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Lemma 1. Assume that limy, oo inf n=2 Y7, 37 (x; — 5)h (v + Bzi) B (v + B;)
>0, a.s. and Y. 7 = Op(n). Then,
(1) I, (7,) = Op(n™");
(i) E[Dn) = 11, + Opln )
(i) B((1 — i1,) (1 — 1) T D] = L, (71,) + Op(n™2/).

Proof of Lemma 1. (i) With some algebraic manipulations,

I—ZZ i — )2 (v + By (v + Baj).

Hence, by our assumptions, I 1(n) = p(
sion of I,,(#,,) around i, we have, I,;1(9,,)
(ii) To establish (ii), we write,

b, By the first order Taylor expan-
= O,(n~1). This proves (i).

R P,

n

where

-~ 1 A N\T ~ ~ T
Pnz/(n—nn)exp[—g{(n—nn) I (i) (n—10,)+(n —m) "W (n— m)}]

% (14 Ka(m,9,) + Ru(n, 1) ) &)
and,

1 LNT . o Tyar—1
an/exp[—g{(n—nn) Ln(in)(n = 1) + (0 —m) W (n—m)}]
< (14 Kalm, i) + Baln.9,) ) @

Now by standard square completion technique, we have the term inside the ex-
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ponential of () and (@) as,
(= 71,) " L () (n = 71,) + (0 —m) TW ™ (1 — m)
T
0= La(0,) + W) L 0,7, + W) (L (0,) + W)

x[n n(11,) + W) T (1 (07,0, + W)
(i, =) (5 (07,) + W)~ (7, —m) (3)
Note that,

(L (1,) + W) " (La (1 )70, + W Hm)
= (0 (,) + 0 W T (T (1)1, 0T W m)
= ’f]n + Op(n_l)‘
The last equality follows since n1L,(rj,,) = Op(1), by assumption. Also,
0% (1)
— = Op(n).
OO Onm \n=n,, (%)

Now canceling out the common terms in P, /Q,,, we may observe that, whenever
n ~ No((Lu(17,) + W) " (T (17,10, + W im), (Ln(17,) + W)™,
E[(m = fnk) (0 = ) (. = Tiam) (p — Tinp)] = Op(n™?),

for all (k,l,m,p). Hence, from ([)—@), we have, P, = O,(n"2.n) = O,(n~1).
Similarly, @, = 1+ Op(n~/2). Thus P,/Q,, = O,(n~"). This proves (ii).

(iii) For proving (iii), writing S, = I,,(7,) + W ™!, arguments similar to
those used in (ii) give,

E[(; — i) (1 — f1nj)|Da] = $nij + Op(n”~2), (4)

for all 4, j, where s,,;; is the (4, j)-th element of S;,. But, by applying a standard
matrix inversion formula, we have,

Sn=Tn(R,) + W™
= Ir_Ll(ﬁn) - I_l(ﬁn)('[_l(ﬁn) + W)_lIr_Ll(f'n)
=1, (R,) + Op(n"3). (5)
Hence, by @) and (H), we get,
E[(n — 7,) (1 — 7,) T [Pl = I;1(R,) + Op(n”2). (6)

This proves (iii) and completes the proof of Lemma 1.
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Theorem 1. For the stopping time N as defined in equation (24) of the main
text, namely, for

N =inf{n(>m):n > (%)

N

|2 (7)

where, Gy, = nVar (5|D,,), we have,

(i) P(N < o0) = 1;

(ii) cN2 £ [B(r*)]~! as ¢ — 0;

(iii) Ly (e)/p(c) L1 asc— 0, where p(c) = infser E(Ls(c))= 2" /2[S(r)]71/2;

(iv) E[Ln(c)]/p(c) — 1 as ¢ — 0. The A.P.O. rule is first order efficient or
asymptotically optimal (A.QO.).

Proof of Theorem 1. Proof of part (i) in Theorem 1 follows immediately from
the definition of N.

P(N = o0) =lim,,,oo P(N > n)
<lim, o P(n < (Gn)%)
The result follows since G, © [2(r)]~! as n — oo.
(ii) Use the inequality

(Gn/e)'?2 < N < m+ (Gy_1/c)"/? or Gy < eN? < ¢[m? + Gy_1/c +
2m(Gy_1/c)"/?]. The result follows since Gy £ [S(r*)]~t as ¢ — 0.
(iii) Use the identity

Ln(c) = N"'Gn+cN = 2(cGy)Y/? +N‘1(G%2 —c/2N)2. Since the second
term in the right hand side is op(cl/ 2), the result follows by dividing all sides by
p(c). (iv) In view of (iii) it suffices to show that L x(c)/p(c) is uniformly integrable
in ¢ < ¢p. First by the same inequality as used in (ii), for ¢ < ¢y,

1 GN_1\3
LN(C)< 2N <Cz<m+ )
ple) T S| IS0 2
1
1 1 G§_1 1 1
02<m2+ ! ) gmd +G3_, -
T B IS (r*)| 2

Hence, it suffices to show that G]l\ﬁl is uniformly integrable in ¢ < ¢g. This is
equivalent to showing n'/2Var'/?(3|D,,) is uniformly integrable in n. This will
follow if we can show that sup,,~; E[nVar (3|D,)] < oo, where the expectation is
taken over the distribution of D;H conditional on 7. Note that,

E[Var (8]Dy)] = E[Var (8 — (.|Dy)] < Var (3 — 3,). (9)
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Following Cox and Snell (1968),

E(B, - Bln) = +0(n~?),

Ki(n)

and

Bl ~ 3P = T2 4 o),

where K7(n) and K5(n) are polynomials in the elements of . Hence, conditional
on 7,

nVar (6 — fn) = nE[(Bn — )°] = n(E[(Bn — H))* < o0, (10)
uniformly in n. Combining ({) and (), one obtains, E[nVar (3|D,)] < oo, hence
the proof of (iv).

Suppose 1" denotes the stopping time for the ACTUAL Bayes rule. Then
Lr(c) =T 'Gr + cE(T)
1
= 2(cGr)% + T (G2 — ¢2T)? > 2(cGr)?.
Bickel and Yahav (1967) have shown that T/N — 1 a.s. as ¢ — 0. Hence, with

the same sampling rule as defined in Section 3.1 of the main text, Gr L [S(r*)) 1
as ¢ — 0. Hence, from the above inequality, and Fatou’s Lemma,

El[Lr(c)]

lim inf > 1.
=0 p(c)
But E[Lr(c)] < E[Ln(c)] for all c¢. Hence,
lim sup M < limsup M =1
c—0 ,O(C) c—0 ,O(C)

Thus E[Lr(c)]/p(c) — 1 as ¢ — 0. In other words, the A.P.O. rule N is first
order efficient.

Proof of equation (27) in the main text. Equation (27) in the main text
states that the expression for ¥(r), in the situation with a binary exposure is
given by
h(y*(r) + B)RAN)A(y* (1)) h(A)
(v*(r) + B)h(A) + h(y*(r))h(X)
The expression for ¥(r) as given in (8)-(11) of the main text, in the bivariate
binary case, may be explicitly computed as follows. Note that the case-control
sampling model implies that,

¢1(z) o< h(y + fr)¢(x)  and  do(x) o< Ay + Bz)d (),

(11)

X(r)y=(»1- r)h
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where ¢(x) is the marginal distribution of X. Also,

p1 = /h(’y + px)p(z)dx and (1—p1) = /E(’y + Bx)p(z)d.
This observation leads to the useful basic identity

308 = I expy + ). (12)

Using () in the expression for A(r) in (12) of the main text, we have,

:EO[XU( V(1) + BX){r=P exp(y + BX) + (1 —1)}]
Eolu(y*(r) + 8X){r? plexpme) (1-r)}
_Eo[Xu( 7 (r) + BX){1 + exp(v*(r) + BX)}]

Eo[u(y*(r) + BX){1 + exp(v*(r) + X)}]
_ Eo[Xh(y"(r)+6X)]

- : (13)
Bolh(y*(7) + BX)
Table 1. True values of the parameters: A = —1, 8 = 0, r*=0.5, g(r* =
0.5,A = —1,8 = 0)=20.345. Prior parameters: puy = ug = 0, op = 0g =
4,p=0.5. Bapn denotes the posterior mean obtained by using the Laplace
approximation, ﬂMé Mmc is the exact posterior mean as obtained by imple-
menting the MCMC numerical integration scheme based on the data at
stopping time N. The quantities in the parentheses denote the respective
MSE’s as estimated from the 500 replications.
¢ |Mean(N)|Mean(ry) | Mean(cN?) Bure Bapum Brcmc
(Var(N)) | (Var(rw)) | (Var(eN?)) | (MSE(Burr)) | (MSE(Barn)) | (MSE(Buonc))
0.05 21.97 0.4976 24.57 0.0131 -0.0125 0.0125
(8.82) | (0.00488) | (52.28) (0.7955) (0.7028) (0.6879)
0.02 34.58 0.5007 24.28 -0.0251 -0.0420 -0.0398
(18.43) | (0.00354) | (42.54) (0.7092) (0.6275) (0.6441)
0.005 66.34 0.5046 22.17 -0.0186 -0.0236 -0.0199
(33.68) | (0.00115) | (18.28) (0.2722) (0.2623) (0.2676)
0.001 143.85 0.5000 20.73 -0.0011 -0.0009 -0.0010
(53.82) | (0.00051) | (2.84) (0.1494) (0.1453) (0.1421)
0.0001 | 452.99 0.5024 20.53 -0.0041 0.0032 -0.0042
(116.78) | (0.00011) |  (0.96) (0.0453) (0.0451) (0.0451)

Simulation results for the null case 5 = 0.
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Next, by ([[2), (@) and (9) we have,

£(r) = Bol{e — AWPuly (1) + 5X){r> P exp(y +0X) + (1= 7))
= (1= r)Eo[{X — A(r)}*h(~*(r) + 8X))

B ) h2(v*(r) + B)R?(N)
=(1-r) [h(v (r) + B)h(A) — Ry (MR + h(7*(r )-s-ﬁ)h()\)]
h(v*(r) + B)RNh(y* (r))h(N)

- (14)
Ry () + B + by ()Y

Note that in evaluating the expectation Ej, we used the fact that under ¢g, X ~
Bernoulli(h(\)).
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