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Abstract: We take a Bayesian approach to choosing among 2k−p fractional fac-

torials. Experimental observations are thought of as realizations of a stationary

Gaussian process X operating on the design space. Pre-experimental knowledge is

formally incorporated in the distribution of X. Rather than demanding a precise

prior distribution for X, we seek designs that are optimal for families of priors,

making the results robust. We examine Bayesian D-, A-, G-, E-, and c-optimality,

paying closest attention to D-optimality. Within a family of processes, we charac-

terize D-optimal designs for nearly-independent and nearly-dependent priors. Often

the maximum resolution–minimum aberration design is found optimal in all cases.

However, for some k and p, a second design turns out to be optimal for certain

subfamilies of processes.
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1. Introduction

Fractional factorials are the classical designs for experiments with k two-
level factors. For fixed k and fraction size, an experimenter must choose among
many candidate fractional factorials. We take a Bayesian approach, incorporating
prior understanding about the relationships between experimental observations
into our choice of design. Specifically, we think of experimental observations
as realizations of a stochastic process X operating on the design space. We
summarize pre-experimental knowledge in the distribution of X, which we assume
is stationary and Gaussian. The stationarity assumption is meant to ensure a
kind of “impartiality” for the distribution of X. Design criteria can be formulated
in terms of the distribution of X conditioned on observations in a design.

Our approach differs from previous Bayesian design work that discusses es-
timation of parameters for a fixed model. For example, Chaloner (1984) studies
optimal Bayesian designs for linear models, assuming a proper normal prior dis-
tribution for the parameters. DuMouchel and Jones (1994) propose modifying
D-optimal designs to incorporate model uncertainty. In their explicitly model-
oriented approach, Meyer, Steinberg and Box (1996) propose Bayesian meth-
ods for designing follow-up experiments when confounding leaves more than one
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model consistent with the data after an initial experiment. They start with prior
probabilities on models rather than on parameters.

Mitchell, Morris and Ylvisaker (1995) study stationary Gaussian processes
for the purpose of choosing a fractional factorial. Here we generalize their formu-
lation to include experiments with observational error instead of only considering
deterministic settings such as computer experiments. Other closely related work
is that of Toman (1994), who considers designs for multiple two- and three-level
factors by imagining observations as realizations of a stochastic process. The
processes considered there assume exchangeability and are a special case of those
we consider. Toman’s design criteria relate to minimizing the posterior variances
of linear functions of responses. Classical fractional factorials tend to be optimal
under these criteria.

In addressing design questions we are motivated by the problem of choosing
among fractional factorials. We do not take up the important problem of finding
them. References for this topic include Chen (1998), Chen, Sun and Wu (1993),
Chen and Wu (1991), Franklin (1985), Laycock and Rowley (1995) and Tang and
Wu (1996).

Section 2 establishes notation, develops the Bayesian framework, and iden-
tifies families of stationary processes that should be most appropriate for design.
Section 3 discusses fractional factorials and the distribution of stationary pro-
cesses conditioned on these designs. Using those results, Section 4 formulates
design criteria. We apply these criteria to the relatively simple case of half-
fractions in Section 5. We then concentrate on D-optimality. Sections 6 and
7 employ asymptotics to simplify the D-optimality criterion. In most cases it
turns out to be straightforward to identify asymptotically D-optimal fractions.
Section 8 discusses the asymptotic criteria, giving examples of optimal designs
for particular values of k and p.

2. Framework

2.1. The design space T , words, and interactions

Use “1” and “-1” to denote the two levels for each of k binary factors in an
experiment. The design space is T = {−1, 1}k, all k-dimensional vectors with
entries “1” and “−1”. The elements of T are the possible experimental runs.

The space T forms a group via component-wise direct multiplication with
identity 1 and every element self-inverse. In addition, T is a vector space over
F2. Although we generally prefer multiplicative notation, as a vector space it is
more usual to represent T by mapping “1” to “0” and “−1” to “1”. Then binary
vector addition replaces component-wise multiplication. T is also a metric space
under Hamming distance d, where d(t, s) is the number of components in which
the runs t and s disagree. Let |t| ≡ d(1, t).
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Use 1, . . . , k to represent the k factors in the experiment. Subsets of {1, . . . , k}
are words and the collection of words is W. A word W ∈ W has length |W |. The
words W form a group, where the product of two words W and U is their disjoint
union, (W ∪ U)/(W ∩ U). The empty set is the identity and every word is self-
inverse. An alternate representation of words is as k-dimensional vectors, indexed
by the k factors, with a “1” for all factors in W and “0” otherwise. The disjoint
union of words corresponds to binary addition of vectors. This notation makes
it obvious that W and T are isomorphic groups. Like T , W forms a vector space
over F2.

Every word is also a function on T → {−1, 1}, defined by W (t) =
∏

i∈W ti.
For any real-valued function x on T , the interaction term associated with a word
W is ΓW (x) = 2−k∑

t W (t)x(t). The function x can subsequently be recovered
from the Γ′s as x(t) =

∑
W W (t)ΓW (x). Our interest lies in interactions for

random functions.

2.2. Stationary processes on T

In our notation, X is a mean zero, Gaussian process on T available for
observation (possibly with error). Our primary assumption is that X is a sta-
tionary process, meaning that for any u ∈ T , {Z(t)} is distributed as {X(t)},
where Z(t) = X(ut). In words, stationarity means the correlation between X(t)
and X(s) depends only on the factors where t and s differ. For t ∈ T , define
r(t) = E[X(1)X(t)], so that E[X(s)X(t)] = r(st).

In an experiment on k binary factors, we suppose the ith observation at
t ∈ T is Xi(t), where

Xi(t) = X(t) + εi(t). (1)

The error process εi(t) is assumed to be a mean-zero Gaussian process. We
further assume the error process is independent of X, and E[εi(t)εj(s)] = σ2δijδts.
Notice that independence among ε(t) is a special case of stationarity. Since the
sum of stationary processes is again stationary, for fixed i, Xi in (1) is stationary.
For the case of error-free experimentation (such as computer experiments), set
σ2 = 0.

A process X on T is a random function on T , so X has interactions as
defined in Section 2.1. A key fact is that a Gaussian process X is stationary if and
only if its interactions {ΓW (X)} are independent (Mitchell, Morris and Ylvisaker
(1995), Proposition 2.1). Then, since the interactions have mean zero, their joint
distribution is completely specified by their variances. Let vW = Var (ΓW (X)).
Then vW = 2−k ∑

t W (t)r(t) gives the interaction variances in terms of the
covariances of the process. Similarly, covariances of the process can be recovered
from interaction variances as r(t) =

∑
W W (t)vW .
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Example 1. (Mitchell, Morris and Ylvisaker (1995)). Start with positive corre-
lations ρ1, . . . , ρk and set r(t) =

∏
i:ti �=−1 ρi, which defines a stationary process by

E[X(s)X(t)] = r(st). The process has interaction variances vW = 2−k∏
i∈W (1−

ρi)
∏

i�∈W (1 + ρi). When ρi ≡ ρ, r(t) = ρ|t| and vW = 2−k(1− ρ)|W |(1 + ρ)k−|W |.

Use R to denote the covariance matrix of X on T and X for the 2k vector
of X(t). For a stationary process X, the random vector X is transformed to 2k

independent interactions ΓW . We summarize this transformation using matrix
notation. Write Γ for the vector of 2k interactions and O = Ok for the 2k × 2k

matrix that transforms X to Γ. Then Γ = OX. Next consider the covariance
matrix R for X. Since Γ = OX, V = Var (Γ) = ORO′. Because the interactions
for a stationary process are independent, V is a diagonal matrix containing the
interaction variances vW . Moreover, one can check from the definition of the
interactions as contrasts of the {X(t)} that O is an orthogonal matrix. This
is true because (i) every homomorphism in the word group except ∅ is “1” on
exactly half the elements of T and “−1” on the other half, and (ii) any two word
homomorphisms agree on exactly half the elements of T .

Since O is orthogonal and 2k/2O is orthonormal, we can rewrite V = ORO′

as R = (2k/2O′)2kV (2k/2O) and obtain a diagonalization of R. Since R is sym-
metric, 2kV gives its eigenvalues. In other words, the eigenvalues of R are nothing
more than the interaction variances for the process, multiplied by 2k.

2.3. Families of priors

There are families of stationary processes on T that are particularly appro-
priate for design. Three such families are isotropic, orderly, and tame processes.

An isotropic process is a stationary process for which r(t) depends on |t|
alone. It turns out that X is isotropic if and only if vW depends only on |W |
(Mitchell, Morris and Ylvisaker (1995), Proposition 2.2). A stationary process
X on T has 2k parameters. The distribution of X is specified by 2k covariances
r(t) or, alternatively, by 2k interaction variances vW . For an isotropic process,
r(t) = r(|t|) and vW = v|W |, reducing the number of parameters to k + 1. This
is a substantial reduction for large k. For an isotropic process, let r denote the
vector of covariances (r0, . . . , rk)′ and v denote the vector of interaction variances
(v0, . . . , vk)′.

In analyzing the data from a multifactor experiment, researchers standardly
assume higher order effects are more likely to be negligible. Incorporating this
assumption into a stationary process X on T , the distribution of X should as-
sign less variability to higher order interactions. Processes that incorporate this
assumption have the property that W ⊂ U =⇒ vW > vU , referred to as nested
decreasing interaction variances. In addition, one naturally prefers processes that
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have positive covariances with the property that R(t, s) > R(t,u) whenever s
is between t and u, i.e., whenever d(t,u) = d(t, s) + d(s,u). This is really the
same kind of partial ordering on covariances as the partial ordering of nested
decreasing interaction variances, and so is also referred to as nested decreasing.
We call stationary processes with both of these properties orderly processes.

For an isotropic process, the property of nested decreasing interaction vari-
ances reduces to vi−1 > vi and nested decreasing covariances means ri−1 > ri

for i = 1, . . . , k. It is not enough to assume the vi decrease to guarantee the ri

decrease. Assuming interaction variances are convex and decreasing also does
not suffice for all k. However, a stronger assumption on the vi yields a stronger
result for the ri.

As in Mitchell, Morris and Ylvisaker (1995), define difference operators Dm

for a finite sequence aj, j = 0, . . . , k, as follows:

Dmaj =
m∑

h=0

(−1)h
(

m

h

)
aj+h, for j + m ≤ k.

Call the finite sequence aj , j = 0, . . . , k, completely monotone provided Dmaj ≥ 0
for all j+m ≤ k. Kerr ((1999), Proposition 3.3.1) shows that an isotropic process
has completely monotone correlations ri if and only if it has completely mono-
tone interaction variances vj. This result leads naturally to defining the class of
tame processes on T — isotropic processes with completely monotone interaction
variances and completely monotone correlations. Tame processes behave nicely,
as they are “balanced” across factors (isotropic) and their correlations and inter-
action variances decrease “smoothly” (completely monotone). The set of tame
processes is in fact smaller than the set of orderly isotropic processes. We picture
the families of processes as in Figure 1.

Example 1.(continued) The isotropic process with r(t) = ρ|t| and vi = 2−k(1 +
ρ)k−i(1 − ρ)i, 0 < ρ < 1, is a tame process.
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Figure 1. Families of processes on T .
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3. Designs and Conditioning

A regular fractional factorial design is specified by p independent words and
the “defining relation” ∅ = W1 = · · · = Wp. The set of runs in the design is then
F = {t ∈ T : Wi(t) = 1, i = 1, . . . , p}, and |F | = 2k−p. Note F is a subgroup
of T . The words W1, . . . ,Wp specifying a fractional factorial F span a subgroup
of W, which we call AF . The subgroup AF contains the defining words. Call
cosets of AF in W alias sets and denote a generic alias set as A. There are 2k−p

alias sets, each with 2p words, partitioning the word group. Note this partition
of words induces a partition of interactions, so one can naturally speak of alias
sets of interactions without confusion.

A few more bits of notation are helpful. For a fractional factorial F define
Di = |{f ∈ F : |f | = i}| and Li = |{W ∈ AF : |W | = i}|. The vectors
(D0, . . . ,Dk)′ and (L0, . . . , Lk)′ are the design distance and word length vectors,
respectively. Of course, D0 and L0 are always 1. The smallest index i > 0 such
that Li > 0 is commonly known as the resolution of F . If F has resolution Res
then LRes is the aberration of F . The most common criterion for choosing frac-
tional factorials in the literature is the maximum resolution–minimum aberration
criterion of Fries and Hunter (1980).

3.1. Stationary processes and fractional factorials

From Section 2.2, the covariance matrix R for X can be written R =
(2k/2O′)2kV (2k/2O), where 2k/2O is orthonormal and V is a diagonal matrix
of interaction variances. In total, the interactions are an orthogonal transform of
a stationary process that gives the eigenvalues for its covariance matrix. It turns
out that the structure of R is “repeated” in certain principal submatrices of R,
namely submatrices corresponding to X restricted to a subgroup of T .

The definition of stationarity is essentially invariance under group translation
of runs. Moreover, subgroups of T are closed under multiplication. Consider X

as a process on a subgroup F of T . For any given u ∈ F , Z(f) = X(uf)
is a well-defined process on F because uf ∈ F . Since X is stationary on T ,
{Z(t)} is distributed as {X(t)}. In other words, a stationary process restricted
to a subgroup is also a stationary process on the subgroup. Let RF denote
the covariance matrix of X restricted to F . Mitchell, Morris and Ylvisaker
((1995), Proposition 3.2) show how to diagonalize RF and give its eigenvalues
as proportional to linear combinations of the covariances r(t). The alternate
derivation in Kerr ((1999), Section 5.1) uses the group structure of T and gives
the eigenvalues as simple sums of the interaction variances vW . This is described
next.

For each alias set A, define the alias interaction ΓA =
∑

W∈A ΓW . Since alias
sets are disjoint, alias interactions inherit independence from the ΓW . It turns
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out that the ΓA can be written solely as linear combinations of X(f) for f ∈ F .
In matrix notation, let ΓA be the vector of the 2k−p alias interactions, XF be
the vector of X(f) for f ∈ F , OF be the 2k−p × 2k−p matrix that transforms XF

to ΓA, and RF be the covariance matrix for X restricted to F . It is shown that
ΓA = OFXF , and so VF = Var (ΓA) = OF RF O′

F . Since the alias interactions
are independent, VF is diagonal with the variances of the alias interactions along
the diagonal. Letting vA = Var (ΓA), we have vA =

∑
W∈A vW .

Just as O was an orthogonal transformation of X on T , OF is an or-
thogonal transformation of X on F . Since 2(k−p)/2OF is orthonormal, write
RF = (2(k−p)/2O′

F )2k−pVF (2(k−p)/2OF ). As noted, VF is diagonal, so 2k−pVF

gives the eigenvalues of RF . An eigenvalue of RF is 2k−p times the sum of the
interaction variances in an alias set.

3.2. Conditional distributions

In our Bayesian framework, design criteria will be formulated in terms of the
conditioned process {X(t)|X(f) + ε(f), f ∈ F}. Mitchell, Morris and Ylvisaker
(1995) give the distribution of X conditioned on error-free observations on a
fractional factorial. Kerr ((1999), Section 5.2) generalizes those results to obser-
vation with error and also gives the parameters of the posterior distribution in
terms of the interaction variances of the unconditioned process.

For notational ease, Var F and Cov F denote posterior variances and covari-
ances given observations X(f) + ε(f) for f ∈ F , and σ2

p denotes 2−(k−p)σ2. First,
the posterior variances and covariances of the interactions given observation on
F are

Var F (ΓW ) = vW − v2
W

v(WAF ) + σ2
p

, (2)

Cov F (ΓW ,ΓU ) = − vW vU

v(WAF ) + σ2
p

δ(WAF )(UAF ). (3)

Note WAF is the alias set containing W . Further note that interactions in
different alias sets remain independent for the conditioned process.

The posterior variance of X(t) is gotten by calculating∑
A Var F (

∑
W∈A W (t)ΓW ):

Var F (X(t)) =
∑
A

[ vAσ2
p

vA + σ2
p

+
4

vA + σ2
p

∑
W,U∈A:

W (t)�=U(t)

vW vU

]
. (4)

4. Bayesian Design Criteria

Experimenters may be most interested in interactions because they corre-
spond to factor effects. Mathematically and practically, for some criteria it
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makes sense to discuss good designs for inference on interactions as much as
for the actual X(t). We therefore formulate some criteria in terms of the pos-
terior distribution of X(t) and some in terms of the posterior distribution of
interactions ΓW (X). As before, when observation is error-free, set σ2 = 0.

4.1. D-optimality

The D-optimal fractional factorial of a given size is the fractional factorial
that minimizes the posterior generalized variance of X. Equivalently, the D-
optimal design maximizes |RF + σ2I| (Mitchell, Sacks and Ylvisaker (1994)).
From Section 3.1, an eigenvalue of RF is 2k−p times vA, the sum of the interaction
variances in an alias set A. Thus,

|RF + σ2I| =
∏
A

(2k−pvA + σ2) = (2k−p)2
k−p ∏

A
(vA + σ2

p). (5)

When comparing fractions of the same size (constant p), ignore the power of 2 in
(5). Thus the D-optimal fractional factorial of a given size partitions the word
group to maximize

D(F ) =
∏
A

(σ2
p +

∑
W∈A

vW ). (6)

Orderly processes, defined in Section 2.3, are a family of stationary processes
of particular interest. For orderly processes, certain designs can be immediately
excluded from consideration for D-optimality. Lemma 4.1 limits the search for D-
optimal designs to designs that use all k factors in the defining words. These are
generally considered the best designs in other frameworks. For example, a max-
imum resolution design always uses all k factors in its defining words (Fries and
Hunter (1980)). This provides assurance that the Bayesian approach produces
reasonable designs. The proof of Lemma 4.1 is deferred to an appendix.

Lemma 4.1. Suppose X is a stationary process on T with nested decreasing
interaction variances. (For example, suppose X is an orderly process.) Let F be
a fractional factorial in which some factor is omitted from every defining word.
Then there exists a fraction of the same size F+ such that D(F+) > D(F ) for
σ2 ≥ 0. In particular, F is not D-optimal.

4.2. A-optimality and E-optimality

The A-optimal fractional factorial of a given size minimizes the average pos-
terior variance of X(t), t ∈ T . We can also speak of the A-optimal fraction for
interactions, the design that minimizes the average posterior variance of the in-
teractions. The E-optimal fractional factorial minimizes the largest eigenvalue of
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the posterior covariance matrix for X on T . Similarly, the E-optimal design for
interactions minimizes the largest eigenvalue for the posterior covariance matrix
of interactions.

Let V be the diagonal covariance matrix of the interactions {ΓW (X)}. Since
R = (2k/2O′)2kV (2k/2O) and 2k/2O is orthonormal, trace(R) = trace(2kV ).
Moreover, the eigenvalues of R are the same as the eigenvalues of V . The impor-
tance of these remarks is that they are valid in reference to posterior distributions
as well. For example, trace[Var F (X)] = trace[Var F (Γ)]. This discussion proves
Proposition 4.1.

Proposition 4.1. A-optimality of X is equivalent to A-optimality of the inter-
actions. E-optimality of X is equivalent to E-optimality of the interactions.

To formulate the A-optimality criterion, Proposition 4.1 allows us to sum
the posterior variances of the interactions rather than the posterior variances
of the X(t). Referring to (2), the A-optimal fractional factorial minimizes∑

A
∑

W∈A[vW − v2
W /(vA + σ2

p)]. Since
∑

A
∑

W∈A vA =
∑

W vW is constant
over designs, the A-optimal fraction maximizes

A(F ) =
∑
A

∑
W∈A v2

W

σ2
p +

∑
W∈A vW

. (7)

4.3. G-optimality

The G-optimal fractional factorial F of a given size is the fraction that
minimizes maxt Var F (X(t)). First, refer to the expression for Var F (X(t)) at
(4). Notice that for all runs in F , the second part of each summand in (4)
vanishes since all words in the same alias set agree (as functions) on design
sites. Therefore, the largest posterior variance must occur at a run not in
the design. Second, start from Var F (X(t)) =

∑
A Var F (

∑
W∈A W (t)ΓW ) =∑

A[
∑

W∈A(vW − v2
W /(vA + σ2

p))− 2
∑

W �=U∈A W (t)U(t)vW vU/(vA + σ2
p)]. Since∑

A
∑

W∈A vW is constant over designs, the G-optimal design maximizes

min
t/∈F

∑
A

[∑
W∈A v2

W

vA + σ2
p

+ 2
∑

W �=U∈A W (t)U(t)vW vU

vA + σ2
p

]
. (8)

Note the first part of (8) does not depend on t and is the criterion for A-optimality
at (7).

The fractional factorial that is G-optimal for interactions minimizes

max
W

Var F (ΓW ) = max
W

{
vW − v2

W

v(WAF ) + σ2
p

}
. (9)
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4.4. c-optimality

The c-optimal fractional factorial minimizes the posterior variance of c′X for
some pre-specified vector c. Presumably, c′X is a linear combination of runs of in-
terest. An example is an experiment where the objective is to predict

∑
t∈T X(t).

Then c = 1 and the optimal design minimizes Var F (
∑

t∈T X(t)). But
∑

t∈T X(t)
is proportional to Γ∅, so the c-optimal design minimizes Var F (Γ∅) = v∅ −
v2
∅/(σ

2
p +

∑
W∈AF

vW ), which means minimizing vAF
. This criterion can be re-

stated in a more intuitive form. From Kerr ((1999), Proposition 5.1.1), vAF
=

2−2(k−p)Var (
∑

f∈F X(f)). Therefore the c-optimal fraction minimizes∑
f∈F

∑
h∈F

E[X(f)X(h)] =
∑
f∈F

∑
h∈F

E[X(1)X(fh)] = 2k−p
∑
f∈F

r(f). (10)

Examining (10), minimizing vAF
is the same as minimizing the average correla-

tion among design points. Informally, to make the best prediction of
∑

t∈T X(t)
one should design to maximize the amount of independent information.

5. Optimal Half-Fractions

Half-fractions are well-understood since they are defined by a single, non-
empty word. There is little debate that the best design is the maximum resolution
design, given by the defining relation ∅ = Wk, where Wk is the unique word of
length k. This section shows the answer is the same in our framework. This
supports the reasonableness of our Bayesian approach.

Just as with Lemma 4.1, the only property of orderly processes needed for
all of the results in this section is that they have nested decreasing interaction
variances: W ⊂ U =⇒ vW > vU . None of the proofs requires the other property
of orderly processes that specifies a partial ordering of the covariances. (However,
this property comes into play in Section 6.)

5.1. D-, A-, and c-optimality

We first present a lemma that gives a partial ordering of half-fractions with
respect to A-optimality. The proof of Lemma 5.1 is deferred to an appendix.

Lemma 5.1. Suppose X is a stationary process on T with nested decreasing
interaction variances that can be observed without error. Let Wl be any word of
length l, 2 ≤ l ≤ k, Wl−1 be a word of length l − 1, Wl−1 ⊂ Wl. Let F be the
half-fraction defined by ∅ = Wl and F ′ be the half-fraction defined by ∅ = Wl−1.
Then

∑
t Var F (X(t)) <

∑
t Var F ′(X(t)).

Gathering this and results in Section 4, we have the following proposition.

Proposition 5.1. Suppose X is a stationary process with nested decreasing
interaction variances. (For example, suppose X is an orderly process.) Then the
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maximum resolution half-fraction is D-optimal, and A-optimal for both runs and
interactions. In addition, it is c-optimal for predicting

∑
t X(t).

Proof. D-optimality follows from Lemma 4.1 and A-optimality follows from
Lemma 5.1 and Proposition 4.1. For the c-optimality result, recall from Sec-
tion 4.4 that the best design for predicting

∑
t X(t) minimizes

∑
W∈AF

vW . Since
a half-fraction has only one defining word W other than ∅, this means choosing
W with the smallest interaction variance vW . This is accomplished by choosing
the word of length k.

5.2. Without error: G- and E-optimality

We can improve Proposition 5.1 when X is observed without error. Consider
G-optimality for interactions.

Lemma 5.2. Suppose X is a stationary process on T with nested decreasing
interaction variances and X is observed without error (σ2 = 0). Let Wl be any
word of length l, 2 ≤ l ≤ k, Wl−1 be a word of length l − 1, Wl−1 ⊂ Wl. Let
F be the half-fraction defined by ∅ = Wl and F ′ be the half-fraction defined by
∅ = Wl−1. Consider any interaction ΓW . Then there exists an interaction ΓW ′

such that Var F (ΓW ) < Var F ′(ΓW ′).

Proof. Say Wl = LWl−1, i.e., Wl−1 differs from Wl only by the factor L. Re-
ferring to (2), since σ2 = 0 the posterior variance of an interaction ΓW for X

conditioned on a half-fraction is (vW vU )/(vW +vU ), where {W,U} is an alias set
for the half-fraction.

For the first case, consider interactions ΓW where W ⊆ Wl. The design F

aliases W and WlW , and exactly one of these words contains L.
There are two sub-cases, L /∈ W and L ∈ W .
If W does not contain L, then compare Var F (ΓW ) to Var F ′(ΓW ) =

(vW vWl−1W )/(vW + vWl−1W ). Notice

vW vWlW

vW + vWlW
<

vW vWl−1W

vW + vWl−1W
⇐⇒ vWlW < vWl−1W .

But WlW = LWl−1W ⊃ Wl−1W , since L /∈ WWl−1. Since X has nested de-
creasing interaction variances, vWlW < vWl−1W =⇒ Var F (ΓW ) < Var F ′(ΓW ).

If instead W contains L, compare Var F (ΓW ) to Var F ′(ΓWlW ) = (vWlW vLW )
/(vWlW + vLW ). Since L ∈ W , L /∈ LW =⇒ LW ⊂ W =⇒ vLW > vW =⇒
(vW vWlW )/(vW + vWlW ) < (vWlW vLW )/(vWlW + vLW ).

For the second case, consider interactions ΓW where W �⊆ Wl. Write W =
W0W1 with W0 ⊆ Wl, W1 ∩ Wl = ∅. The argument proceeds exactly as before
using W0 instead of W because adjoining W1 to every word does not affect any
subset or superset relationships.
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Next, relate G-optimality for interactions to E-optimality.

Lemma 5.3. Suppose X is a stationary process on T with nested decreasing
interaction variances. When X is observed without error, the half-fraction that
is G-optimal for interactions is E-optimal for runs and interactions.

Proof. For a half-fraction, there are two interaction terms per alias set. Refer-
ring to (9) and setting σ2 = 0, Var F (ΓW ) = Var F (ΓU ) = −Cov F (ΓW ,ΓU ) =
vW vU/(vW + vU ) when F aliases W and U . Written in the appropriate order
(aliased interactions adjacent), the posterior covariance matrix of the interac-
tion terms is block-diagonal. The diagonal blocks are 2 × 2 singular matrices
with eigenvalues 0 and 2vW vU/(vW + vU ). Thus the maximum eigenvalue is
twice the maximum posterior interaction variance, so G-optimality for interac-
tions implies E-optimality for interactions. Finally, recall from Proposition 4.1
that E-optimality for runs and interactions are equivalent criteria.

Bringing these results together, we have:

Proposition 5.2. Suppose X is a stationary process with nested decreasing inter-
action variances observed without error (σ2 = 0). Then the maximum resolution
half-fraction is G-optimal and E-optimal for both runs and interactions.

Proof. When X is observed without error, G-optimality for runs is equivalent
to A-optimality. This is because the posterior variance for runs in the design is
0, and the posterior variance for unobserved runs is constant. So G-optimality
for runs follows from Proposition 5.1. G-optimality for interactions is a corollary
of Lemma 5.2, which gives E-optimality by Lemma 5.3.

6. D-Optimality for Near-Independent Orderly Processes

There are an infinite number of distributions for a stationary process X

on the k-cube T but only finite number of fractional factorials of a given size.
One can think of the space of distributions for X partitioned into subsets such
that one design is optimal for every distribution in a subset. Ideally, one would
like to know that a single design is optimal for a large class of distributions,
such as orderly distributions. A more tractable problem is to identify a few
designs that are optimal for subsets of the family of interest and characterize the
distributions for which these designs are optimal. In the remainder of this paper
we consider only D-optimality and derive results for orderly processes. Because
it is both instructive and an important special case, we frequently restate results
for orderly isotropic processes.

We approach the problem of identifying D-optimal designs by considering
optimal designs for processes near opposite extremes. In this section, a distribu-
tion is manipulated so that it converges to complete independence (no correlation
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between X(t) and X(s) for t �= s). In Section 7 we consider processes near com-
plete dependence (perfect correlation from run to run). Taking limits, we derive
criteria for asymptotic D-optimality. The asymptotic criteria derived here and
in Section 7 are discussed together in Section 8.

For some fixed k, let R be the set of possible covariances for a family of
processes on T and let X1, X2 be independent processes with covariances R1,
R2 ∈ R. We say Xi is distributed as Ri, for short. Kerr ((1999), Chapter 4) shows
stationary, orderly, isotropic, and tame processes have the following properties:

(P1) Closure under positive linear combinations: R1, R2 ∈ R, a, b > 0 =⇒ aR1 +
bR2 ∈ R,

(P2) Closure under direct (element-wise) products: R1, R2 ∈ R =⇒ R1⊗R2 ∈ R,
(P3) Closure under matrix products: R1, R2 ∈ R =⇒ R1R2 ∈ R.

These properties ensure that the operations used to manipulate distributions
here and in Section 7 do not remove processes from the families to which they
belong.

When working with asymptotics, we operate on the distribution of X, not
X + ε. This keeps the magnitude of error separate from the distribution of X.
Without loss of generality, assume the covariance R is a correlation matrix.

6.1. Exponential near-independence

For a correlation R, consider R⊗n, the direct product of R with itself n

times. As n gets large, we think of the distribution approaching independence
exponentially because rn(t)/rn(s) → 0 whenever r(t) < r(s). Johnson, Moore
and Ylvisaker (1990) study this method of moving a correlation function for
an isotropic process toward independence and examine designs in the case of
error-free observation. Generalizing their results to stationary processes and
observation with error, consider the D-optimality criterion to maximize |R⊗n

F +
σ2I|. The principal terms in the determinant are (1+σ2)|F |−∑f �=f ′∈F [R(f , f ′)]2n.
For large n the D-optimal fractional factorial minimizes

∑
f �=f ′∈F [R(f , f ′)]2n. As

n → ∞ the D-optimal fractional factorial minimizes the maximum correlation
among design points.

In the isotropic case, rewrite
∑

f �=f ′∈F [R(f , f ′)]2n as
∑

i Dir
2n
i . For an orderly

isotropic process, the asymptotically D-optimal fraction is the maximin distance
factorial, i.e., the fraction that maximizes the minimum distance between design
points and with the fewest pairs of design points at that distance.

6.2. Linear near-independence

We can bring a correlation R toward independence in a different way, by
setting Rλ = λR + (1 − λ)I and letting λ → 0. In this case all correlations
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except r(1) approach 0 at the same rate, so we consider this a linear approach
to independence. Including the case of error-free observation (σ2 = 0), the
determinant of the correlation matrix for a design F is |Rλ

F + σ2I| = |λRF +
(1 − λ)I + σ2I| = (1 + σ2)|F | − λ2∑

f �=f ′∈F [R(f , f ′)]2 + o(λ2). For λ sufficiently
close to 0, the D-optimal fractional factorial F minimizes

∑
f �=f ′∈F [R(f , f ′)]2,

the average squared correlation among design points. In the isotropic case, the
asymptotically D-optimal fraction minimizes

k∑
i=1

Dir
2
i . (11)

7. D-Optimality for Near-Dependent Orderly Processes

In this section we continue with the asymptotic approach outlined at the
beginning of Section 6. Whereas Section 6 found D-optimality criteria for nearly
independent processes on T , here we find criteria for nearly dependent processes.
We begin with an orderly process and manipulate its distribution so it converges
to a degenerate process with perfect correlation from run to run.

7.1. Exponential near-dependence, observation without error

Matrix powers Rn of a correlation matrix R must be normalized to retain “1”
along the diagonal. We can calculate a diagonal element of Rn using the decompo-
sition R = (2k/2O′)2kV (2k/2O) where 2k/2O is orthonormal. The diagonal matrix
V contains the interaction variances vW . Since Rn = (2k/2O′)2nkV n(2k/2O) and
Rn is constant on the diagonal, Rn(t, t) = 2−ktrace(Rn) = 2nk−ktrace(V n) =
2nk−k∑

W vn
W . Dividing every element of Rn by this factor, we know 2k−nk

(
∑

W vn
W )−1Rn = 22kO′((

∑
W vn

W )−1V n)O is a correlation matrix.
To omit unimportant constants and simplify presentation, write R(n) for

the correlation 2k−nk(
∑

W vn
W )−1Rn and v(n)

W for the interaction variances corre-
sponding to R(n). Similarly, R

(n)
F means the principal submatrix of R(n) corre-

sponding to the design F . For an orderly process, v(n)
∅ → 1, v(n)

W → 0 for W �= ∅,
and v(n)

W /v(n)
U → 0 as n → ∞ whenever W ⊃ U .

Letting n get large, we show a process distributed as R(n) tends to a degener-
ate process on T with complete dependence from run to run. A diagonal element
of (

∑
W vn

W )−1V n looks like vn
U/
∑

W vn
W . If the vW are nested decreasing (in

particular, for an orderly process), then vn
U/
∑

W vn
W = 1/

∑
W (vW /vU )n → 0 as

n → ∞ for all interaction variances except v∅. So R(n) → 22kO′VJO, where VJ

is 0 everywhere except for a 1 in the diagonal position corresponding to v∅. One
can check that 22kO′VJO is the degenerate correlation matrix J. Because smaller
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interaction variances approach 0 faster, we consider this to be an exponential
approach towards dependence.

Remark. Note that R has constant row sums and so is proportional to a stochas-
tic matrix. The theory for limits of powers of stochastic matrices can be applied
for an alternate proof that R(n) → J .

Return to the question at hand, namely the asymptotically D-optimal frac-
tional factorial for R(n). Different results appear depending on whether or not
there is error in observation. We take up the problem for error-free observation
here, deferring the case of observation with error to Section 7.2.

The asymptotically D-optimal fractional factorial maximizes
∏

A
∑

W∈A v(n)
W ,

according to (6), for large n. Now, each alias set A has a largest interaction
variance v̂A occurring nA times. For example, with an orderly process v̂AF

= v∅
and nAF

= 1. Then as n → ∞,
∏
A

∑
W∈A

v(n)
W ∼

∏
A

nAv̂(n)
A . (12)

It is easiest to understand (12) with an example.

Example 2. Consider 26−2 fractional factorials and an orderly isotropic process.
The maximum resolution fraction is F1, defined by ∅ = 1234 = 3456 = 1256, and

D(F1) = (v(n)
0 + 3v(n)

4 )(4v(n)
3 )2(2v(n)

2 + 2v(n)
4 )6(v(n)

1 + 2v(n)
3 + v(n)

5 )6(3v(n)
2 + v(n)

6 )

∼ v(n)
0 (4v(n)

3 )2(2v(n)
2 )6(v(n)

1 )6(3v(n)
2 ) = 3072(v0v6

1v
7
2v

2
3)

(n)

Let F2 be the fraction with defining relations ∅ = 123 = 3456 = 12456. Looking
at (12),

D(F2) = (v(n)
0 +v(n)

3 +v(n)
4 +v(n)

5 )(v(n)
1 +v(n)

2 +v(n)
4 +v(n)

5 )2(v(n)
1 +v(n)

3 +2v(n)
4 )3

(v(n)
1 + v(n)

2 + v(n)
3 + v(n)

6 )(v(n)
2 + 2v(n)

3 + v(n)
4 )6(2v(n)

2 + v(n)
3 + v(n)

5 )3

∼ v(n)
0 (v(n)

1 )2(v(n)
1 )(v(n)

1 )3(v(n)
2 )6(2v(n)

2 )3 = 8(v0v6
1v

9
2)

(n)

Since 3072(v0v6
1v

7
2v

2
3)

(n)/8(v0v6
1v

9
2)

(n) = 384(v3/v2)2n → 0, F2 is asymptotically
better than F1.

An intuitive explanation for the asymptotic superiority of F2 over F1 goes as
follows: As R(n) approaches J , it becomes less and less important to learn about
larger order effects relative to lower order effects. In order to gain the most
independent information on small order interactions, they must be in different
alias sets. With F1, seven alias sets contain multiple two-factor interactions,
while two alias sets have shortest word length 3. Design F2 is asymptotically
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better then F1 because it sacrifices all three-factors effects in favor of providing
more independent information about two-factor effects.

From a traditional, model-estimation point of view, this criterion favors de-
signs that allow one to estimate (in the frequentist sense) models with the most
low-order effects. It is similar to the estimation capacity criterion of Cheng, Stein-
berg and Sun (1999), which seeks to maximize the number of estimable models
with all main effects and j two-way interactions.

7.2. Exponential near-dependence, observation with error

Next suppose the process with correlation R(n), as defined in Section
7.1, is observed with error. The asymptotically D-optimal fraction maximizes∏

A(
∑

W∈A v(n)
W + σ2

p) as n → ∞. Since v(n)
∅ → 1 and v(n)

W → 0 for all W �= ∅,
the principal terms after expanding this product are σ2k−p+1

p + σ
2(2k−p−1)
p v(n)

∅ +

σ
2(2k−p−2)
p v(n)

∅
∑

W /∈AF
v(n)

W . So for large n the D-optimal design should maximize∑
W /∈AF

v(n)
W or, equivalently, minimize

∑
W∈AF

v(n)
W . As n → ∞ the D-optimal

design minimizes the maximum interaction variance among the defining words.
This criterion is more familiar in the isotropic case. Then the asymptotically

D-optimal fraction minimizes
∑

i Liv
(n)
i . Since v(n)

i+1/v
(n)
i → 0 for orderly isotropic

distributions and L0 is always 1, the asymptotically D-optimal design maximizes
the length of the shortest defining word in AF and then minimizes the number of
words of that length in AF . Thus the D-optimal design has maximum resolution
and weak minimum aberration (Chen and Hedayat (1996)).

7.3. Linear near-dependence, observation without error

The next question is D-optimality for the correlation Rλ = λR+ (1−λ)J as
λ → 0. It is again convenient to consider the cases of observation with and with-
out error separately. Here we discuss error-free observation, deferring observation
with error to Section 7.4.

The D-optimal fractional factorial maximizes |λRF + (1 − λ)J |. The or-
thonormal matrix 2(k−p)/2OF simultaneously diagonalizes RF and J : RF =
(2(k−p)/2O′

F )2k−pVF (2(k−p)/2OF ) and J = (2(k−p)/2O′
F )2k−pVJ(2(k−p)/2OF ). As

λ → 0, interaction variances (except v∅) approach 0 at the same rate, so we
consider this a linear approach to dependence. A diagonal element of VF is
vA =

∑
W∈A vW , where A is an alias set for F . The matrix VJ is 0 every-

where except for a 1 in the diagonal position corresponding to vAF
Maximiz-

ing |λRF + (1 − λ)J | is then equivalent to maximizing |λVF + (1 − λ)VJ | =
(λvAF

+ 1 − λ)
∏

A�=AF
λvA = λ|F |−1 [(1 − λ)|VF |/vAF

+ λ|VF |]. For λ close to 0
the D-optimal fractional factorial maximizes |VF |/vAF

=
∏

A�=AF
vA.



BAYESIAN OPTIMAL FRACTIONAL FACTORIALS 621

Remark. Unfortunately, maximizing
∏

A�=AF
vA is no more manageable than the

non-asymptotic criterion of maximizing
∏

A vA. However, changing the premise
slightly yields a more pleasing result.

Suppose instead one starts with a correlation R for which the D-optimal
fractional factorial F is known. Let F have alias sets A and let F ′ be any other
fractional factorial with alias sets A′. D-optimality of F means |RF ′ |/|RF | =∏′

A
∑

W∈A′ vW /
∏

A
∑

W∈A vW ≤ 1. The question is the D-optimality of F for
the correlation Rλ = λR + (1 − λ)J .

Diagonalizing all the matrices, the D-efficiency of F ′ relative to F for Rλ is

|Rλ
F ′ |

|Rλ
F |

=
(1 − λ + λvAF ′ )

∏
A′ �=AF ′ λvA′

(1 − λ + λvAF
)
∏

A�=AF
λvA

=
(1 − λ) |RF ′ |

vA
F ′

+ λ|RF ′ |
(1 − λ) |RF |

vAF
+ λ|RF |

.

Since |RF ′ |/|RF | ≤ 1, a sufficient condition for |Rλ
F ′ |/|Rλ

F | ≤ 1 is vAF
≤ vAF ′ ,

i.e., ∑
W∈AF

vW ≤
∑

W∈AF ′

vW . (13)

In other words, F is D-optimal for the whole range of distributions Rλ, λ ∈ (0, 1],
if (13) holds. Minimizing

∑
W∈AF

vW is the c-optimality criterion for minimiz-
ing the prediction error of

∑
t X(t). Further,

∑
W∈AF

vW = 2k−p∑
f∈F r(f) =

2k−p∑Diri in the isotropic case. Notice this condition is very similar to (11).

7.4. Linear near-dependence, observation with error

Again, Rλ = λR+(1−λ)J . We now seek to maximize |λRF +(1−λ)J +σ2I|
as λ → 0. We apply the same tools as in Section 7.3. Since RF , J, and I are
simultaneously diagonalizable, it is equivalent to maximize the determinant of
λVF + (1 − λ)VJ + σ2

pI. So the asymptotically D-optimal design maximizes

(λvAF
+ (1 − λ) + σ2

p)
∏

A�=AF

(λvA + σ2
p)

= (λ(vAF
− 1) + 1 + σ2

p)
∏

A�=AF

(λvA + σ2
p)

= (1 + σ2
p)σ

2(|F |−1)
p + λ

[
(vAF

−1)σ2(|F |−1)
p + σ2(|F |−2)

p (1 + σ2
p)

∑
A�=AF

vA
]
+ o(λ).

For sufficiently small λ, the D-optimal fractional factorial maximizes σ2
p(vAF

−
1) + (1 + σ2

p)
∑

A�=AF
vA. Ignoring the −σ2

p term, the design maximizes (σ2
p +

1)
∑

A vA − vAF
. Since

∑
A vA =

∑
W vW is constant over designs, the asymp-

totically optimal fractional factorial minimizes vAF
=
∑

W∈AF
vW . This is the
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same criterion that arose in Section 4.4 and in the remark in Section 7.3. In the
isotropic case, the asymptotically optimal design minimizes

∑
Diri.

8. Discussion of Asymptotic D-Optimality Criteria

Table 1 summarizes the asymptotic D-optimality criteria derived in Sections
6 and 7. For simplicity, the criteria are presented for orderly isotropic processes.

Table 1. D-Optimal Criteria for Orderly Isotropic Processes. Notation: v̂A
is the maximum variance of an interaction in alias set A, nA is the number
of interactions in A with variance v̂A, Di is the number of runs in the design
distance i from 1, ri is r(f) when |f | = i.

Asymptotic Distribution D-Optimality Criterion
Independence: Direct Products maximin distance
Independence: Convex Combinations min

∑
Dir

2
i

Dependence: Matrix Powers
σ2 = 0 max

∏
A nAv̂A

σ2 > 0 maximin word length
Dependence: Convex Combinations

σ2 = 0 max
∏

A�=AF
vA

σ2 > 0 min
∑

Diri

A nearly-independent process on T arising from direct product powers and a
nearly-dependent process arising from matrix powers are analogous. For the
nearly-independent process, correlations are brought exponentially toward 0,
with the smallest correlations converging to 0 much faster than the larger cor-
relations. For near dependence, interaction variances approach 0 at the same
rate. It is not surprising, then, that the approach toward independence brings
about a maximin criterion on runs in the design whereas the approach toward
dependence brings about a maximin criterion on word lengths (when σ2 > 0).

Studying tables of designs for various k and p has led to a conjecture about
the relationship between the maximin distance criterion, the maximin word
length criterion, and minimizing the design correlation,

∑
Diri. The conjecture

pertains to tame processes, isotropic processes whose correlations r are com-
pletely monotone, as defined in Section 2.3. To illustrate the conjecture, refer to
Table 2, which gives 28−3 fractional factorials of resolution III or higher that use
all 8 factors in the defining words according to Lemma 4.1. The table lists designs
in decreasing order according to the maximin word length criterion, which is the
same as the classical resolution–aberration criterion.

Take the first two designs in the table and compute
∑

Diri. Subtracting this
quantity for the first design from corresponding quantity for the second design,
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one has (2r2 +8r3 +10r4 +8r5 +2r6 + r8)− (r2 +10r3 +11r4 +4r5 +3r6 +2r7) =
D4r2 + 2D4r3 + D4r4. For a tame process, D4r2, D4r3, and D4r4 are positive,
implying the first design always has smaller design correlation.

Table 2. 28−3 Fractional Factorials. Notation: v̂A is the maximum variance
of an interaction in alias set A, nA is the number of interactions in A with
variance v̂A.

Defining Word Lengths
Words Design Distances∏

A nAv̂A
1 2 3 4 5 6 7 8

1234 0 0 0 3 4 0 0 0
1256 0 1 10 11 4 3 2 0

13578 263341v8
1v

20
2 v3

3

1234 0 0 0 5 0 2 0 0
1567 0 2 8 10 8 2 0 1

123568 29324454v8
1v

15
2 v8

3

1234 0 0 0 6 0 0 0 1
1256 0 4 0 22 0 4 0 1

12345678 2124982v8
1v

13
2 v8

3v
2
4

123 0 0 1 2 3 1 0 0
1456 0 2 9 9 6 4 1 0

124578 2634v8
1v19

2 v4
3

123 0 0 1 3 2 0 1 0
1456 0 3 6 11 8 1 2 0

1234578 2103142v8
1v17

2 v6
3

123 0 0 2 1 2 2 0 0
456 0 3 8 7 8 5 0 0

124578 27v8
1v19

2 v4
3

123 0 0 2 2 1 1 1 0
145 0 4 5 9 10 2 1 0

1245678 2536v8
1v17

2 v6
3

123 0 0 2 2 2 0 0 1
145 0 5 0 19 0 7 0 0

12345678 211v8
1v17

2 v6
3

123 0 0 3 1 0 2 1 0
456 0 5 4 7 12 3 0 0

1245678 28v8
1v

17
2 v6

3
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This sort of analysis holds for other designs. For example, comparing
∑

Diri

for the second and third designs in the list one has (4r2 +22r4 +4r6 +r8)−(2r2 +
8r3 + 10r4 + 8r5 + 2r6 + r8) = 2D4r2, which is positive for completely monotone
r. So for a tame process the second design always has smaller design correlation
than the third design (but not as small as the first design).

When does this fail? Compare the design correlation for the third and fourth
designs in Table 2. We have (4r2 +22r4 +4r6 +r8)− (2r2 +9r3 +9r4 +6r5 +4r6 +
r7) = 2r2−9r3+13r4−6r5−r7+r8. To show that this quantity is not consistently
positive or negative for completely monotone r, set ri = ρi. For ρ = 0.25, this
difference is positive (0.0293) but for ρ = 0.75 it is negative (-0.0158). Therefore,
it cannot be written as the sum of difference operators on the ri.

Similar observations for other values of k and p have led to the following
conjecture.

Conjecture 1. Let F and F ′ be 2k−p fractional factorials with respective de-
sign distances Di and D′

i and word lengths Li and L′
i. Then the following are

equivalent:
(1) The design F is better than F ′ according to both the maximin word length

criterion (resolution–aberration) and the maximin design distance criterion.
(2) The difference in design correlations,

∑
Diri −∑D′

iri =
∑

(Di − D′
i)ri, can

be written as a sum of difference operators on the ri,
∑

i γiD
sri, with γi ≥ 0.

The difference operator Ds is such that s is the smallest i such that Li �= L′
i.

We conclude with examples applying asymptotic criteria to evaluate designs.

Example 3. Consider an experiment with eight binary factors for which an
experimenter requests a recommendation for a one-eighth fraction. Assume the
experimenter’s prior knowledge is well-suited by a tame process on the design
space.

Refer again to Table 2. Scanning the list, one sees the maximin word length
design is also the maximin distance design. According to Conjecture 1 (and
verified explicitly), the first design then also has the smallest design correla-
tion

∑
Diri. Moreover, r2

i is completely monotone whenever ri is (Kerr (1999),
Lemma 4.4.1). Since the first design minimizes

∑
Diri for all completely mono-

tone sequences ri, it also minimizes
∑

Dir
2
i .

In addition, one can check that this design is best according to maximizing∏
A nAv̂A for any orderly isotropic prior distribution. For example, comparing the

first and second designs, 29324454(v8
1v

15
2 v8

3)
n/263341(v8

1v
20
2 v3

3)
n = 2954v5n

3 /3v5n
2

→ 0 as n → ∞, so the first design is better. Altogether, for every criterion in
Table 1 (ignoring

∏
A�=AF

vA, which we cannot evaluate), the first design is opti-
mal. This gives one confidence in recommending this design to an experimenter
because it is optimal for distributions at opposite extremes. That is, for both
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nearly-dependent and nearly-independent distributions on T , the first design is
optimal.

Example 4. Chen (1998) gives the maximum resolution–minimum aberration
214−7 design (i.e., the maximin word length design), which is generated by ∅ =
1238 = 4569 = 124510 = 134611 = 1246712 = 2345714 = 1356713. The vector
of design distances is the same as the vector of word lengths for this design.
Therefore it is also the maximin distance design. In addition, if Conjecture 1 is
correct then this design also minimizes

∑
Diri and

∑
Dir

2
i for tame processes

among all 214−7 fractional factorials.

Table 3. 211−5 Fractional Factorials. Notation: v̂A is the maximum variance
of an interaction in alias set A, nA is the number of interactions in A with
variance v̂A.

Defining Word Lengths
Words Design Distances∏

A nAv̂A
1 2 3 4 5 6 7 8 9 10 11

3457,2458 0 0 0 4 14 8 0 3 2 0 0
123469,123510 0 0 2 14 22 8 6 9 2 0 0

145611 210314661v11
1 v44

2 v8
3

34567,14568 0 0 0 5 10 10 5 0 0 0 1
12569, 123610 0 0 0 25 0 27 0 10 0 1 0

234611 215512v11
1 v40

2 v12
3

Example 5. Table 3 gives two 211−5 fractional factorials. The first design in
Table 3 is the maximin word length fraction (Franklin (1980)), but the second
design is better according to maximin distance. However, [215512/(210314661)]
[v11

1 v40
2 v12

3 /(v11
1 v44

2 v8
3)]

n ∼ [512/(2832)][v3/v2]4n → 0, so the first design beats the
second design in maximizing

∏
A nAv̂A.

Because the maximin word length design and the maximin distance designs
are not the same, Conjecture 1 does not apply. Subtracting the design correla-
tion

∑
Diri for the second design from the first design, we have 2r3 − 11r4 +

22r5−19r6 +6r7−r8 +2r9−r10. Figure 2 graphs this difference for the family of
correlations ri = ρi, with 0 ≤ ρ ≤ 1. We see that for smaller values of ρ (approx-
imately ρ < 0.47) the second design has smaller design correlation because this
difference is positive. Smaller values of ρ mean more run-to-run independence
for the process. For larger values of ρ (approximately ρ > 0.47), the first design
has smaller design correlation and so is better based on this criterion.
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Figure 2. Difference of design correlations
∑

Diρ
i for two 211−5 fractional

factorials, as a function of ρ.

In this example, the first design is most appropriate for experiments modeled
with a process with high run-to-run dependence because it has maximin word
length, maximizes

∏
A nAv̂A, and minimizes

∑
Diρ

i for ρ near 1. The second
design is better for experiments modeled by nearly-independent processes, since
it has maximin distance and minimizes

∑
Diρ

i for ρ near 0.

In our experience, the most common criterion for which the maximum
resolution–minimum aberration design is sub-optimal is the criterion to maximize∏

A nAv̂A. The designs that are best for this criterion are the same designs
proposed by other authors as improvements over maximum resolution–minimum
aberration designs. For example, Chen, Sun and Wu (1993) note that the 26−2

design called F2 in Example 2 might be preferable to the maximum resolution–
minimum aberration design because it allows independent estimates of some
two-factor interactions. Altogether, the designs that appear in the Bayesian
framework are reasonable.
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Appendix A. Proof of Lemma 4.1

We make a simple observation before discussing the proof.

Observation 1. Let a, b, c, d be non-negative numbers and a ≥ b ≥ c ≥ d. Then

(a + d)(b + c) ≥ (a + c)(b + d) ≥ (a + b)(c + d).
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Given four non-negative numbers a ≥ b ≥ c ≥ d, in the context of Observation
1, refer to (a + d)(b + c) as best, (a + c)(b + d) as middle, and (a + b)(c + d) as
worst.

Let X be a stationary process on T with nested decreasing interaction vari-
ances and let F be a fractional factorial in which some factor is omitted from
every defining word. Lemma 4.1 states that there exists a fraction of the same size
F+ such that |RF+ +σ2I| > |RF +σ2I| for σ2 ≥ 0. Equivalently, D(F+) > D(F ).

To begin the proof, first consider the case σ2 = 0.
Let W1, . . . ,Wp be independent words generating AF and L be a factor

omitted from every word in AF . Choose any one of these words, say Wp, and
consider the fractional factorial F+ generated by W1, . . . ,Wp−1,WpL. Referring
to the D-optimality criterion at (6), the proof will show D(F+) > D(F ). In other
words, we will compare

∏
A vA =

∏
A
∑

W∈A vW for F and F+.
The subgroup < W1, . . . ,Wp >= AF is all 2p defining words for F . The

defining words for F+ are the subgroup < W1, . . . ,WpL >= AF+. Construct a
“super-group” S of 2p+1 words, S =< W1, . . . ,Wp,WpL >. Write all the words
in S in the natural order according to the given listing of its generators:

S={
S1︷ ︸︸ ︷

∅,W1,W2,W1W2, . . . ,W1W2 · ·Wp−1,

S2︷ ︸︸ ︷
Wp,W1Wp, . . . ,W1 · ·Wp−1Wp,

WpL,W1WpL, . . . ,W1 · ·Wp−1WpL︸ ︷︷ ︸
S3

,WpWpL,W1WpWpL, . . . ,W1 · ·WpWpL︸ ︷︷ ︸
S4

}

Notice the first half of S is AF and the second half is one alias set for F . Similarly,
the first quarter and the third quarter are the defining relations AF+ and the
second and fourth quarters together are alias set for F+. Calling the ith quarter
Si, one can write S = S1 ∪ S2 ∪ S3 ∪ S4, AF = S1 ∪ S2, AF+ = S1 ∪ S3,
WpLAF = LAF = S3 ∪ S4, WpAF+ = LAF+ = S2 ∪ S4.

The strategy is to use S and its cosets in the word group to match pairs of
factors in the product for D(F ) with pairs of factors in the product for D(F+).
Write vSi =

∑
W∈Si

vW and vUSi analogously for translates of Si.
Two factors in the product for D(F ) are (vS1 + vS2)(vS3 + vS4) and two

factors in the product for D(F+) are (vS1 + vS3)(vS2 + vS4). Notice that for
every word W ∈ S1 there is the word WL ∈ S4. When L /∈ W , W ⊂ WL, so
vW > vWL. Similarly, every word W ∈ S2 does not contain L so W ⊂ WL ∈
S3 =⇒ vW > vWL. Therefore vS1 > vS4 and vS2 > vS3. Using the terminology
following Observation 1, the arrangement of v1, v2, v3, v4 given by F cannot be
best. If it is worst then the arrangement given by F+ is middle or best – in either
case, better than F . If the arrangement of v1, v2, v3, v4 given by F is middle,
then either (i) vS1 > vS4 > vS2 > vS3 or (ii) vS2 > vS3 > vS1 > vS4 . But both
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(i) and (ii) imply the arrangement given by F+ is best. Altogether, conclude
(vS1 + vS3)(vS2 + vS4) > (vS1 + vS2)(vS3 + vS4)

Now consider any coset of S, US = US1 ∪ US2 ∪ US3 ∪ US4, for any word
U /∈ S. Once again, the product for D(F ) contains (vUS1 + vUS2)(vUS3 + vUS4),
whereas the product for D(F+) contains (vUS1 + vUS3)(vUS2 + vUS4). There are
two cases, L /∈ U and L ∈ U .

If L /∈ U , repeat the argument above: for every word UW ∈ US1 there is
the word UWL ∈ US4 and UW ⊂ UWL =⇒ vUW > vUWL, and so on.

If L ∈ U only a minor adjustment to the argument is needed. For every
word UW ∈ US1, UWL ∈ US4, UW ⊃ UWL. For every word UW ∈ US2

UWL ∈ US3, UW ⊃ UWL. So vUS1 < vUS4 and vUS2 < vUS3. This is enough
to know the arrangement of vUS1, vUS2, vUS3, vUS4 given by F is not best. If it
is worst, then the arrangement given by F+ is better (either middle or best). If
the arrangement of vUS1, vUS2, vUS3, vUS4 given by F is middle, then either (i)
vUS1 < vUS4 < vUS2 < vUS3 or (ii) vUS2 < vUS3 < vUS1 < vUS4. Both (i) and
(ii) imply the arrangement given by F+ is then best.

In summary, S matches every pair of factors in
∏

A vA uniquely to a pair of
factors in

∏
A+ vA+ that have a larger product. Therefore D(F ) < D(F+). In

particular, F is not D-optimal.
Finally, if σ2 > 0 write v′W = vW +σ2

p/2
p. Since the vW are nested decreasing,

the v′W are nested decreasing. Since D-optimality means maximizing
∏

A(σ2
p +∑

W∈A vW ) =
∏

A
∑

W∈A v′W , the same proof holds using v′W in place of vW .

Appendix B. Proof of Lemma 5.1

The proof of Lemma 5.1 requires a second observation.

Observation 2. Let a, b, c, d, and s be non-negative numbers and a ≥ b ≥ c ≥ d.
Then

a2 + d2

a + d + s
+

b2 + c2

b + c + s
≥ a2 + c2

a + c + s
+

b2 + d2

b + d + s
≥ a2 + b2

a + b + s
+

c2 + d2

c + d + s
.

In the context of Observation 2, refer to (a2+d2)/(a+d+s)+(b2+c2)/(b+c+s)
as best, (a2 + c2)/(a + c + s) + (b2 + d2)/(b + d + s) as middle, (a2 + b2)/(a + b +
s) + (c2 + d2)/(c + d + s) as worst.

Let X be a stationary process on T with nested decreasing interaction
variances. Let Wl be any word of length l, 2 ≤ l ≤ k, Wl−1 be a word
of length l − 1, Wl−1 ⊂ Wl. Let F be the half-fraction defined by ∅ = Wl

and F ′ be the half-fraction defined by ∅ = Wl−1. Lemma 5.1 states that∑
t Var F (X(t)) <

∑
t Var F ′(X(t)), i.e., the total posterior variance is smaller

for X conditioned on F than on F ′.
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Write Wl = LWl−1, i.e., Wl−1 is just WL without factor L. Referring to the
A-optimality criterion at (7), the proof shows A(F ) > A(F ′).

Partition the group of words into cosets of the subgroup S = {∅,Wl−1,Wl, L}.
Notice that if a word U is contained in Wl then all the words in the coset US

are contained in Wl.
First consider cosets where all four words are contained in Wl. In such a

coset, exactly two of the words are contained in Wl−1: (i) if U ⊆ Wl−1, then
Wl−1U ⊆ Wl−1 but L ∈ WlU and L ∈ WlWl−1U ; (ii) if U �⊆ Wl−1, then
L ∈ U , L ∈ Wl−1U and L /∈ WlU,WlWl−1U . Without loss of generality, assume
U ⊆ Wl−1.

Now, A(F ) contains the terms (v2
U + v2

UWl
)/(vU + vUWl

+ σ2
p) + (v2

UWl−1
+

v2
UL)/(vUWl−1

+vUL+σ2
p). The corresponding terms for A(F ′) are (v2

U +v2
UWl−1

)/
(vU + vUWl−1

+ σ2
p) + (v2

UWl
+ v2

UL)/(vUWl
+ vUL + σ2

p).
Since U ⊂ LU and Wl−1U ⊂ LWl−1U , vU > vLU and vWl−1U > vWlU . This

is enough to know the arrangement of vU , vWl−1U , vWlU , vLU given by F ′ is not
best, so it is either middle or worst. If it is worst, the arrangement given by F

is better – either middle or best. If the arrangement given by F ′ is middle, then
either (i) vU > vLU > vWl−1U > vWlU , or (ii) vWl−1U > vWlU > vU > vLU . Both
(i) and (ii) imply that the arrangement of vU , vWl−1U , vWlU , vLU given by F is
best.

Finally, consider the remaining cosets of S where none of the coset members
are contained in Wl. For U in such a coset, one can write U = U0U1, where
U0 ⊆ Wl (possibly the empty set) and U1 nonempty, U1 ∩Wl = ∅. Then consider
the four words U , WlU , Wl−1U , WlWl−1U = LU , which can be written U0U1,
WlU0U1, Wl−1U0U1, WlWl−1U0U1 = LU0U1. Since U1 is disjoint from Wl and
so also from U0 and Wl−1, adjoining U1 to the four words U0, WlU0, Wl−1U0,
WlWl−1U0 = LU0 does not change any subset or superset relations. So ignore
U1 and consider this case in terms of U0. Since U0 ⊆ Wl, this reduces to the
previous case.
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