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Abstract: We construct an empirical Bayes (EB) prediction interval for the finite

population mean of a small area when data are available from many similar small

areas. We assume that the individuals of the population of the ith area are a random

sample from a normal distribution with mean µi and variance σ2
i . Then, given σ2

i ,

the µi are independently distributed with each µi having a normal distribution

with mean θ and variance σ2
i τ , and the σ2

i are a random sample from an inverse

gamma distribution with index η and scale (η − 1)δ. First, assuming θ, τ, δ and η

are fixed and known, we obtain the highest posterior density (HPD) interval for

the finite population mean of the �th area. Second, we obtain the EB interval by

“substituting” point estimators for the fixed and unknown parameters θ, τ, δ and

η into the HPD interval, and a two-stage procedure is used to partially account

for underestimation of variability. Asymptotic properties (as � → ∞) of the EB

interval are obtained by comparing its center, width and coverage probability with

those of HPD interval. Finally, by using a small-scale numerical study, we assess

the asymptotic properties of the proposed EB interval, and we show that the EB

interval is a good approximation to the HPD interval for moderate values of �.

Key words and phrases: Asymptotic, Bayes risk, Monte Carlo, HPD interval, sim-

ulation, uniform integrability.

1. Introduction

Many federal government agencies are required to obtain estimates of popu-
lation counts, unemployment rates, per capita income, health needs, crop yields,
and livestock numbers for state and local government areas. In the US the Na-
tional Health Planning and Resources Development Act of 1974 created a need
for accurate small area estimates. The Health Systems Agencies, mandated by
the Planning Act, are required to collect and analyze data related to the health
status of the residents and to the health delivery systems in their health service
areas. Consequently, there is a growing demand for reliable statistics for small
areas. Our objective is to construct an interval estimator of the finite population
mean of a small area using data from many other similar areas as well, and then
to assess its properties.

Ghosh and Rao (1994) gave a comprehensive review of the growing small area
literature. They described three recent approaches which have made significant
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impact on small area estimation during the past decade: empirical Bayes (EB),
hierarchical Bayes (HB) and empirical best linear unbiased predictor (EBLUP).
They also described several small area models and many different point esti-
mators, along with several applications. Unfortunately, even in their extensive
review there is virtually no discussion on interval estimation, of critical impor-
tance to practitioners in small area estimation. In this paper we consider mainly
the naive EB approach with some adjustments for underestimation of variabil-
ity; see Morris (1983a) for an excellent account of the EB approach with several
important applications.

Hulting and Harville (1991) described and compared frequentist and
Bayesian methods for constructing approximate prediction intervals for a small
area population mean when a mixed linear model might hold. However, their
models do not include the type of models we wish to consider in this paper. In ad-
dition, there is the current concern that interval estimation is receiving relatively
little attention in the small area literature.

Typically there is great variability among the sample sizes of the small areas
with small samples dominating. Thus, if a prediction interval for the finite pop-
ulation mean of a small area is based only on its own data, it is likely to be too
wide. Narrower intervals can be obtained by “borrowing strength” from similar
areas. The primary objective is to provide the best possible estimates for areas
that contain few, if any, sampling units (the “small” areas). For example, the
allocation of federal funds to local governments is based in part on per capita
income (PCI) (Fay and Herriot (1979)). In practice the distribution of these
monies is based on estimates of PCI determined from a national survey sample.
Thus, good estimates of PCI are required, even when the sample information for
a local government is sparse. In particular, empirical Bayes methods have been
proposed for use in such situations.

Let Y
˜ � denote the vector of all values from the �th area, γ(Y

˜ �) denote the fi-
nite population mean of the �th area, Y

˜
s denote the vector of sample values from

the �th area, and let I(Y
˜

s) = [PL(Y
˜

s), PU (Y
˜

s)] represent an interval for γ(Y
˜ �)

which depends on the sample data Y
˜

s. If P{γ(Y
˜ �) ∈ I(Y

˜
s)} = 1−α, then I(Y

˜
s)

is an exact 100(1 − α)% prediction interval for γ(Y
˜

�). If P{γ(Y
˜

�) ∈ I(Y
˜

s)}
is approximately 1 − α, then I(Y

˜
s) is an approximate 100(1 − α)% predic-

tion interval. A 100(1 − α)% credible set S of γ(Y
˜ �) values is a set such that

P{γ(Y
˜

�) ∈ S|Y
˜

s} = 1 − α. The smallest 100(1 − α)% set is the 100(1 − α)%
highest posterior density (HPD) prediction credible set. Moreover, if the pos-
terior density of γ(Y

˜ �) is unimodal, the HPD prediction set is a 100(1 − α)%
HPD prediction interval. In both cases the probability measure is taken over the
marginal distribution of γ(Y

˜ �) given Y
˜

s. (In the Bayesian context this marginal
distribution is the posterior predictive distribution.)
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As a basis for inference, we assume that the Ni individuals in the population
in the ith area follow the super population model

Yi1, . . . , YiNi |µi, σ
2
i

i.i.d.∼ N(µi, σ
2
i ) (1.1)

with independence over i = 1, . . . , �. Next, we specify

µi|σ2
i ∼ N(θ, τσ2

i ) (1.2)

i = 1, . . . , � with independence across areas. For small area estimation, it is not
entirely unreasonable to assume that the variances share an effect (i.e., they have
a common distribution). Quite naturally we specify an inverted gamma distribu-
tion for the σ2

i , and without loss of generality, for convenience, we reparameterize
the inverted gamma distribution. Thus, finally we specify

σ2
1 , . . . , σ

2
�

i.i.d.∼ IG{η, (η − 1)δ}, (1.3)

where the inverse gamma density in (1.3) is given by f(σ2
i ) = {(η−1)δ}η(1/σ2

i )η+1

e−(η−1)δ/σ2
i /Γ(η), σ2

i > 0 and f(σ2
i ) = 0 otherwise. We assume θ, τ, δ and η are

fixed but unknown parameters. Nandram and Sedransk (1993) considered a
similar model in Section 2 of their paper in which they assumed that η is fixed
and known. Since E(σ2

i ) = δ and var(σ2
i ) = δ2/(η − 2), η > 2, for fixed δ small

values of η express a belief that the variances are very different whereas large
values express a belief that they are very similar.

Let Y
˜

i = (Yi1, . . . , YiNi)
′ be the vector of all values from the ith area, i =

1, . . . , �. Also, let θ̃
˜

= (θ, . . . , θ)′ be a Ni × 1 vector with each component θ.
Then, it is straightforward to show that

(Y
˜

i − θ̃
˜
){(τ + 1)(η − 1)δ/η}−1/2 ∼ tNi(0˜

, R, 2η), (1.4)

where tNi(0˜
, R, 2η) is a Ni-variate Student t distribution located at the origin

with correlation matrix R = (rjj′), rjj′ = 1, j = j′ and rjj′ = τ/(1 + τ), j �=
j′, j, j′ = 1, . . . , Ni, on 2η degrees of freedom; see, for example, Box and Tiao
(1992), pg. 117. Note that the model specifies that the Y

˜
i are independent, and

that the components of the Y
˜

i are exchangeable. In fact, if the area sizes Ni

are equal, the Y
˜

i have the same distribution with parameters θ, η, δ and τ .
The multivariate Student t distribution in (1.4) will be used as the basis for the
asymptotics. This is the general set up for many small area models when there
are no covariates.

While (1.1), (1.2) and (1.3) provide a simple specification, it is expected to
hold within strata (or clusters) of the entire population of small areas. We note
that in more complex surveys there will be covariates.
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Details of more complicated small area models incorporating covariates are
presented by Prasad and Rao (1990). They assume that the error variances
(σ2

i ) are equal. Our approach is similar to theirs in that we use a two-stage
procedure to help account for underestimation in variability, an issue well-known
in empirical Bayes statistics. However, while their analysis is motivated by the
EBLUP approach, our approach is motivated by the EB approach. Note that in
the spirit of Prashad and Rao (1990), the issue of how to obtain the mean squared
error for the EBLUP of the µi in a model with unequal error variances is discussed
by Kleffe and Rao (1992). Neither of these papers address the construction of
an empirical prediction interval for the finite population mean. Also note that
the problem of constructing a good empirical Bayes prediction interval is much
more difficult than the problem of obtaining an accurate mean squared error.
The issue of constructing an empirical Bayes prediction interval for the finite
population mean of a small area is of greatest concern in this paper.

More recently, Arora, Lahiri and Mukherjee (1997) described empirical Bayes
estimation of finite population means from complex surveys. Their model as-
sumes that the error variances are unequal but distinct from the prior variance
of the µi. Note that in our model the µi do not share an effect. The EB estimator
obtained by Arora, Lahiri and Mukherjee (1997) does not exist in closed form;
one needs to perform a one-dimensional numerical integration. While Arora,
Lahiri and Mukherjee (1997) incorporated covariates into their model, we con-
sider a model without covariates. However, because it is not possible to obtain
a closed form for the EB estimator with their model, it is clearly impossible to
obtain a closed form interval estimator for the finite population mean of a small
area.

Finally, we note that our model can be motivated using the posterior linearity
assumption made by Ghosh and Lahiri (1987), see the fifth paragraph of Section
2 of their paper.

It is required to construct a 100(1 − α)% prediction interval estimator for
γ(Y

˜
�) =

∑N�
j=1 Y�j/N�. Let si denote the set of ni individuals sampled from

the Ni individuals of the ith area. Then, fi = ni/Ni is the sampling fraction,
Y i =

∑
jεsi

Yij/ni is the sample mean and S2
i =

∑
jεsi

(Yij − Y i)2/(ni − 1) is the
sample variance.

We denote the shrinkage factor by ωi = (1 + niτ)−1 for the ith area, i =
1, . . . , �. Note that larger shrinkage factor for the ith area corresponds to larger
degree of pooling for the ith area (i.e., the EB estimator of the finite population
mean of the ith area uses more information from the other areas). Also observe
that, as expected, the shrinkage factor ωi decreases as either ni or τ increases. It
may be desirable to use a model that makes the shrinkage factor depend on the
data. This is an advantage of the model proposed by Arora, Lahiri and Mukherjee
(1997) but the cost is a one-dimensional numerical integration problem.
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Also, let φ
˜

= (θ, τ, δ, η)′ be fixed, σ̃2
� = {(n� − 1)S2

� + n�ω�(Y � − θ)2 + 2(η −
1)δ}κ−1 where κ = n�+2η. Then, as in Nandram and Sedransk (1993), given the
sampled data from the �th area, a 100(1 − α)% highest posterior density (HPD)
interval for γ(Y

˜ �) is
eB ± νBtκ,α/2, (1.5)

where, for convenience, we write

eB = Y � − (1 − f�)ω�(Y � − θ), ν2
B = (1 − f�){f� + (1 − f�)(1 − ω�)}σ̃2

� n−1
�

and tκ,α/2 is the 100(1 − α/2)th percentile point of the Student t distribution
with κ degrees of freedom. Under squared error loss, eB is the Bayes estimator
of γ(Y

˜ �). We note that since the HPD interval in (1.5) is based on the Student
t distribution, there is some degree of robustness against outliers.

However, since φ
˜

is unknown, our objective is to construct a 100(1−α)% EB
prediction interval for γ(Y

˜
�) by appropriately weighting the sampled data from

all areas.
There are two approaches to EB interval estimation. The first is simple. It

requires virtually no computation and simple estimators are used for model pa-
rameters; see, for example, Nandram and Sedransk (1993). The second approach
is a set of more sophisticated methods to account for underestimation of variabil-
ity. Morris (1983a,b) used flat priors on hyperparameters while Laird and Lewis
(1987, 1989) used a bootstrap method. It should be noted that Arora, Lahiri
and Mukherjee (1997) extended the Laird-Lewis bootstrap method to finite pop-
ulation sampling to provide a measure of varability for their EB estimator. A
third approach uses an asymptotic approximation to the appropriate posterior
variance (Kass and Steffey (1989)) with a positive correction term added to the
estimated posterior variance. A fourth method due to Carlin and Gelfand (1990)
uses a bias-corrected technique which requires at least moderate computational
effort. There is also a fifth method (Raghunathan (1993)) which provides a quasi-
empirical Bayes approach for small area estimation based on a specification of
a set of conditionally independent hierarchical mean and variance functions de-
scribing the first two moments of the process generating the data. However,
because we prefer simplicity and reasonable accuracy over sophistication, we use
the first approach to “substitute” point estimators of the components of φ

˜
based

on Y i and S2
i into (1.5). The underestimation in variability is partially reduced

by using a two-stage approach as in Nandram and Sedransk (1993).
Henceforth, maintaining the EB spirit, all analyses are based on the joint

marginal distribution of the Yij. That is, the parameters µi and σ2
i , i = 1, . . . , �

are eliminated (by integration) in the model given by (1.1), (1.2) and (1.3); all the
components of φ

˜
are fixed but unknown. In Section 2, after obtaining the point

estimators for φ
˜

= (θ, τ, η, δ)′, we develop a two-stage empirical Bayes prediction
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interval of γ(Y
˜ �) and, using asymptotic theory, we compare it with the HPD

interval in (1.5). In Section 3 we describe a small-scale numerical study to assess
the properties of the EB interval for moderate sample sizes, and compare the EB
interval with the interval based only on the data from the �th area. Section 4
has concluding remarks, and sketches of proofs are given in the appendix.

2. Empirical Bayes Prediction Interval

First, we construct point estimators for φ
˜

and investigate their asymptotic
properties. We assume throughout that 2 ≤ infi≥1 ni ≤ supi≥1 ni ≤ k < ∞.
(This assumption is realistic in many applications including small area estima-
tion, and it is used mainly for theoretical reasons.) Then, we obtain the EB
prediction interval and study its asymptotic properties. All results are obtained
under the joint marginal distributions of the Yij. In particular, Lemma 1, Lemma
2, Theorem 1 and Corollary 1 are proved after integrating out the µi and the σ2

i .
Also, the abbreviations almost everywhere (a.e.) and almost surely (a.s.) refer
to the probability measure associated with the joint marginal distributions of the
Yij.

2.1. Parametric point estimators and asymptotic properties

We construct point estimators of φ
˜

and provide their relevant asymptotic
properties.

We note that the bivariate statistics (Y i, S
2
i ) are independently distributed

over i but individually Y i and S2
i are not independently distributed for each i.

Moreover, for i = 1, . . . , �, it is easy to show that

{(1−ωi)/(1− η−1)δτ}1/2(Y i − θ) ∼ t2η and ηS2
i /(η− 1)δ ∼ F (ni − 1, 2η), (2.1)

where t2η is a student t distribution on 2η degrees of freedom and F (ni − 1, 2η)
is an f -distribution on (ni − 1, 2η) degrees of freedom. We use (2.1) to obtain
and study point estimators of φ

˜
.

First, assuming that τ, δ and η are known, we construct an estimator of θ.
Using (2.1) it is easy to show that the best linear unbiased estimator of θ is θ̂∗
where

θ̂∗ =
�∑

i=1

(1 − ωi)Y i/
�∑

i=1

(1 − ωi). (2.2)

Note that θ̂∗ depends only on τ . Letting nT =
∑�

i=1 ni, we have

δ̂ = WMS = (nT − �)−1
�∑

i=1

(ni − 1)S2
i (2.3)
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which is an unbiased estimator of δ. Now, letting

Y = n−1
T

�∑
i=1

niY i and BMS = (� − 1)−1
�∑

i=1

ni(Y i − Y )2,

and using arguments similar to ones in Ghosh and Meeden (1986), an estimator
of τ is

τ̂ = max(0, τ̂∗), (2.4)

where

τ̂∗ = (� − 1)
[
nT − n−1

T

�∑
i=1

n2
i

]−1
{BMS/WMS − 1} , � > 1. (2.5)

Formula (2.5) differs from that in (2.8) of Ghosh and Meeden (1986) because
the adjustment they made seems unnecessary in our case. (Their estimator has
substantial positive bias for small �.) Thus we use the estimator

θ̂ =




�∑
i=1

(1 − ω̂i)Y i/
�∑

i=1
(1 − ω̂i), τ̂ > 0

Y , τ̂ = 0,

where ω̂i = (1+niτ̂)−1. We need a separate estimator when τ̂ = 0 because in this
case ω̂i = 1, i = 1, . . . , �, and

∑�
i=1(1− ω̂i)Y i/

∑�
i=1(1− ω̂i) is indeterminate. The

second estimator is sensible because limτ̂→0
∑�

i=1(1 − ω̂i)Y i/
∑�

i=1(1 − ω̂i) = Y .

Next, we construct an estimator for η. Consider
∑�

i=1 hi(S2
i − δ̂)2 where

hi = (ni − 1)(nT − �)−1, i = 1, . . . , � and δ is defined in (2.3). Then it is easy to
show that

E{
�∑

i=1

hi(S2
i − δ̂)2} = δ2(nT − �)−1

�∑
i=1

(1 − hi){2 + (ni + 1)/(η − 2)}, η > 2.

Thus, as an estimator of η we consider

η̂ = 2 + {max(�−1, η̂−1
∗ )}−1, (2.6)

where

η̂−1
∗ =

{ �∑
i=1

hi(1 − hi) + 2(� − 1)(nT − �)−1
}−1

{[ �∑
i=1

hi(S2
i δ̂−1 − 1)2

]
− 2(� − 1)(nT − �)−1

}
.

Again it is necessary to have a truncated estimator of the form η̂ in (2.6) because
η̂∗ could be negative or indeterminate.
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For convenience we present in Lemma 1 asymptotic properties of the point
estimators of φ

˜
= (θ, δ, τ, η)′.

Lemma 1. Assume 2 ≤ infi≥1 ni ≤ supi≥1 ni ≤ k < ∞. Then as � → ∞
(a) δ̂

a.s.→ δ and E(δ̂ − δ)2 → 0, (b) τ̂
a.s.→ τ and maxi=1,2,...,� |ω̂i − ωi| a.s.→ 0, (c)

η̂
a.s.→ η, (d) θ̂

a.s.→ θ.

Proof. A sketch of the proof is presented in Appendix A.

2.2. Empirical Bayes interval and asymptotic properties

Suppose φ
˜

is known. Then under the marginal distribution of the Yij

(γ(Y
˜

�) − eB)/νB ∼ tκ, (2.7)

where eB and νB are given in (1.5). The two-stage procedure we consider in this
section will help in a simple way to reduce the underestimation well known to be
associated with naive EB methods.

At the first stage we assume τ, δ, η are known, and consider the pivotal
quantity

(γ(Y
˜ �) − ê∗B)/νBa, (2.8)

where

ê∗B = Y � − (1 − f�)ω�(Y � − θ̂∗),
ν2

Ba = (1 − 2κ−1)var{γ(Y
˜ �) − ê∗B} = ν2

B + ν2
θ̂∗

,

ν2
θ̂∗

= (1 − 2κ−1)δ(1 − f�)2ω2
� /

�∑
i=1

niωi,

and θ̂∗ is given by (2.2), ν2
B by (1.5). Acting as if the pivotal quantity in (2.8) has

a Student t distribution with κ degrees of freedom, an approximate 100(1−α)%
confidence interval for γ(Y

˜ �) is

ê∗B ± νBatκ,α/2, (2.9)

where tκ,α/2 is the 100(1 − α/2)th percentile point of the Student t distribution.

Note that there are two adjustments being made here to account for under-
estimation of variability. First, ν2

Ba in (2.8) contains an additional variability
ν2

θ̂∗
beyond ν2

B. Second, to be on a par with the HPD interval, the 100(1 − α)%
in (2.9) is obtained from the student t distribution and not from the normal
distribution.

At the second stage we substitute estimators τ̂ , δ̂, η̂ from (2.3), (2.4), (2.6)
into (2.9) to obtain the proposed 100(1 − α)% EB prediction interval for γ(Y

˜ �)
as

êB ± ν̂Btκ̂,α/2. (2.10)
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In (2.10)

êB = Y � − (1 − f�)ω̂�(Y � − θ̂), ν̂2
B = ν̃2

B + ν̂2
θ̂∗

,

ν̃2
B = (1 − 2κ̂−1)(1 − f�){f� + (1 − f�)(1 − ω̂�)}σ̂2

� n−1
� ,

ν̂2
θ̂∗

= (1 − 2κ̂−1)δ̂(1 − f�)2ω̂2
� /

�∑
i=1

niω̂i,

where

σ̂2 = {(n� − 1)S2
� + n�ω̂�(Ȳ − θ̂)2 + 2(η̂ − 1)δ̂}κ̂−1 and κ̂ = n� + 2η̂.

Next, we consider how well the EB interval (2.10) approximates the HPD
interval (1.5) as � → ∞. As a basis of the asymptotics, using the joint marginal
distribution of the Yij obtained from (1.1), (1.2) and (1.3), we compare the
centers, widths, and coverage probabilities of the two intervals.

Our approach can be motivated in the following way: Suppose instead of
the gamma distribution in (1.3) we pretend that the σ2

i are fixed but unknown,
and that 2(η − 1)δσ−2

� has a chi-square distribution on 2η degrees of freedom
independently of S2

� , Ȳ� and γ(Y
˜ �)− eB . Then, under the marginal distributions

of the yij, independently {γ(Y
˜ �)−eB}{(1−f�){f�+(1−f�)(1−ω�)}σ2

� n−1
� }−1/2 ∼

N(0, 1) and κσ̃2
� /σ

2
� ∼ χ2

κ. Consequently, (γ(Y
˜ �)− eB)/νB ∼ tκ, and the 100(1−

α)% shortest prediction interval (non-Bayesian) for γ(Y
˜ �) is eB ± νBtκ,α/2, the

same as the HPD interval in (1.5). In fact, if (1.3) is removed from the model and
the σ2

i are kept fixed but unknown, the frequentist prediction interval is exactly
the HPD prediction interval. Results in which the HPD intervals are exactly the
same as the frequentist intervals are familiar; see, for example, Box and Tiao
(1992), Sec. 2.2.

Finally, note that Pr(eB−νBtκ,α/2 ≤ γ(Y
˜ �) ≤ eB+νBtκ,α/2) = EY

˜
�
(Pr(eB−

νBtκ,α/2 ≤ γ(Y
˜ �) ≤ eB + νBtκ,α/2|Y˜ �)) = EY

˜
�
(1 − α) = 1 − α. That is, rather

interestingly, the probability content of the 100(1−α)% HPD interval is (1−α)
when the probability measure is based on the joint marginal distribution of the
Y
˜ �. Thus, since the HPD interval is optimal, it is sensible to demonstrate that
the EB interval is a good approximation to the HPD interval.

Let W denote the width and P the coverage probability of an interval. Then
WB = 2tκ,α/2νB and ŴB = 2tκ̂,α/2ν̂B. Also letting

P̂B = T {(êB − eB + tκ̂,α/2ν̂B)ν−1
B } − T {(êB − eB − tκ̂,α/2ν̂B)ν−1

B },

the coverage probability of the EB interval is PB = EY
˜
(P̂B) where expectation

is taken over the joint marginal distribution of Yij obtained from (1.1), (1.2) and
(1.3) and T (·) is the cumulative distribution function of a Student t on 2η degrees
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of freedom. The centers of the two intervals are eB and êB , which are the Bayes
and the empirical Bayes estimators of γ(Y

˜ �) respectively.
First, we present Lemma 2.

Lemma 2. Assume 2 ≤ infi≥1 ni ≤ supi≥1 ni ≤ k < ∞. Then as � → ∞
(a) ν̂2

θ̂∗
a.s.→ 0 and E(ν̂2

θ̂∗
) → 0, (b) ν̂B − νB

a.s.→ 0, (c) E | ν̂B − νB |→ 0.

Proof. A sketch of the proof is presented in Appendix C and Appendix D.
Theorem 1 gives a neat summary of our main results and it establishes that

for a large number of small areas the EB interval is expected to be approximately
the same as the HPD interval for the finite population mean. A key idea in the
proof of Theorem 1 is the use of uniform integrability (see Serfling (1980), Sec.
1.4.)

Theorem 1. Assume 2 ≤ infi≥1 ni ≤ supi≥1 ni ≤ k < ∞. Then as � → ∞
(a) E|êB − eB | → 0, (b) E|ŴB − WB | → 0, (c) E(P̂B) → 1 − α.

Proof.
(a) Since E|êB − eB | ≤ {E(êB − eB)2}1/2, we show that êB − eB

a.s.→ 0 as � → ∞
and (êB − eB)2 is uniformly integrable; see Serfling (1980), Sec. 1.4. Because
(êB − eB) ≤ |θ̂ − θ|+ |Y � − θ|maxi=1,2,...,� |ω̂i − ωi| and |Y � − θ| is finite a.e.,
by Lemma 1 (b) and (d), êB − eB

a.s.→ 0 as � → ∞. Appendix B shows that
(êB − eB)2 is uniformly integrable.

(b) It is easy to show

E|ŴB − WB| ≤ 2E[|t2κ̂,α/2||ν̂B − νB |] + 2νBE |tκ̂,α/2 − tκ,α/2|.

By using Lemma 1 and since ta,α/2 is continuous in a for any positive real
number a, tκ̂,α/2

a.s.→ tκ,α/2 as � → ∞. But since tκ,α/2, tκ̂,α/2 ≤ t4,α/2 = A <

∞, tκ̂,α/2 − tκ,α/2 is uniformly bounded and E(tκ̂,α/2 − tκ,α/2) → 0. Thus, by
Lemma 2(c), E|ŴB − WB| → 0 as � → ∞.

(c) By Lemma 1(c), P̂B
a.s.→ T (tκ,α/2) − T (−tκ,α/2) = 1 − α and, since P̂B is

uniformly bounded, E(P̂B) → 1 − α as � → ∞.
Finally, we present Corollary 1. The Bayes risk of any estimator e of γ(Y

˜
�)

under squared error loss, r(e), is r(e) = EY
˜
{e − γ(Y

˜ �)}2, where expectation is
taken over the marginal distribution of Y

˜
obtained from (1.1), (1.2) and (1.3).

As in Lemma 3 of Ghosh and Meeden (1986), we have r(e)−r(eB) = E(e−eB)2.

Corollary 1.Under the conditions of Theorem 1, r(êB) − r(eB) → 0 as � → ∞.

The proof follows immediately from Theorem 1(a).
Corollary 1 shows that êB is asymptotically optimal in the sense of Robbins

(1955). This adds credence to the center of the EB interval as an approximation
to the center of the HPD interval.



AN EMPIRICAL BAYES PREDICTION INTERVAL 335

3. A Small-Scale Numerical Study

We investigate the properties of the EB interval in (2.10) relative to the HPD
interval in (1.5) by performing a small-scale Monte Carlo study when the model
given by (1.1), (1.2) and (1.3) holds. We select repeated samples from

Yij = θ + µi + εij (3.1)

i = 1, . . . , � and j = 1, . . . , ni, where the µi are drawn independently from
N(0, τσ2

i ), independently for each i, εi1, εi2, . . . , εini is a random sample from
N(0, σ2

i ), while σ2
1 , . . . , σ

2
� is a random sample from IG{η, (η − 1)δ}. Random

deviates are generated using RNNOA- and RNGAM-generating functions of the
IMSL library.

Throughout we take f = .05, � = 20, 30, 40 and η = 5, 10, 15. We restrict the
simulations to the case in which the σ2

i have unit variance (i.e., δ = (η − 2)1/2).
Now observing that the distributions of Ȳi − θ are invariant to choices of θ, apart
from the estimated center, the sampling distributions of all quantities we study
are invariant to choices of θ. Thus, for convenience, we take θ = 10. Also we take
n� = 5, 10, 15 while, using RNGDA of the IMSL library, the ni, i = 1, 2, . . . , �−1,
are drawn at random from a discrete uniform on (2, n�). To ensure a large range
of degrees of borrowing (i.e., values of ω�), we take τ = 0.05, 0.25, 1.25; see Table
1. Thus there are 81 combinations of �, n�, τ and η.

Table 1. Values of ω� (i.e., degree of borrowing) by τ and n�

τ

n� 0.05 0.25 1.25
5 .80 .44 .14
10 .67 .29 .07
15 .57 .21 .05

NOTE: The degree of borrowing (ω� = (1+n�τ)−1) depends on � only through
n�, and smaller τ means larger degree of borrowing.

We study the width, center and coverage probability of the EB interval rela-
tive to the Bayes interval with nominal coverage probability of .95. We compute
the expected width, center, and coverage probability of the EB interval over
repeated samples at each combination of (�, n�, τ, η). For G replications of the
Monte Carlo experiment, we estimate the expected value of the width of an EB
interval by computing the sample mean of the G replications

W̄EB = G−1
G∑

i=1

Ŵ
(i)
B ,
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and its standard error

SEEB = {
G∑

i=1

(Ŵ (i)
B − W̄EB)2/G(G − 1)}1/2, (3.2)

where Ŵ
(i)
B is the width of the EB interval for the ith replication of the Monte

Carlo experiment. As in (3.2), for the coverage probability of the EB interval
we compute P̄EB and for the center we compute ēEB. (We take G = 10,000.)
Over all choices of (�, n�, τ, η), the standard error of P̄EB is at most 0.001, the
standard error of W̄EB is at most 0.005, and the standard error of ēEB ranges
from 0.003 to 0.022 with first, second and third quartiles 0.004, 0.008 and 0.019.
With this precision we study all quantities of interest.

Next, we compare the risk of êB with eB by using R(EB,B) = r(êB)/r(eB)−
1. Among the 81 values the first, second and third quartiles of R(EB,B) are
0.003, 0.013 and 0.046. For all values of �, when τ = 1.25, R(EB,B) ranges
from 0.000 to 0.005; when τ = .25, R(EB,B) has quantiles 0.010, 0.013 and
0.038; when τ = .05, R(EB,B) has quantiles 0.044, 0.060 and 0.084. Of course,
as �, n�, τ or η increases, R(EB,B) decreases. Further, we compute estimates
of |E(êB − eB)/SE(êB − eB)|. The first, second and third quartiles of these
estimates are 0.005, 0.007 and 0.013, and the smallest and largest values are
0.000 and 0.025.

We also compute estimates of |E(ŴB − WB)/SE(ŴB − WB)|. The first,
second and third quartiles are 0.143, 0.262 and 0.351 with the smallest and largest
values 0.000 and 0.495, larger values occurring at larger values of η, but these
decrease as �, n� or τ increases. Thus, in terms of these measures the EB interval
performs well when compared with the HPD interval for almost all combinations.

For comparison we consider a third interval based on the data from only the
�th area. This prediction interval, denoted by Io, for the finite population mean
of the �th area is

Ȳ� ±
S�√
n�

(1 − f�)1/2tn�−1,α/2, (3.3)

where tn�−1,α/2 is the 100(1−α/2)th percentile point of the Student t distribution
on n� − 1 degrees of freedom. By considering the estimated width, center and
coverage probabilities we compare the EB, HPD and Io intervals. (For the interval
Io we compute the estimated width, center, and coverage probability under our
general model.)

Let Rw(Io, B) = WIo/WB denote the ratio of the widths of the Io inter-
val to the Bayes interval with similar meanings for Rw(EB,B), Rc(Io, B) and
Rc(EB,B) where EB, B and Io denote the EB interval in (2.10), the HPD inter-
val in (1.5) and the interval in (3.3) respectively. We found that Rc(Io, B) ≈ 1.000
and Rc(EB,B) ≈ 1.000 for all combinations of �, n�, τ and η. In Table 2 we
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present the values for Rw(Io, B) and Rw(EB,B) in columns 4 and 5. We also
present the estimated coverage probabilities in columns 6 for the Io interval, and
in column 7 for the EB interval. Recall that coverage is computed using the
average of the coverage probabilities over the replications.

Table 2. Ratios of estimated widths of Io and EB intervals to the HPD
interval and coverage probabilities of nominal 95% Io and EB intervals by �,
n� and τ

Coverage Probabilities
� n� τ Rw(Io, B) Rw(EB, B) Io EB
20 5 0.05 2.841 1.056 0.952 0.888 (0.923)

0.25 1.831 0.951 0.955 0.895 (0.938)
1.25 1.493 0.997 0.958 0.943 (0.946)

20 10 0.05 1.917 0.965 0.953 0.866 (0.925)
0.25 1.360 0.968 0.957 0.918 (0.942)
1.25 1.204 0.998 0.959 0.946 (0.947)

20 15 0.05 1.631 0.940 0.953 0.861 (0.931)
0.25 1.233 0.976 0.956 0.928 (0.944)
1.25 1.130 0.998 0.958 0.947 (0.948)

30 5 0.05 2.846 1.032 0.953 0.883 (0.923)
0.25 1.834 0.959 0.956 0.902 (0.941)
1.25 1.496 1.005 0.959 0.946 (0.948)

30 10 0.05 1.917 0.953 0.953 0.867 (0.935)
0.25 1.360 0.985 0.957 0.933 (0.946)
1.25 1.204 1.004 0.959 0.949 (0.950)

30 15 0.05 1.631 0.933 0.954 0.871 (0.938)
0.25 1.233 0.990 0.957 0.940 (0.947)
1.25 1.130 1.002 0.958 0.949 (0.950)

40 5 0.05 2.848 1.016 0.952 0.880 (0.932)
0.25 1.836 0.973 0.956 0.914 (0.944)
1.25 1.497 1.009 0.959 0.948 (0.949)

40 10 0.05 1.920 0.938 0.952 0.863 (0.936)
0.25 1.363 0.986 0.957 0.935 (0.946)
1.25 1.207 1.004 0.960 0.949 (0.950)

40 15 0.05 1.629 0.931 0.953 0.871 (0.939)
0.25 1.231 0.993 0.956 0.943 (0.947)
1.25 1.129 1.004 0.958 0.950 (0.950)

NOTE: Here Rw(I, B) = WI/WB denotes the ratio of the widths for interval
I versus the HPD interval, and I is either Io or EB. (Median coverage
probabilities for the EB interval are in parentheses.)



338 BALGOBIN NANDRAM

Because the distributions of these estimated probabilities are skewed to the
left for smaller values of τ , for the EB interval we also present the median (in
parentheses) in column 7. However, the distributions become more symmetric
as τ increases. That is, for small values of τ (heavy pooling) the mean is an
underestimate and the median is preferred. Finally, note that we present results
for only η = 5 because all quantities either decrease very slowly or remain steady
as η increases from 5 to 15.

For all values of �, n� and τ , the coverage probabilities of the Io interval are
larger than the nominal 95% value, and they are always wider than the HPD
interval. The shortest Io interval has Rw(Io, B) = 1.114, at � = 40, n� = 15, τ =
1.25 and η = 15. Thus, on the average, the centers and the coverage probabilities
of the Io interval are closer to the centers of the HPD interval than the widths
are. In terms of coverage the Io interval is conservative.

The widths of the EB intervals are very close to the HPD interval for all
values �, n� and τ . The coverage probabilities of the EB interval, as measured
by the sample median, are very close to the HPD interval. As expected, the EB
interval gets closer to the HPD interval as �, n� or τ increases. While there are
small changes as τ increases, it seems that the EB interval performs better in
terms of coverage probabilities for larger values of τ . That is, when there is a
small to moderate amount of borrowing among the small areas, the EB interval
performs just fine. This is precisely the situation in which the EB interval is
required to work well as our experience suggests too much borrowing is not a
good practice. Even for small values of �, n� and τ , the EB interval is remarkably
close to the HPD interval. Further simulations for larger values of � showed that
the EB interval is again a good approximation to the HPD interval.

4. Concluding Remarks

We provide a simple prediction interval for the finite population mean of
a small area when data are available from a large number of areas, say at least
about 20. It will be useful for practitioners who prefer a less sophisticated method
or who need quick answers. Because the properties of the interval are based on
the multivariate Student distribution, it should be more robust to outliers than
the interval provided by Nandram and Sedransk (1993) in Sections 3 and 4 of
their paper.

We have shown that the EB interval works fairly well for reasonable values
of � and ni, i = 1, . . . , � when pooling data from these areas is reasonable. Our
numerical study shows that if the model holds, the EB interval is a reasonable
approximation to the HPD interval, and much better than the interval based on
only the data of a particular small area. In particular, the width and center of
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the EB interval are comparable to the HPD interval, and its coverage probability
is near the nominal 95% value for � > 20, nl > 5 and τ > .25.

We used a simple method to partially take care of the underestimation in
variability while Prasad and Rao (1990) used a more sophisticated method to
provide asymptotically valid confidence interval for a small-area mean. Fortu-
nately, extensive theoretical and empirical investigations demonstrate that our
prediction intervals have good coverage properties. We believe that there is a
need for more exploration in small area interval estimation when empirical Bayes
methods are used, but see Carlin and Gelfand (1990). If more sophistication is
brought in, one might prefer to use a full Bayesian approach that would require
use of a method such as the Gibbs sampler (Gelfand and Smith 1990).

One can also construct a prediction interval for the (�+1)th area that has not
been sampled. Thus, assume observations are obtained from � small areas, all �+1
areas follow (1.1), (1.2) and (1.3), and interest is in γ(Y

˜
�+1) =

∑N�+1

j=1 Y�+1,j/N�+1

where N�+1 ≥ 1 is the size of the small area. Then the 100(1-α)% HPD prediction
interval for γ(Y

˜
�+1) is

θ ± {δ(1 − η−1)(N−1
�+1 + τ)}1/2t2η,α/2.

As an approximation to the HPD interval, the EB interval is

θ̂ ± {δ̂(1 − η̂−1)[N−1
�+1 + τ̂ + 1/

�∑
i=1

niω̂i]}1/2t2η̂,α/2

and Theorem 1 still holds.
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Appendix: Completion of Proofs

Appendix A: Proof of Lemma 1

Lemma 1 (a): Since 2 ≤ infi≥1 ni ≤ supi≥1 ni ≤ k < ∞ and var(S2
i ) =

[(2+(ni +1)/(η−2)]δ2/(ni−1) ≤ [(k+1)/(η−2)+2]δ2 = A, by the Kolmogorov
strong law of large numbers (SLLN), δ̂

a.s.→ δ; see Serfling (1980), pg. 27. Also,
since E(δ̂ − δ)2 ≤ A�−1, E(δ̂ − δ)2 → 0 as � → ∞.

Lemma 1 (b): By using (a) and applying the SLLN to each term in BMS = (�−
1)−1{∑�

i=1 niY
2
i −nT Y

2
}, we have τ̂∗

a.s.→ τ . Thus, by continuity, max(0, τ̂∗)
a.s→ τ
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as � → ∞. Also since | ω̂i − ωi | ≤| 1 − τ̂ τ−1 |, i = 1, 2, . . . , �,maxi=1,2,...,� |
ω̂i − ωi |a.s.→ 0 as � → ∞.

Lemma 1 (c): We show η̂−1∗
a.s.→ (η − 2)−1 as � → ∞. First note that

η̂−1
∗ = δ2δ̂−2{H1(δ, δ̂) − H2(δ, δ̂) + (η − 2)−1}, (A.1)

where

H1(δ, δ̂) = δ−2{
�∑

i=1

hi(S2
i − δ̂)2 − E{

�∑
i=1

hi(S2
i − δ̂)2}}(nT − �)(� − 1)−1A�,

H2(δ, δ̂) = 2(δ̂2δ−2 − 1)A�,

and A� = (� − 1)/
∑�

i=1(1 − hi)(ni + 1). Now both A� and (nT − �)(� − 1)−1 are
bounded. It follows by Lemma 1(a) that H2(δ, δ̂)

a.s.→ 0 and δ2δ̂−2 a.s.→ 1 as � → ∞.
Thus in (A.1) we only need to show

∑�
i=1 hi(S2

i − δ̂)2−E{∑�
i=1 hi(S2

i − δ̂)2} a.s.→ 0
as � → ∞.

Now
�∑

i=1

hi(S2
i − δ̂)2 − E{

�∑
i=1

hi(S2
i − δ̂)2} = Q1 − Q2,

where Q1 =
∑�

i=1 hiS
4
i − E(

∑�
i=1 hiS

4
i ) and Q2 = δ̂2 − δ2 − var(δ̂). By SLLN,

provided that η > 4, Q1
a.s.→ 0 as � → ∞. Also by Lemma 1(a), Q2 → 0 as � → ∞.

Thus η̂−1∗
a.s→ (η − 2)−1 as � → ∞.

Since η̂ = 2 + {max(�−1, η̂−1∗ )}−1, by continuity η̂
a.s.→ η as � → ∞.

Lemma 1 (d): If τ̂ = 0, θ̂ − θ = n−1
T

∑�
i=1 ni(Y i − θ), and by SLLN, θ̂ − θ

a.s.→ 0
as � → ∞.

If τ̂ >0, |θ̂−θ| = |∑�
i=1(1−ω̂i)(Y i−θ)|/ ∑�

i=1(1−ω̂i) ≤ (k+ τ̂−1){|�−1 ∑�
i=1(1−

ωi)(Y i − θ)|+ {maxi=1,2,...,� |ω̂i −ωi|}�−1 ∑�
i=1 |Y i − θ|}. By SLLN �−1 ∑�

i=1(1−
ωi)(Y i − θ) a.s.→ 0 as � → ∞. Since E(�−1 ∑�

i=1 |Y i − θ|) ≤ δτ(1 + kτ)1/2 < ∞,
it follows that �−1 ∑�

i=1 |Y i − θ| is finite, a.e.. Using Lemma 1(b) and assuming
τ̂ > 0, θ̂ − θ

a.s→ 0 as � → ∞.

Appendix B: Proof of the Uniform Integrability of (êB − eB)2

Since
(êB − eB)2 < 2{(Y � − θ)2 + (θ̂ − θ)2}, (B.1)

we show that (Y � − θ)2 and (θ̂ − θ)2 are both uniformly integrable (u.i.).
First, by (B.1),

(Y � − θ)2 d= (1 − η−1)δτ(1 − ω�)−1F (1, 2η) (B.2)

where F (1, 2η) has an f distribution. Then by (B.2), recalling supi≥1 ni ≤ k < ∞,

(Y �−θ)2
st
≤ δ(kτ+1)F (1, 2η)/2 and, since η > 1, (Y �−θ)2 is bounded by a random
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variable with finite expectation. Thus (Y � − θ)2 is u.i., see Serfling (1980), Sec.
1.4. It follows that �−1 ∑�

i=1(Y i − θ)2 is also u.i..
Second,

(θ̂ − θ)2 ≤ {n−1
T

�∑
i=1

ni(Y i − θ)}2 + {
�∑

i=1

(1 − ω̂i)(Y i − θ)/
�∑

i=1

(1 − ω̂i)}2. (B.3)

Using (B.3) it is easy to show that

(θ̂ − θ)2 ≤ k2�−1
�∑

i=1

(Y i − θ)2. (B.4)

Then because �−1 ∑�
i=1(Y i − θ)2 is u.i., by (B.4), (θ̂ − θ)2 is u.i..

Appendix C: Proof of Lemma 2

Lemma 2(a). Using Lemma 1 and the inequality ν̂2
θ̂∗

≤ δ̂(1+kτ̂)/2�, ν̂2
θ̂∗

a.s.→ 0 as

� → ∞. Now E(ν̂2
θ̂∗

) ≤ {Eδ̂(1 + kτ̂)}/2�. Thus by Lemma 1 again, there exists

A < ∞ s.t. δ̂(1 + kτ̂) < A a.e. Thus E(ν̂2
θ̂∗

) → 0 as � → ∞.

Lemma 2(b). Using the triangle inequality | ν̂2
B − ν2

B |≤ ν̂2
θ̂∗

+ | ν̃2
B − ν2

B |. Thus

by Lemma 2(a) it is only required to show that ν̃2
B − ν2

B
a.s.→ 0 as � → ∞; see

Appendix D.

Lemma 2 (c): It is easy to show that E | ν̂B − νB |≤
√

3{E | ν̂2
B − ν2

B |}1/2.
Since E | ν̂2

B − ν2
B |≤ {E(ν̃2

B − ν2
B)2}1/2 + E(ν̂2

θ̂∗
), by Lemma 2(a) it is only

required to show that E(ν̃2
B − ν2

B)2 → 0 as � → ∞; see Appendix D.

Appendix D: Completion of the Proof of Lemma 2

We show that ν̃2
B − ν2

B
a.s.→ 0 as � → ∞ and E(ν̃2

B − ν2
B)2 → 0 as � → ∞.

Letting ∆1 = σ̃2
� maxi=1,2,...,� | ω̂i − ωi | and ∆2 =| (1 − 2κ̂−1)σ̂2

� − σ̃2
� |,

we have by the triangle inequality, | ν̃2
B − ν2

B |≤ ∆1 + ∆2, and by Minkowski’s
inequality E(ν̃2

B − ν2
B)2 ≤ [{E(∆2

1)}1/2 + E(∆2
2)

1/2]2.
First we show that ∆1

a.s.→ 0 as � → ∞ and E(∆2
1) → 0 as � → ∞. As

σ̃2
� has finite expectation, it is bounded a.e.. Thus, by Lemma 1(b), ∆1

a.s.→
0 as � → ∞. Also since E(∆2

1) ≤ AE{maxi=1,2,...,� | ω̂i − ωi |}2 where A < ∞
and maxi=1,2,...,� | ω̂i−ωi |} ≤ 1 (i.e., uniformly bounded), by Lemma 1(b) again,
E(∆2

1) → 0 as � → ∞.

Second, we note that

∆2 ≤
4∑

i=1

Ai (D.1)
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where

A1 =
1
2
(n� − 1)S2

� | η̂−1 − η−1 |,

A2 = 2n�[{(Ȳ� − θ)2 + (θ̂ − θ)2} max
i=1,2,...,�

| ω̂i − ωi |],

A3 = 2n�ω� | θ̂ − θ || Ȳ� − θ | +
1
2
n�ω�(Ȳ − θ)2 | η̂−1 − η−1 |,

A4 =
1
2
{(η̂ − 1)δ̂ + η̂} | η̂−1 − η−1 | +

1
2
| δ̂ − δ | .

As Ȳ� and S2
� are bounded a.e., by Lemma 1 Ai

a.s.→ 0 as � → ∞, i = 1, 2, 3, 4, and
by (D.1), ∆2

a.s.→ 0 as � → ∞. Now,

E(∆2
2) ≤ 4

4∑
i=1

E(A2
i ). (D.2)

By using Minkowkski’s inequality, Lemma 1 and boundedness repeatedly, it fol-
lows that E(A2

i ) → 0 as � → ∞, i=1, 2, 3, 4, and by (D.2), E(∆2
2) → 0 as � → ∞.
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