πt) (30, 5) 5.8 6.0 7.8 5.6

(30, 10) 6.0 8.0 5.4 5.8
(30, 20) 5.4 5.0 5.8 7.0
(50, 5) 4.6 4.8 7.4 7.2
(50, 10) 4.8 4.8 6.6 5.4
(50, 20) 6.2 5.6 5.4 4.8

sin(4πt) (30, 5) 5.6 3.8 7.0 5.8
(30, 10) 5.6 7.0 5.0 5.4
(30, 20) 4.6 5.2 5.2 5.6
(50, 5) 5.0 4.8 5.6 5.6
(50, 10) 4.6 5.0 6.0 3.8
(50, 20) 6.0 6.0 4.6 4.6

Let tij be the jth observation time of subject i in either of the two groups.
Let {vi} be i.i.d. N(0, σ2

v) and {Zij} be i.i.d. N(0, σ2
ε ), with σv = 0.2 and σε = 0.5.

The following error processes are used in the simulation study:
Error process (1): ε(k)(tij) = vi + Zij for k = 1, 2. These error processes induce
the same within-subject correlation and time independent variance-covariance
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for both groups.
Error process (2): ε(k)(tij) = viη

(k)(tij) + Zij for k = 1, 2. These error pro-
cesses induce different within-subject correlation and time dependent variance-
covariance for the two groups.

Table 2. Fixed design: empirical power for 500 simulations at 0.05 nominal
level for fixed design, with error distributions (1) and (2).

0% censoring 20% censoring
Functions Sample size Error (1) Error (2) Error (1) Error (2)
η(1)(t) = sin(t)
η(2)(t) =

√
t (30, 5) 78.4 88.0 74.4 86.4

(30, 10) 90.8 99.6 82.2 95.4
(30, 20) 93.0 100 89.4 99.4
(50, 5) 93.6 99.4 88.8 94.0
(50, 10) 97.8 100 95.4 99.6
(50, 20) 98.8 100 98.4 100

η(1)(t) = 0.3 sin(2πt)
η(2)(t) = 0.4 cos(3πt) (30, 5) 68.4 89.8 54.6 82.6

(30, 10) 67.8 98.0 58.0 96.8
(30, 20) 78.6 100 67.4 100
(50, 5) 92.6 99.4 83.4 98.2
(50, 10) 94.2 100 86.6 100
(50, 20) 98.0 100 94.6 100

η(1)(t) = exp(−t)
η(2)(t) = exp(−2t) (30, 5) 76.2 88.0 65.4 77.6

(30, 10) 82.6 97.6 77.8 93.4
(30, 20) 93.0 100 88.8 99.4
(50, 5) 92.0 98.2 83.8 92.0
(50, 10) 97.0 100 92.8 99.8
(50, 20) 98.8 100 96.8 100

η(1)(t) = exp(−t)
η(2)(t) = (0.1

√
t+ 1) (30, 5) 66.2 79.8 52.8 68.4

× exp(−2t) (30, 10) 74.0 93.2 69.0 88.0
(30, 20) 85.0 99.6 77.8 97.2
(50, 5) 83.0 94.6 76.6 87.0
(50, 10) 93.0 99.4 88.8 97.8
(50, 20) 96.6 100 92.6 99.6

Table 1 contains the empirical sizes of the maximum deviation test at the
0.05 nominal level. Each entry in Table 1–3 is calculated based on 500 replicates
and 500 bootstrap samples. Table 1 shows that the empirical sizes are reasonably
close to the 0.05 nominal level for both fixed and random designs, presence or
lack of censorship, two types of error process, and for different sample sizes.
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Table 2 and Table 3 present the empirical powers of the proposed test for four
different types of alternatives with various combinations of levels of censorship,
error processes and sample sizes under fixed and random designs, respectively.
The tables show that the AUC maximum deviation test has good power against
different alternatives under both fixed and random designs. The powers under
random design are consistently less than those under fixed designs, which shows a
benefit of fixed design. Also, the power under the error process (2) is higher than
under error process (1) since the variance of the error process (2) is smaller. Both
error processes induce positive correlations between the responses at different
times.

Table 3. Random design: empirical power for 500 simulations at 0.05 nomi-
nal level for random design, with error processes (1) and (2).

0% censoring 20% censoring
Functions Sample size Error (1) Error (2) Error (1) Error (2)
η(1)(t) = sin(t)
η(2)(t) =

√
t (30, 5) 66.6 81.4 57.8 72.8

(30, 10) 81.2 95.6 73.4 91.2
(30, 20) 93.4 99.4 82.0 98.2
(50, 5) 87.4 96.8 73.0 85.4
(50, 10) 97.6 99.8 92.6 99.4
(50, 20) 98.8 100 96.8 100

η(1)(t) = 0.3 sin(2πt)
η(2)(t) = 0.4 cos(3πt) (30, 5) 12.8 15.2 10.4 14.2

(30, 10) 32.2 72.6 21.4 62.0
(30, 20) 63.4 99.8 48.8 98.6
(50, 5) 14.0 23.8 14.8 23.6
(50, 10) 57.8 96.8 44.8 88.6
(50, 20) 94.8 100 84.0 100

η(1)(t) = exp(−t)
η(2)(t) = exp(−2t) (30, 5) 66.2 81.0 56.6 67.4

(30, 10) 79.8 94.6 68.0 86.8
(30, 20) 87.6 99.0 82.6 97.6
(50, 5) 85.4 95.4 78.4 88.0
(50, 10) 94.0 99.8 88.4 98.2
(50, 20) 99.2 100 95.8 100

η(1)(t) = exp(−t)
η(2)(t) = (0.1

√
t+ 1) (30, 5) 56.2 70.4 45.6 58.6

× exp(−2t) (30, 10) 72.6 86.2 61.0 77.0
(30, 20) 77.4 96.2 74.0 93.8
(50, 5) 77.8 88.6 68.2 79.8
(50, 10) 90.0 97.0 82.0 95.0
(50, 20) 96.4 100 89.4 99.6
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4.2. Example

In an AIDS clinical study, the change in CD4+ cell counts is commonly
used to assess the immunologic responses of anti-HIV treatment. We apply the
AUC tests to the example introduced in Section 1, and compare the CD4+
responses (changes from baseline) between the two treatment groups (cohorts)
of HIV-1 infected children. Seventeen patients in Cohort 1 were treated with a
lower dose antiviral regimen and thirty-one patients in Cohort 2 were treated
with the higher dose of the same regimen. First we consider 48 weeks treatment
period. The proposed two-sample test gives a p-value of 0.0415, which shows
a significant difference between the two treatment groups (in order to produce
reliable results, two thousand bootstrap samples are used to calculate the p-values
in this example). The pointwise mean response curves are plotted in Figure 1(b).
We can see that Cohort 2 (higher dose treatment) performed better (more CD4+
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Figure 1. The change of CD4+ cell counts from baseline for the two treat-
ment groups (cohorts) of HIV-1 infected children. The solid lines are the
curves from cohort 1 (the low dose treatment) and the dashed lines are the
curves from cohort 2 (the high dose treatment).
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cells were recovered). The one-sample test is also conducted to see whether the
response is significantly different from baseline. This shows that the response
in Cohort 1 (lower dose treatment) is not significant (p-value= 0.267) while the
response is significant (p-value< 0.0001) in Cohort 2 (higher dose treatment).
When we repeat the analysis for the 24 weeks treatment, the two-sample test
gives a p-value of 0.0865: they are marginally different. The p-values of the one-
sample test are 0.0915 for Cohort 1 and 0.1025 for Cohort 2. There appears to
be a benefit in CD4+ cell response from the higher dose of the study regimen for
the 48 weeks treatment period, but the benefit has yet to become clear by the
end of 24 weeks.

5. Appendix: Proofs

Let U1, . . . , Uk be the order statistics of a random sample of size k from a uni-
form (0, 1) distribution. Define uniform spacings δi = Ui−Ui−1, for i = 1, . . . , k+
1, where U0 ≡ 0 and Uk+1 ≡ 1. Let α1, . . . , αk+1 be i.i.d. with an exponential
distribution of mean one. Then (δ1, . . . , δk+1) and (α1, . . . , αk+1)/

∑k+1
i=1 αi are

equal in distribution (cf., Proposition 8.2.1, Shorack and Wellner (1986)). By this
device one has a result on uniform spacings to be used in the proofs of Theorem
1 and 2. The proof is straight forward and is omitted.

Lemma 1.

E

{
max

1≤i≤k+1
δi

}
= O (log(k + 1)/(k + 1))

E

{
( max
1≤i≤k+1

δi)2
}

= O
(
(log(k + 1))2/(k + 1)2

)
.

Proof of Theorem 1. Part (a).

n1/2
(
AUC(t) −

∫ t

a
η(s) ds

)
= n1/2

n∑
i=1

wi(t)
(
AUCi(t) −

∫ t

a
η(s) ds

)

= n1/2
n∑

i=1

wi(t)
(
AUCi(t) − E[AUCi(t)|{tij}]

)

+n1/2
n∑

i=1

wi(t)
(
E[AUCi(t)|{tij}] −

∫ t

a
η(s) ds

)
. (5.1)

First we show that the second term on the right side of (5.1) converges to zero
in probability uniformly in t ∈ [a, b]. Since E[AUCi(t)|{tij}]=∑Ni(t)

j=1 [0.5(η(tij−1)
+η(tij))(tij − tij−1)] + η(tiNi(t))(t − tiNi(t)), we have, by the uniform continuity
of η(t),

sup
a≤t≤b

∣∣∣n1/2
n∑

i=1

wi(t)
(
E[AUCi(t)|{tij}] −

∫ t

a
η(s) ds

) ∣∣∣
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≤ O(1) sup
a≤t≤b

n∑
i=1

n1/2wi(t) max
1≤j≤ni

(tij − tij−1)

≤ Op(1)n−1/2
n∑

i=1

max
1≤j≤ni

(tij − tij−1). (5.2)

Let F (t) be the distribution function associated with the density f(t) of {t0ij}.
Let Uij = F (tij), 1 ≤ i ≤ n, 1 ≤ j ≤ ni. Then {Uij −Uij−1, j = 1, . . . , ni +1} are
uniform spacings with Ui,ni+1 ≡ 1. The sets of uniform spacings are independent
among different subjects. By the continuity of f(t), Uij − Uij−1 = f(t∗ij)(tij −
tij−1), where t∗ij is on the line segment between tij−1 and tij. Thus, tij − tij−1 ≤
O(1)(Uij − Uij−1) since f(t) is bounded away from zero. From (5.2), it follows

sup
a≤t≤b

∣∣∣n1/2
n∑

i=1

wi(t)
(
E[AUCi(t)|{tij}] −

∫ t

a
η(s) ds

) ∣∣∣
≤ Op(1)n−1/2

n∑
i=1

max
1≤j≤ni

(Uij − Uij−1), (5.3)

which converges to zero in probability by applying the Markov inequality and
Lemma 1.

Now, we prove the weak convergence of the first term in (5.1). Let Xi(t) =
AUCi(t)−E{AUCi(t)|{tij}} and, for a function h(t), let Ih(t)=

∑Ni(t)
j=1 {0.5[h(tij−1)

+h(tij)](tij − tij−1)} + h(tiNi(t))(t− tiNi(t)). We have

AUCi(t) −E[AUCi(t)|{tij}] = Iεi(t) = Ivi(t) + Iei(t). (5.4)

Note that |Ivi(t) −
∫ t
a vi(s) ds| ≤ Li max1≤j≤ni |tij − tij−1| and so

sup
a≤t≤b

∣∣∣n1/2
n∑

i=1

wi(t)
(
Ivi(t) −

∫ t

a
vi(s) ds

)∣∣∣
≤ sup

a≤t≤b

∣∣∣n1/2
n∑

i=1

wi(t)Li max
1≤j≤ni

(tij − tij−1)
∣∣∣

≤ Op(1)n−1/2
n∑

i=1

Li max
1≤j≤ni

(Uij − Uij−1) → 0, (5.5)

in probability by the Markov inequality and the Cauchy-Schwarz inequality.
From Scheike (2000, cf., the proof of Proposition 1), it follows that ni

1/2Iei(t)
converges weakly to a mean zero Gaussian martingale as ni → ∞. Thus

sup
a≤t≤b

∣∣∣n1/2
n∑

i=1

wi(t)Iei(t)
∣∣∣ = sup

a≤t≤b

∣∣∣n1/2
n∑

i=1

n
−1/2
i wi(t)ni

1/2Iei(t)
∣∣∣
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≤ Op(1)n−1
n∑

i=1

(n/ni)1/2 sup
a≤t≤b

|ni
1/2Iei(t)|

→ 0 in probability as n−1
n∑

i=1

(n/ni)1/2 → 0, (5.6)

since the distributions of supa≤t≤b |ni
1/2Iei(t)| are the same for different individ-

uals with the same ni. From (5.4) to (5.6), it follows

n1/2
n∑

i=1

wi(t)
(
AUCi(t) − E[AUCi(t)|{tij}]

)

=

(
n∑

i=1

ξi(t)

)−1

n1/2
n∑

i=1

ξi(t)
∫ t

a
vi(s) ds+ op(1),

which converges weakly to a mean zero Gaussian process on [a, b] with covariance
function at t and t′ equal to E(

∫ t
a vi(s)ds

∫ t′
a vi(s)ds). The weak convergence

follows from Example 2.11.14 of van der Vaart and Wellner (1996).
Finally, since

n−1
n∑

i=1

(
ξi(t)

∫ t

a
vi(s)dsξi(t′)

∫ t′

a
vi(s)ds

)
→E

(
ξi(t)

∫ t

a
vi(s)dsξi(t′)

∫ t′

a
vi(s)ds

)
,

we have, by (5.4) to (5.6),

n−1
n∑

i=1

(
ξi(t)(AUCi(t)−E[AUCi(t)|{tij}])ξi(t′)(AUCi(t′)−E[AUCi(t′)|{tij}])

)

→ E
(
ξi(t)

∫ t

a
vi(s) ds ξi(t′)

∫ t′

a
vi(s) ds

)
.

Since supa≤t≤b n
−1∑n

i=1 |E[AUCi(t)|{tij}]−
∫ t
a η(s)ds| ≤ O(1)n−1∑n

i=1max1≤j≤ni

(tij − tij−1) → 0 in probability and AUC(t) − ∫ t
a η(s) ds converges to zero in

probability uniformly in t ∈ [a, b] from the previous weak convergence result, we
have

n−1
n∑

i=1

(
ξi(t)

(
AUCi(t) −AUC(t)

)
ξi(t′)

(
AUCi(t′) −AUC(t′)

) )

→ E
(
ξi(t)

∫ t

a
vi(s) ds ξi(t′)

∫ t′

a
vi(s) ds

)
.

Thus, by n−1∑n
i=1 ξi(t) → Eξi(t) and the independence between ξi(t) and Yi(t),

we have ψ̂(t, t′) → E(
∫ t
a vi(s)ds

∫ t′
a vi(s)ds). This completes the proof of part (a).
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Part (b). Start with

n1/2
(
AUC(t) − E[AUC(t)]

)

= n
( n∑

i=1

ξi(t)
)−1

n−1/2
n∑

i=1

ξi(t)
(
AUCi(t) −E[AUC(t)]

)
.

Let Xi(t) = AUCi(t) − E[AUC(t)]. Since
∑n

i=1 ξi(t)/n converges uniformly to
P (Ci ≥ t) which is bounded away from zero, it suffices to show the weak con-
vergence of n−1/2∑n

i=1 ξi(t) ×Xi(t). Note that {ξi(t)Xi(t)} are i.i.d. random
processes. Since E

{
supa≤t≤b Y

2(t)
}
<∞, we have that sup1≤i≤n |E[Xi(t)|{tij}]|

is bounded and E|ξi(t)Xi(t) − ξi(s)Xi(s)| ≤ E{ξi(t)E(|Xi(t) −Xi(s)| |{tij})} +
E{|ξi(t) − ξi(s)| E(|Xi(s)|)|{tij}} is bounded by K(t − s) for some constant
K. The weak convergence of n1/2(AUC(t)− E[AUC(t)]) to a Gaussian process
follows from Example 2.11.14 of van der Vaart and Wellner (1996) and the co-
variance function at t and t′ is equal to E{(AUC(t) − E[AUC(t)]) (AUC(t′) −
E[AUC(t′)])}.

By the law of large numbers, we have AUC(t) → E{AUC(t)} and ψ̂(t, t′) →
E{(AUC(t) −E[AUC(t)]) (AUC(t′) − E[AUC(t′)])} in probability as n → ∞.
This completes the proof of part (b).

Proof of Theorem 2.
First note that the two groups of longitudinal data sets are independent.

Under H0, in view of the results from Theorem 1, it is sufficient to show U∗
1 (t) =

n1/2∑n
i=1wi(t)(AUCi(t) − AUC(t))Zi converges weakly to G1(t) or G2(t) under

the conditions (a) or (b) of Theorem 1, respectively, given the observed data
sequence, where Z1, . . . , Zn are i.i.d. standard normal random variables. Further,
in view of the results of Theorem 1 on the consistent estimate of the covariance
functions, and by the Multivariate Central Limit Theorem, the conditional finite-
dimensional distributions of U∗

1 (t) converge to the finite-dimensional distributions
of G1(t) or G2(t) under the conditions of (a) or (b) of Theorem 1, respectively.
Thus, it is left to prove that U∗

1 (t) is tight under either of the conditions (a) and
(b) of Theorem 1.

Let ζi(t) = ξi(t)
(
AUCi(t) −AUC(t)

)
. Considering the fact of uniform con-

vergence of
∑n

i=1 ξi(t)/n, it suffices to show that the process n−1/2∑n
i=1 ζi(t)Zi

is tight given the observed data sequence. We check a slight extension of the
moment conditions of Theorem 15.6 of Billingsley (1968) for the tightness by
McKeague and Zhang (1994, p.507). Here we state the corrected version of the
relaxed moment condition for the process Xn(t) to be tight, obtained through
conversations with the authors:

E{|Xn(t)−Xn(t1)|γ |Xn(t2)−Xn(t)|γ} ≤ (F (t2)−F (t1))2α +o(1)(F (t2)−F (t1)),
(5.7)



AUC-BASED TESTS FOR NONPARAMETRIC FUNCTIONS 609

where t1 ≤ t ≤ t2, γ > 0, α > 1/2, o(1) converges to zero uniformly in (t1, t, t2)
and F is a nondecreasing and continuous function. Applying (5.7), conditional
on the observed data sequence, we have, for a ≤ t1 ≤ t ≤ t2 ≤ b,

n−2E
{( n∑

i=1

(ζi(t) − ζi(t1))Zi

)2( n∑
i=1

(ζi(t2) − ζi(t))Zi

)2∣∣∣{observed data}
}

≤ 2n−2
n∑

i=1

(ζi(t) − ζi(t1))2
n∑

i=1

(ζi(t2) − ζi(t))2

+4n−2
( n∑

i=1

(ζi(t) − ζi(t1))(ζi(t2) − ζi(t))
)2

+3n−2
n∑

i=1

(ζi(t) − ζi(t1))2(ζi(t2) − ζi(t))2

≤ 6n−2
n∑

i=1

(ζi(t) − ζi(t1))2
n∑

i=1

(ζi(t2) − ζi(t))2

+3n−2
n∑

i=1

(ζi(t) − ζi(t1))2(ζi(t2) − ζi(t))2.

Under the conditions of part (a), Theorem 1, we have

n−2
n∑

i=1

(ζi(t) − ζi(t1))2
n∑

i=1

(ζi(t2) − ζi(t))2

→ E
(
ξi(t)

∫ t

a
vi(s) ds − ξi(t1)

∫ t1

a
vi(s) ds

)2

×E
(
ξi(t2)

∫ t2

a
vi(s) ds − ξi(t)

∫ t

a
vi(s) ds

)2

≤ 4
[ ∫ t

t1
dFc(s)E

( ∫ t

a
vi(s) ds

)2
+ E

( ∫ t

t1
vi(s) ds

)2]

×
[ ∫ t2

t
dFc(s)E

( ∫ t2

a
vi(s) ds

)2
+ E

( ∫ t2

t
vi(s) ds

)2]

≤ K
( ∫ t2

t1
dFc(s) +

∫ t2

t1
E(v2

i (s)) ds
)2
, (5.8)

for some constant K uniformly in (t1, t, t2), where Fc(t) is the distribution func-
tion of the censoring time C. Similarly,

n−1
n∑

i=1

(ζi(t) − ζi(t1))2(ζi(t2) − ζi(t))2

→ E
[(
ξi(t)

∫ t

a
vi(s)ds−ξi(t1)

∫ t1

a
vi(s)ds

)2(
ξi(t2)

∫ t2

a
vi(s)ds−ξi(t)

∫ t

a
vi(s)ds

)2]
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≤ K ′( ∫ t2

t1
dFc(s) +

∫ t2

t1
E(v4

i (s)) ds
)
, (5.9)

for some constant K ′ uniformly in (t1, t, t2). Then (5.8) and (5.9) imply that the
process n−1/2∑n

i=1 ζi(t)Zi is tight given the observed data sequence.
Under the conditions of part (b), Theorem 1,

n−2
n∑

i=1

(ζi(t) − ζi(t1))2
n∑

i=1

(ζi(t2) − ζi(t))2

→ E
{
ξi(t)[AUCi(t) − E(AUCi(t))] − ξi(t1)[AUCi(t1) − E(AUCi(t1))]

}2

×E
{
ξi(t2)[AUCi(t2) − E(AUCi(t2))] − ξi(t)[AUCi(t) − E(AUCi(t))]

}2
,

uniformly in (t1, t, t2). The first term of the above product is bounded by
2E{ξi(t) − ξi(t1)}2E{AUCi(t) − E[AUCi(t)]}2 + 2E({AUCi(t) − AUCi(t1)} −
E{AUCi(t) − AUCi(t1)})2 ≤ K(P (t1 ≤ C < t) + (t − t1)), for some constant
K, under the condition E

{
supa≤t≤b Y

4(t)
}
< ∞. Similar result holds for the

second term of the product. It also follows that

n−1
n∑

i=1

(ζi(t) − ζi(t1))2(ζi(t2) − ζi(t))2

→ E
{(
ξi(t)[AUCi(t) − E(AUCi(t))] − ξi(t1)[AUCi(t1) − E(AUCi(t1))]

)2

×
(
ξi(t2)[AUCi(t2) − E(AUCi(t2))] − ξi(t)[AUCi(t) − E(AUCi(t))]

)2}
≤ K ′(P (t1 ≤ C < t2) + (t2 − t1)

)
,

for some constant K ′ uniformly in (t1, t, t2). Therefore, the process U∗
1 (t) is tight

under either of the conditions (a) and (b) of Theorem 1, given the observed data
sequence.
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