Supplemental Materials

In this section, we provide all technical proofs in this work, as well as the
simulation results for the computing time and the normal case. In section S.1,
Theorem 1 is proved. The lemmas used for proving Theorems 2 and 3 are
stated in S.2 and technically verified in S.4. Theorems 2 and 3 are systemati-

cally proved in S.3. And the additional simulation results are reported in S.5.

S.1 Proof of Theorem 1
Let u; = (y;,x),i=1,--- ,n and denote ¢ = p+ 1. Thus, uy,--- ,u, be
an independent and identically distributed random sample from EC, (s, 3, ¢).
To study the asymptotic behaviors of partial correlation of elliptical distribu-

tion, we consider the following general partitions of u;, u and X:

uy; My 211 212

Uy; Lo Yo Mg

where uy; and p, are ¢;-dimensional, while uy; and p, are go-dimensional,

Y1 is a ¢1 X @@ matrix, and X9 is a g2 X ¢ matrix. Here ¢ = ¢ + ¢o. Let

U = (uy, - ,u,)" and denote
’]’I/ — T T n n n-n

Partition A in the same way as .. Let ago is the (k,[)-element of Ay 0=Aq; —

A12A§21A21. Then the sample partial correlation of wu;y and wu; given uy;,

(U, uy|ug;), indeed equals akyo/+\/ark.201.2-



To derive the asymptotic distribution of Ay, let
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where [ stands for the identity matrix, and v; = C'(u; — p). Using Theorem
2.16 of Fang, Kotz and Ng (1990), it follows that

bITH
v, ~ EC,(0, 6) (S.1)

where 211'2 = 211 - 21222_21221.
Let V = (vy,--+,v,)T. By definition of v;, V = (U — 1,u™)CT, where

1, is an n x 1 vector with all elements being 1. Define

n

_ v Llor 1 T T
=N Vi)V V) =~ ~ 21,17)V = CACT.
B "2 (vi = V)(v; = V) nV (1 nln )V =CAC

Partition B in the same way as A, then By; = Aj; — X10A0 — Ap30 +
Y12A0Ys, Bz = A — X3A0, By = Ay — ApYy and By = Ay,
By direct calculation, it follows that By ,=B;; — B12B2_21B21 = Ay;5. This
enables us to derive the asymptotic distribution of Aj; 5 through By .
Define Wy, = \/ﬁ(Bn - E11.2), Wi, = \/ﬁBm, W, = \/ﬁlea and
Wy = /n(Bay — X9s). The assumption that all fourth moments of u; are
finite implies that all fourth moments of v; are finite. Thus, it follows by the

central limit theorem that Wy, for £ = 1,2 and [ = 1,2, has an asymptotic



normal distribution with mean zero and a finite covariance matrix. Then

1 1 1
B2 = —an + X2 — EW12(222 + _nWQQ)_IWQI-

Vi v

By the assumptions of Theorem 1, the largest eigenvalue of (3qy + \%ng)*l

is positive and finite. Therefore it follows that if go = o(y/n),

\/E(AHQ - 211.2) = \/H(BII.Q - E11.2) = Wll + OP(l)

— \/H(Bn — E11.2) + 0P<1)'

This implies that Aj;5 and By; have the same asymptotic normal distribu-
tion, and hence a2/+/axk.2a1.2 and by / V/biby have the same asymptotic dis-
tribution, where by, is the (k,[)-element of Bj;. Further notice that vy; ~
EC,(0,%112),¢) by (S.1), where vy; consists of the first ¢; elements of v;.
Therefore, the asymptotic normal distribution of the sample correlation coef-
ficient p(vik, vy), which indeed equals to by /+/brrby, can be derived from (2.2)
with replacing ¥ by ;5. Thus, Theorem 1 holds by setting uy; = (y;, xlgc)”

and Ug; = X;S.

S.2 Lemmas
In this section, we introduce the following lemmas which are used repeat-

edly in the proofs of Theorems 2 and 3.

Lemma 1. (Hoeffding’s Inequality) Assume the independent random sample

{X; i =1,---,n} satisfies P(X; € [a;,b;]) = 1 for some a; and b;, Vi =
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1,---,n. Then, for any € > 0, the sample mean X satisfies
. _ 2¢2n?
P(|X — E(X)| >¢€) <2exp (— = > . (S.2)
> iz (bi — a;)?

Lemma 2. Suppose X is a random variable with E(e®X!) < oo for some a > 0.

Then for any M > 0, there exist positive constants b and ¢ such that
P(|X| > M) < be=M. (S.3)

Lemma 3. Suppose 41 and 7 are estimates of the finite parameters v1 and vy,
based on a size-n sample, respectively. Assume there exist positive constants

b1, bs and v such that for any 0 < e <1,
P{l5; =l > €} < bjexp(=n”/b;), j=1,2. (S.4)
Then

P{l(h=%2) = (m =m)l > €} < byexp(—n"/bs),

P{|%%2 — 2| > €} < byexp(—n”/by),

where by = by + by, and by = 2by + by. If v9 # 0,

"
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>e} < bsexp(—n"/bs),



where by = by 4+ 3by. If we further assume v > 0, then

P{lx/%— Vel > e} < bgexp(—n"/bs),

P{|logye —logye| > €t < byexp(—n"/bs),

where bg = 2by.

The proof of Lemma 3 can be found at section S.4 of the supplemental

materials.

S.8 Proof of Theorems 2 and 3

. — 1Y — _ 1 —
For ease of notation, denote T; = =3 " 2y, T = -> " Vi, T;0 =

1N [P R B 2 22 1\ 2
LS gy a2 =130 a2 and y? = L300 42 Then

A T — T;7
Ay, ;) = Ea— (S.5)

The proof of Theorem 2. We divide the proof into three parts.
Step 1: Study the consistency of Zn(y, zjlzs)/V1+ k. First consider z;. For

any 0 < € <1 and any M > 0,

P(|z; = Bz;| > ) < P([z; — Eaj| > ¢, max [ay| < M) + P(max [ay] > M)

< Py = Exyl > ¢ max |zy;| < M) +nP(|jzy| > M)

2

2exp(— e ) + nCyexp(—C1 M) (S.6)

2M4

IN
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for some positive constants C; and C5. The first term above is obtained by
Hoeffding’s inequality in Lemma 1, and the second term is by condition (D2)
and Lemma 2. Take M = O(n!'/%), then for large n, (S.6) is simplified as
P(|z; — Ex;| > €) < Csexp(—n”/C3), where 0 < v < 1/5 and C5 > 0. In the
same fashion, there exist some positive constants Cy, C5, Cg and C';, such that

for large n,

P(ly — Ey| > €) < Cyexp(—n”/Cy),
P(|93_§ — E({EJQH > €) < Csexp(—n”/Cs),
P(ly> = E(y*)] > €) < Cgexp(—n"/Cs),

P[5 — Ez;y)| > €) < Crexp(—n”/C7).
Therefore by (S.5) and Lemma 3,

P{lp(y, x;) — p(y,z;)| > €} < Cgexp(—n"/Cs),

where the positive constant Cy is determined by Cj, ..., C5.
Note that
p(Y, Tjlrs\(xy) — p(Y, Tk |zs\(ky) p(T5, Tk |T 5\ (1))
p(y,l‘j|$8) — [ J \{k} \{k} J \{k} (S?)

{1 = 2y, zlws\ ) H1 — P2 (25, 2l zs\ry ) V2

for any k € S.
Under the bounded condition (D5), applying Lemma 3 to the sample ver-

sion of (S.7) and the Z-transformation (2.4) recursively, we conclude that for



some Cg9 > 0 and Cg > 0,

P{|p(y, z;lzs) — ply, zj|lzs)| > €} < Coexp(—n”/Cy), and

P{‘Z(y7$j|$8) - Z(y,wjlws)\ > 6} < Choexp(—n"/Cho).

Furthermore, by the same argument, the sample kurtosis is consistent to the
population version with the same rate, that is, there exists C7; > 0 such that

P{|k — K| > €} < Cyy exp(—n”/C41), and hence for some Cjy > 0,

Ay, zjles) Ly, zj|ws)
P - >er <C —n”/Cha).
{‘ VI+R | JIaw | = Cmer(ont/Cn)

Step 2: Compute P(Lj;s) = P{an error occurs when testing p(y, z;|rs) =
0}. Denote Ejs = E]ﬂs U Eﬁg, where Egﬂs is the event that the type I error

occurs and Eﬁs is the event that the type II error occurs. Then by choosing

A = 2{1 - (I)(CTH\/HIR)};

oy pl|Ewas)| o1 —a2) _
Hhe) P{ VItr |7 Tagsr- e vhen 2 ales) =0

A

2y, xjlzs) 2y ajlrs) | TN~ an/2)
Vith  VItr | = [S[=1)r

Z(yuxj|x8> B Z(y7'rj|x8) Cn\/ﬁ{(n _ |S| _ 1)(1 + /i)}l/Q}

IN
v

—

= P

>

vV1+k V1i+k 2
< p Z(y, z;|zs) _ Z(y, wlzs) o Cn
- VvV1+ R V1+k 2vV1+ K
< Cigexp(—n”/Cha),



and

Z(y,xjlzs)| _ 7M1 — 0 /2)

I _ y g )

P(Ejs) = P{ Niew < hZISI= 1)1 when Z(y, xzj|xs) # 0
< P Z(y,[li’ﬂls) . ‘Z(yvxj‘xS) N Z(y7$j’$5) < q)_l(l - an/2)
- V14 kK V1+k Vitrs |7 (n—I8]—1)1/?
< p ZA(y7xj‘xS> _ Z(yaxj|$3) > ‘Z(y,l']‘l'g) B Cn
- V1i+k Vi+k | V1+k 2v/ 1+ K

Note that |g(u)| = [5log{(1 4+ u)/(1 — w)}| > |u| for all u € (—1,1), then

|Z(y, zj|xs)| > |pnly, z;|zs)| > ¢, under condition (D4). Thus,

P(EII) P ’Z(y7IJ|xS> - Z(y,$j|$3) > Cn . Cp,
s Viti Vitwe | " Vitr 2V1+k
- p ’Z(y7IJ|xS> _ Z(y7l'j|$3) > Cp
V1i+k Vs | T 2V1I+ k.

< Cpexp(—n"/Chy).

Therefore, P(Ejs) = P(E}s) + P(Ejjs) < 2C12 exp(—n"/Cha).
Step 3: Study P{A,(a,) = A}. Now consider all j = 1,---,p and all

S C {j}° subject to |[S| < m,, where m,, < Myeqen. Define K" = {§ C



{j}c7 |S| S mn}> .] - ]-7 » D-

P{A,(a,) # A} = P{an error occurs for some j and some S}

= P U Eys ¢ < > P(Ejs)

J=1, pn;SEK j=1, pn;SEK
S pmn+1 . sup P(E]‘S) S men+lcvl2 eXp(—ny/Clz)
J=1, pr;SEK™
< 2p"T Oy exp(—n”/Chy). (S.8)

The second inequality holds since the number of possible choices of 7 is p and
there are p™» possible choices for §. The last inequality in (S.8) is obtained
because P(Myeach = Mreach) — 1 and myeqen < dy by the same technique as
Lemma 3. Thus for large n, m,, < Myeacn < do.

Moreover, recall that v can be chosen arbitrarily in (0,1/5). Therefore, if
dy is fixed, for p = o(exp(nf)), 0 < € < 1/5, (S.8) is simplified as P{A,(a,) #
A} < O{exp(—n”/Chs)}, provided & < v < 1/5. If dy = O(n®), 0 < b < 1/5,
for p = o(exp(nf)), 0 < & < 1/5 — b, (S.8) becomes P{A,(a,) # A} <
O{exp(—n”/C1s)}, provided that £ +b < v < 1/5. This completes the proof
of Theorem 2 with C = C}s.

Proof of Theorem 3. We only need to consider the first step of the thresholded

partial correlation approach, where we have

Z(y, x;) 2y, )
Vi+i V1+k

P(

>e€) < Cizexp(—n"/Ci3)
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for some Cy3 > 0. Define EJU = {fail to include x; when z; is a true predictor},

then using the same technique as the proof of Theorem 2,

P(E) = { Z"(lyfé) < q’(n(:;‘j% 2) \when 4, #o}
P Zn(yaxj) B Zn<y7xj) > Cn
Viir  Vitr | oies

< Cizexp(—n”/Ch3).

Then

P{AY D Ay =P {ij E;f} < Ep: P(EM) < pCiz exp(—n”/C13),

j=1 7=1

for any 0 < v < 1/5. Therefore, for p = o(exp(n®)) and 0 < & < 1/5,
P{/lg] 2 A} < O{exp(—n”/Ch3)}, provided £ < v < 1/5. This completes the

proof of Theorem 3 with C* = (3.
S.4 Proof of Lemma 3

The first inequality is easy to obtain by

P{(%1—92) —(m =)l >€} < P{l%1—mnl>e€/2} + P{|32 — 12| > ¢/2}

< bgexp(—n"/bs),

where b3 = by + by. To study 4192, we first show that 4; and 4, are bounded
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in probability. Denote M; = max{|y| + 1/2, |y2| + 1/2}, then

P{{%| > M} < P{% —nl|+|mn| > M}

IN

P{lAn = ml > 1/2} < byexp(=n”/by). (5.9)

Similarly, P{|%| > M1} < byexp(—n”/by). Then for any 0 < e < 1,

P {|MA2 — 12| > €}

= P{|m% — N2+ — el > €

< P{Iml- %2 =l > €2+ P{lvl % —ml>¢2}
< P{lnl- %2 =2l > €/2,|%] < My} + P{|%| > My} + P{|% — | > ¢/(2M1)}
< P{|%e =l >¢/@2M)}+ P{|%| > M1} + P{|%1 — | > ¢/(2M1)}

Thus by (S.4) and (S.9), P{|%1% — 1172| > €} < byexp(—n”/by), where by =
2b; + by.

Now consider 41 /92 when 5 # 0. Note that 45 is bounded away from 0
with probability tending to 1. This is because P(|%| < |72|/2) = P(|y2 —

(1 = 32)| < [21/2) < P(J3 = 7] > [18]/2) < by exp(—n® /by), which tends to



0. Then
(-2
Y2 Y2
< P{‘l—ﬁ >e/2}+P{l—ﬂ >e/2}
2 2 Y2 2
. €|A2‘ 4! N
< Pqlm—ml> 5 + P — | F2 — 2| >€/2
Y272
. e[yl . 72| . €lv2Ye] . 72| . 7|
< P — > > = P — > > — 2P < —
< Pl Tl 2 D2 2 L =l > T g2 Do fgag < 1
X € X €y3 X
< Plia-ml> T p i - al > 2 wop < 211
4 4l | 2
< bypexp(—n"/by) + byexp(—n”/by) 4 2by exp(—n” /by).

Therefore, P {|71/92 — 71/72| > €} < by exp(—n”/bs), where bs = by + 3bs.

If further assume v, > 0, using the same technique as above,

P{IVA— vl > ¢f

Y2 — 72| . 72} . V2
< P2 s el 20 Pl < 2
{v72+\/72 el 2 %] 2
<

P{le =l > evmt+ ) b+ P {fal < 2.

Thus P {[v32 — 72| > €} < bsexp(—n”/bg), where bg = 2bs.

At last, since 45 is consistent with 7o, we can apply Taylor’s expansion to

log 42, i.e. log 42 = logva + (92 — 72) /72 + 0p(2 — 72). Thus for large n,
~ 2 ~ ~ 1"
P{|log42 —log | > €} < P 7|72—72| >ep S P{[j2 — 1l > "},
2

where 6" = min{e, €y2/2}. Therefore, P {|log ¥, — logva| > €} < by exp(—n”/by).
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Table S1: Computational time (in minutes) of 1000 simulations when p = 2000
p  SCAD LASSO PC-simple TPC
0 34431 31.37 349.84  27.90

0.3 34152 14.14 245.88 28.01
0.8 28843 214.18 218.22 29.42

S.5 Additional Simulation Results

This section provides additional simulation results. Table S1 depicts the
computing time of 1000 simulation with p = 2000 when data were generated
from an elliptical distribution. Table S2 depicts the results from the normal
linear model in the simulation examples. Table S3 reports the simulation re-
sults when data were generated a population in which z’s with even subscripts
were generated in the same fashion as that for elliptical distribution, and x’s
with odd subscripts take discrete values 0, 1 and 2 with probabilities 0.25, 0.5
and 0.25, respectively. In this simulation study, we take p = 0.3 low correlation

and p = 0.8 for high correlation.
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Table S2: Simulation Results for Example 1: Normal Distribution

P p  Method MedME(Devi) TPN TFN UF CF OF
SCAD 0.013 (0.006) 3.00 1.04 0.00 0.66 0.34
LASSO 8.936 (0.148) 3.00 16.91 0.00 0.01 0.99
200 0  PC-simple 0.012 (0.006) 3.00 0.03 0.00 097 0.03
TPC 0.012 (0.006) 3.00 0.03 0.00 097 0.03
SCAD 0.014 (0.006) 3.00 0.86 0.00 0.73 0.27
LASSO 11.105 (0.151)  3.00 15.60 0.00 0.02 0.98
200 0.3 PC-simple 0.011 (0.006) 3.00 0.00 0.00 1.00 0.00
TPC 0.011 (0.006) 3.00 0.01 0.00 0.99 0.01
SCAD 0.010 (0.006) 3.00 0.67 0.00 0.72 0.28
LASSO 20.731 (0.069) 3.00 9.52 0.00 0.03 0.97
200 0.8 PC-simple 0.009 (0.006) 292 0.10 0.08 0.92 0.00
TPC 0.009 (0.006) 292 0.10 0.08 0.92 0.00
SCAD 0.013 (0.008) 3.00 1.26 0.00 0.77 0.23
LASSO 9.046 (0.121) 3.00 20.75 0.00 0.02 0.98
500 0 PC-simple 0.014 (0.008) 3.00 0.14 0.00 087 0.13
TPC 0.014 (0.008) 3.00 0.15 0.00 0.86 0.14
SCAD 0.014 (0.007) 3.00 1.33 0.00 0.72 0.28
LASSO 11.231 (0.101) 3.00 19.07 0.00 0.00 1.00
500 0.3 PC-simple 0.013 (0.007) 3.00 0.07 0.00 0.93 0.07
TPC 0.013 (0.008) 3.00 0.10 0.00 0.90 0.10
SCAD 0.011 (0.007) 3.00 092 0.00 071 0.29
LASSO 20.777 (0.085) 3.00 11.74 0.00 0.02 0.98
500 0.8 PC-simple 0.012 (0.008) 286 0.18 0.14 0.86 0.00
TPC 0.012 (0.008) 287 0.16 0.13 087 0.00
SCAD 0.013 (0.007) 3.00 225 0.00 0.66 0.34
LASSO 9.080 (0.120) 3.00 31.21 0.00 0.00 1.00
2000 0 PC-simple 0.023 (0.017) 3.00 041 0.00 0.62 0.38
TPC 0.022 (0.016) 3.00 041 0.00 0.62 0.38
SCAD 0.010 (0.006) 3.00 1.65 0.00 0.69 0.31
LASSO 11.277 (0.129) 3.00 26.97 0.00 0.00 1.00
2000 0.3 PC-simple 0.010 (0.006) 3.00 0.12 0.00 0.89 0.11
TPC 0.010 (0.006) 3.00 0.13 0.00 0.88 0.12
SCAD 0.011 (0.006) 3.00 1.32 0.00 0.66 0.34
LASSO 20.828 (0.098) 3.00 15.50 0.00 0.03 0.97
2000 0.8 PC-simple 0.011 (0.007) 290 0.11 0.10 0.90 0.00
TPC 0.011 (0.007) 290 0.11 0.10 0.90 0.00

* The numbers in the parentheses are median absolute deviations over 1000 simulations.
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Table S3: Simulation Results for Elliptical Distribution with half x’s being

discrete

P p  Method MedME(Devi) TPN FPN UF CF OF
SCAD 1.040 (0.892) 3.00 852 0.00 0.13 0.87

LASSO 11.209 (0.220) 3.00 20.40 0.00 0.00 1.00

200 0.3 PC-simple 0.218 (0.054) 3.00 047 0.00 0.59 041
TPC 0.187 (0.053) 3.00 0.14 0.00 0.87 0.13

SCAD 0.114 (0.058) 3.00 4.71 0.00 0.22 0.78

LASSO 20.619 (0.172) 3.00 16.53 0.00 0.00 1.00

200 0.8 PC-simple 0.090 (0.042) 297 033 0.03 0.72 0.25
TPC 0.091 (0.038) 296 0.17 0.04 084 0.12

SCAD 1.425 (1.160) 3.00 14.11 0.00 0.08 0.92

LASSO 11.252 (0.221) 3.00 33.78 0.00 0.00 1.00

500 0.3 PC-simple 0.222 (0.063) 3.00 0.67 0.00 045 0.55
TPC 0.198 (0.054) 299 032 0.01 0.69 0.30

SCAD 0.119 (0.049) 3.00 848 0.00 0.13 0.87

LASSO 20.659 (0.199) 3.00 24.43 0.00 0.00 1.00

500 0.8 PC-simple 0.099 (0.037) 299 037 0.01 0.69 0.30
TPC 0.096 (0.033) 3.00 0.21 0.00 0.80 0.20

SCAD 1.584 (0.893) 3.00 25.60 0.00 0.02 0.98

LASSO 11.383 (0.219) 3.00 55.84 0.00 0.00 1.00

2000 0.3 PC-simple 0.295 (0.067) 3.00 151 0.00 0.11 0.89
TPC 0.234 (0.066) 3.00 0.67 0.00 0.44 0.56

SCAD 0.183 (0.079) 3.00 18.16 0.00 0.02 0.98

LASSO 20.720 (0.168) 3.00 38.64 0.00 0.00 1.00

2000 0.8 PC-simple 0.127 (0.048) 298 0.74 0.02 041 0.57
TPC 0.116 (0.037) 299 036 0.01 0.69 0.30




