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Lemma 1. Assume that limn→∞ inf n−2
∑

i

∑
j(xi − xj)

2h′(γ + βxi)h
′(γ + βxj)

> 0, a.s. and
∑n

i=1 x2
i = Op(n). Then,

(i) I−1
n (η̂n) = Op(n

−1);

(ii) E(η|Dn) = η̂n + Op(n
−1);

(iii)E[(η − η̂n)(η − η̂n)>|Dn] = I−1
n (η̂n) + Op(n

−3/2).

Proof of Lemma 1. (i) With some algebraic manipulations,

|In(η̂n)| =
∑

i

∑

j

(xi − xj)
2h′(γ + βxi)h

′(γ + βxj).

Hence, by our assumptions, I−1
n (η) = Op(n

−1). By the first order Taylor expan-

sion of I−1
n (η̂n) around η, we have, I−1

n (η̂n) = Op(n
−1). This proves (i).

(ii) To establish (ii), we write,

E(η|Dn) = η̂n +
Pn

Qn
,

where

Pn =

∫
(η − η̂n) exp

[
−

1

2
{(η−η̂n)>In(η̂n)(η−η̂n)+(η − m)>W−1(η−m)}

]

×
(
1 + Kn(η, η̂n) + Rn(η, η̂n)

)
dη; (1)

and,

Qn =

∫
exp

[
−

1

2
{(η − η̂n)>In(η̂n)(η − η̂n) + (η − m)>W−1(η − m)}

]

×
(
1 + Kn(η, η̂n) + Rn(η, η̂n)

)
dη; (2)

Now by standard square completion technique, we have the term inside the ex-
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ponential of (1) and (2) as,

(η − η̂n)>In(η̂n)(η − η̂n) + (η − m)>W−1(η − m)

=
[
η − (In(η̂n) + W−1)−1(In(η̂n)η̂n + W−1m)

]>
(In(η̂n) + W−1)

×
[
η − (In(η̂n) + W−1)−1(In(η̂n)η̂n + W−1m)

]

+(η̂n − m)>(I−1
n (η̂n) + W )−1(η̂n − m)>. (3)

Note that,

(In(η̂n) + W−1)−1(In(η̂n)η̂n + W−1m)

= (n−1In(η̂n) + n−1W−1)−1(n−1In(η̂n)η̂n + n−1W−1m)

= η̂n + Op(n
−1).

The last equality follows since n−1In(η̂n) = Op(1), by assumption. Also,

∂3ln(η̂)

∂ηk∂ηl∂ηm

∣∣∣
η=η̂

n

= Op(n).

Now canceling out the common terms in Pn/Qn, we may observe that, whenever

η ∼ N2((In(η̂n) + W−1)−1(In(η̂n)η̂n + W−1m), (In(η̂n) + W−1)−1),

E[(ηk − η̂nk)(ηl − η̂nl)(ηm − η̂nm)(ηp − η̂np)] = Op(n
−2),

for all (k, l,m, p). Hence, from (1)−(3), we have, Pn = Op(n
−2.n) = Op(n

−1).

Similarly, Qn = 1 + Op(n
−1/2). Thus Pn/Qn = Op(n

−1). This proves (ii).

(iii) For proving (iii), writing S−1
n = In(η̂n) + W−1, arguments similar to

those used in (ii) give,

E[(ηi − η̂ni)(ηj − η̂nj)|Dn] = snij + Op(n
− 3

2 ), (4)

for all i, j, where snij is the (i, j)-th element of Sn. But, by applying a standard

matrix inversion formula, we have,

Sn = (In(η̂n) + W−1)−1

= I−1
n (η̂n) − I−1

n (η̂n)(I−1
n (η̂n) + W )−1I−1

n (η̂n)

= I−1
n (η̂n) + Op(n

− 3

2 ). (5)

Hence, by (4) and (5), we get,

E[(η − η̂n)(η − η̂n)>|Dn] = I−1
n (η̂n) + Op(n

− 3

2 ). (6)

This proves (iii) and completes the proof of Lemma 1.
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Theorem 1. For the stopping time N as defined in equation (24) of the main

text, namely, for

N = inf{n(≥ m) : n ≥ (
Gn

c
)

1

2 }, (7)

where, Gn = nVar (β|Dn), we have,

(i) P (N < ∞) = 1;

(ii) cN 2 P
→ [Σ(r∗)]−1 as c → 0;

(iii)LN (c)/ρ(c)
P
→ 1 as c → 0, where ρ(c) = infS∈T E(LS(c))= 2c1/2[Σ(r∗)]−1/2;

(iv) E[LN (c)]/ρ(c) → 1 as c → 0. The A.P.O. rule is first order efficient or

asymptotically optimal (A.O.).

Proof of Theorem 1. Proof of part (i) in Theorem 1 follows immediately from

the definition of N .

P (N = ∞) = limn→∞P (N > n)

≤ limn→∞P (n < (
Gn

c
)

1

2 ).

The result follows since Gn
P
→ [Σ(r)]−1 as n → ∞.

(ii) Use the inequality

(GN/c)1/2 ≤ N ≤ m + (GN−1/c)
1/2 or GN ≤ cN2 ≤ c[m2 + GN−1/c +

2m(GN−1/c)
1/2]. The result follows since GN

P
→ [Σ(r∗)]−1 as c → 0.

(iii) Use the identity

LN (c) = N−1GN +cN = 2(cGN )1/2 +N−1(G
1/2
N −c1/2N)2. Since the second

term in the right hand side is op(c
1/2), the result follows by dividing all sides by

ρ(c). (iv) In view of (iii) it suffices to show that LN (c)/ρ(c) is uniformly integrable

in c ≤ c0. First by the same inequality as used in (ii), for c ≤ c0,

LN (c)

ρ(c)
≤

c
1

2 N

|Σ(r∗)|−
1

2

≤
c

1

2

(
m +

GN−1

c

) 1

2

|Σ(r∗)|−
1

2

≤

c
1

2

(
m

1

2 +
G

1

2

N−1

c
1

2

)

|Σ(r∗)|−
1

2

≤
c

1

2

0 m
1

2 + G
1

2

N−1

|Σ(r∗)|−
1

2

(8)

Hence, it suffices to show that G
1/2
N−1 is uniformly integrable in c ≤ c0. This is

equivalent to showing n1/2V ar1/2(β|Dn) is uniformly integrable in n. This will

follow if we can show that supn≥1 E[nVar (β|Dn)] < ∞, where the expectation is

taken over the distribution of Dn, conditional on η. Note that,

E[Var (β|Dn)] = E[Var (β − β̂n|Dn)] ≤ Var (β − β̂n). (9)
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Following Cox and Snell (1968),

E(β̂n − β|η) =
K1(η)

n
+ O(n−2),

and

E[(β̂n − β)2|η] =
K2(η)

n
+ O(n−2),

where K1(η) and K2(η) are polynomials in the elements of η. Hence, conditional

on η,

nVar (β − β̂n) = nE[(β̂n − β)2] − n(E[(β̂n − β)])2 < ∞, (10)

uniformly in n. Combining (9) and (10), one obtains, E[nVar (β|Dn)] < ∞, hence

the proof of (iv).

Suppose T denotes the stopping time for the ACTUAL Bayes rule. Then

LT (c) = T−1GT + cE(T )

= 2(cGT )
1

2 + T−1(G
1

2

T − c
1

2 T )2 ≥ 2(cGT )
1

2 .

Bickel and Yahav (1967) have shown that T/N → 1 a.s. as c → 0. Hence, with

the same sampling rule as defined in Section 3.1 of the main text, GT
P
→ [Σ(r∗)]−1

as c → 0. Hence, from the above inequality, and Fatou’s Lemma,

lim inf
c→0

E[LT (c)]

ρ(c)
≥ 1.

But E[LT (c)] ≤ E[LN (c)] for all c. Hence,

lim sup
c→0

E[LT (c)]

ρ(c)
≤ lim sup

c→0

E[LN (c)]

ρ(c)
= 1.

Thus E[LT (c)]/ρ(c) → 1 as c → 0. In other words, the A.P.O. rule N is first

order efficient.

Proof of equation (27) in the main text. Equation (27) in the main text

states that the expression for Σ(r), in the situation with a binary exposure is

given by

Σ(r) = (1 − r)
h(γ∗(r) + β)h(λ)h(γ∗(r))h(λ)

h(γ∗(r) + β)h(λ) + h(γ∗(r))h(λ)
. (11)

The expression for Σ(r) as given in (8)-(11) of the main text, in the bivariate

binary case, may be explicitly computed as follows. Note that the case-control

sampling model implies that,

φ1(x) ∝ h(γ + βx)φ(x) and φ0(x) ∝ h(γ + βx)φ(x),
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where φ(x) is the marginal distribution of X. Also,

p1 =

∫
h(γ + βx)φ(x)dx and (1 − p1) =

∫
h(γ + βx)φ(x)dx.

This observation leads to the useful basic identity

φ1(x)

φ0(x)
=

1 − p1

p1
exp(γ + βx). (12)

Using (12) in the expression for A(r) in (12) of the main text, we have,

A(r) =
E0[Xu(γ∗(r) + βX){r 1−p1

p1
exp(γ + βX) + (1 − r)}]

E0[u(γ∗(r) + βX){r 1−p1

p1
exp(γ + βX) + (1 − r)}]

=
E0[Xu(γ∗(r) + βX){1 + exp(γ∗(r) + βX)}]

E0[u(γ∗(r) + βX){1 + exp(γ∗(r) + βX)}]

=
E0[Xh(γ∗(r)+βX)]

E0[h(γ∗(r) + βX)]
. (13)

Table 1. True values of the parameters: λ = −1, β = 0, r∗=0.5, g(r∗ =

0.5, λ = −1, β = 0)=20.345. Prior parameters: µλ = µβ = 0, σλ = σβ =

4, ρ = 0.5. β̂APM denotes the posterior mean obtained by using the Laplace

approximation, ˆβMCMC is the exact posterior mean as obtained by imple-

menting the MCMC numerical integration scheme based on the data at

stopping time N . The quantities in the parentheses denote the respective

MSE’s as estimated from the 500 replications.

c Mean(N) Mean(rN ) Mean(cN2) β̂MLE β̂APM β̂MCMC

(Var(N)) (Var(rN )) (Var(cN2)) (MSE(β̂MLE)) (MSE(β̂APM )) (MSE(β̂MCMC ))

0.05 21.97 0.4976 24.57 0.0131 -0.0125 0.0125

(8.82) (0.00488) (52.28) (0.7955) (0.7028) (0.6879)

0.02 34.58 0.5007 24.28 -0.0251 -0.0420 -0.0398

(18.43) (0.00354) (42.54) (0.7092) (0.6275) (0.6441)

0.005 66.34 0.5046 22.17 -0.0186 -0.0236 -0.0199

(33.68) (0.00115) (18.28) (0.2722) (0.2623) (0.2676)

0.001 143.85 0.5000 20.73 -0.0011 -0.0009 -0.0010

(53.82) (0.00051) (2.84) (0.1494) (0.1453) (0.1421)

0.0001 452.99 0.5024 20.53 -0.0041 0.0032 -0.0042

(116.78) (0.00011) (0.96) (0.0453) (0.0451) (0.0451)

Simulation results for the null case β = 0.
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Next, by (12), (13) and (9) we have,

Σ(r) = E0[{x − A(r)}2u(γ∗(r) + βX){r
1 − p1

p1

exp(γ + βX) + (1 − r)}]

= (1 − r)E0[{X − A(r)}2h(γ∗(r) + βX)]

= (1 − r)

[
E0{X

2h(γ∗(r) + βX)} −
{E0(Xh(γ∗(r) + βX))}2

E0(h(γ∗(r) + βX))

]

= (1 − r)

[
h(γ∗(r) + β))h(λ) −

h2(γ∗(r) + β)h2(λ)

h(γ∗(r))h(λ) + h(γ∗(r) + β)h(λ)

]

=
h(γ∗(r) + β)h(λ)h(γ∗(r))h(λ)

h(γ∗(r) + β)h(λ) + h(γ∗(r))h(λ)
. (14)

Note that in evaluating the expectation E0, we used the fact that under φ0, X ∼

Bernoulli(h(λ)).
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