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STRUCTURAL MULTIVARIATE FUNCTION ESTIMATION:
SOME AUTOMATIC DENSITY AND HAZARD ESTIMATES
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Abstract: Structures such as independence of random variables in probability den-
sities and hazard proportionality in covariate dependent hazard functions have im-
portant interpretations in statistical analysis. Such structures can be characterized
by term eliminations from an analysis of variance (ANOVA) decomposition in log
density or log hazard. Nonparametric estimation of these functions with an ANOVA
decomposition built in can be achieved by using tensor product splines in a penal-
ized likelihood approach. In this article, a feasible algorithm with automatic mul-
tiple smoothing parameters is described to implement this approach, and examples
are presented to illustrate some applications of the technique. For density estima-
tion, a novel feature is the possibility of assessing/enforcing independence when
data are truncated to a non rectangular domain. For hazard estimation, models
more general than but reducible to proportional hazard models are available, and
model terms are estimated simultaneously via penalized full likelihood.
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1. Introduction

Data and models are two sources of information in a statistical analysis.
Data carry noise but are “unbiased”, whereas models, or constraints, help to
reduce noise but are responsible for “biases”. Parametric restrictive models and
constraint-free nonparametric analyses (e.g., the empirical distribution for densi-
ties and the Kaplan-Meier estimator for hazards) represent two extremes on the
spectrum of bias-variance tradeoff. Smooth function models with soft constraints
come in between the two extremes. Among the many smoothing methods avail-
able, the penalized likelihood method pioneered by Good and Gaskins (1971)
allows convenient structural model construction, and hence is rather handy for
handling multivariate problems.

Let 1 be a function of interest. Smooth models for 1 can be specified via
M, = {n : J(n) < p}, where J(n) is a quadratic roughness functional with a
low dimensional null space J;. An example of J(n) on an interval, say [0, 1], is
[i2dz. When p = 0, My = J, defines a parametric model. As p increases, M,
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allows more and more flexible fits. To fit the model in M, one usually resorts
to the maximum likelihood method. The estimate in {n: J(n) < p} usually falls
on the sphere {n : J(n) = p}, and Lagrange’s method turns the problem into a
penalized likelihood problem

min L(n) + (A/2)J(n), (1.1)

where L(n) is usually the minus log likelihood of the data. The Lagrange mul-
tiplier A is called the smoothing parameter, which controls the tradeoff between
the goodness-of-fit and the smoothness of 7.

A few generic examples of penalized likelihood estimation follow.

Example 1.1. Response Data Regression. Assume Y| X ~ exp{(yn(xz)—b(n(x)))
Ja(¢)+c(y, )}, an exponential family density with a modeling parameter 7 and
a possibly unknown nuisance parameter ¢. Observing independent data (X;,Y;),
i=1,...,n, the method estimates 7 via minimizing

——Z{Ym (X0} + 5 (). (1.2)

Example 1.2. Density Estimation. Observing i.i.d. samples X;, i = 1,...,n,
from a probability density f(z) supported on a finite domain X, the method
estimates f by €7/ [, e'dz, where n minimizes

—% ; {n(Xi) - log/X e”dx} + %J(n). (1.3)

A side condition, say [, ndx = 0, shall be imposed on 7 for a one-to-one transform
[ el [yelde.

Example 1.3. Hazard Estimation. Let T be the life time of an item with a
survival function S(¢t,u) = P(T > t|u), possibly dependent on a covariate wu,
and a hazard function e”**) = —dlog S(t,u)/dt. Let Z be the truncation time
and C be the censoring time, independent of 7" and of each other. Observing
(Zi, Xi,6,U;), i = 1,...,n, where X = min(T,C), 6 = Ijr<¢), and Z < X, the
method estimates the log hazard 7 via minimizing

E { (X, Us) /Zl et dt} + 2J(7]). (1.4)

Normal data regression, an important special case of Example 1.1, is by far
the most intensively studied in the literature; a nice synthesis can be found in
Wahba (1990). The formulation (1.2) for regression with general exponential
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family data was proposed by O’Sullivan, Yandell and Raynor (1986); see also
Silverman (1978). The formulation (1.3) appearing in Gu and Qiu (1993) evolved
from the work of Good and Gaskins (1971), Leonard (1978), and Silverman
(1982). The formulation (1.4) of Gu (1996) is influenced by the work of O’Sullivan
(1988a, b) and Zucker and Karr (1990), among others.

Note that there is no dimensional restriction on z in Examples 1.1 and 1.2
so in general the problem could be a multivariate one. Example 1.3 is by defini-
tion multivariate unless the covariate domain reduces to a singleton. Structures
based on a certain ANOVA decomposition of multivariate functions often help
to enhance the interpretability of the estimates, and selective term trimming in
such a decomposition may also help to partly ease the curse of dimensionality
in estimation. As a simple example, consider a bivariate z = (¢t,u) in Exam-
ples 1.1 and 1.2. An ANOVA decomposition of a function of x is defined as
n(x) = C+ g+ gy + gp.u» Where C is the constant, g, and g,, are functions of only
one variable called the main effects, and g, , is the interaction. The decomposi-
tion can be made unique by imposing appropriate side conditions on g, g,,, and
i For regression, setting g, , = 0 results in the so-called additive models; for
density estimation, g, , = 0 implies mutual independence of ¢ and u. The struc-
ture fits hazard estimation naturally, where forcing g, , = 0 yields proportional
hazard models.

The ANOVA decomposition can be built into penalized likelihood estima-
tion using the tensor-product spline technique; see, e.g., Gu and Wahba (1991,
1993). The purpose of this article is to explore the numerical feasibility of au-
tomatic estimation of densities and hazards with ANOVA-based structures built
in. Algorithms for calculating the estimates with an automatic A but a com-
pletely specified J have been developed in previous work; see Gu (1993a, 1994).
With an ANOVA decomposition built in, say n = >3 gg with [ being a generic
index, however, J is usually of the form > Qﬁ_ng(gﬁ), where J3(g5) measures
the roughness of 9gg, and the weights 63, an extra set of smoothing parameters,
should naturally also be selected adaptively.

Some related recent work on multivariate density estimation are Stone (1994)
and Sain, Baggerly, and Scott (1994). Stone (1994) proposes the use of tensor
product regression splines in the context and discusses some theoretical proper-
ties, and we look forward to seeing the numerical implementation of the method.
Sain et al. (1994) study smoothing parameter selection in multivariate kernel
density estimation. Among related work on hazard estimation are Gray (1992)
and Kooperberg, Stone and Truong (1995). Gray (1992) experiments with mod-
els proposed by Zucker and Karr (1990). Kooperberg et al. (1995) present an
implementation of the use of tensor product regression splines in hazard estima-
tion.
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The rest of the article is organized as follows. In section 2, background
materials are briefly reviewed and the numerical problem is specified. Section 3
describes a feasible automatic multiple smoothing parameter algorithm for the
calculation of density and hazard estimates of (1.3) and (1.4). Density estimation
and hazard estimation examples are presented in Sections 4 and 5, respectively,
to illustrate potential applications of the technique, with notes on numerical and
statistical performance of the method. Section 6 concludes the article with some
further discussion.

2. Formulation and Preliminaries

In this section, we will discuss a few basic technical facts to tighten up the
setup of the problem, present in some detail a specific formulation to be used in
later sections, and review some background theoretical and algorithmic results.

For the statistical models implied by (1.1), L(n) represents the stochastic
part and AJ(n) the systematic part. The minimization of (1.1) is implicitly
over a function space H C {n : J(n) < oco}. The penalty J(n) forms a natu-
ral square (semi) norm in H, and supplemented by a norm in J,, makes H a
Hilbert space. Evaluation n(x) appears in the L(n) part of (1.3) and (1.4). To
make the functional L(n) + (A\/2)J(n) continuous in 7, it is necessary that eval-
uation is continuous in H. A Hilbert space in which evaluation is continuous is
called a reproducing kernel Hilbert space (RKHS) possessing a reproducing kernel
(RK) R(z,y), a positive definite bivariate function satisfying (n(-), R(z,-)) = n(z)
(the reproducing property). A mathematical theory of RKHS can be found in
Aronszajn (1950); see also Wahba (1990), Chapter 1. The inner-product (,-)
(hence norm) and the RK R define each other uniquely. Given a norm in J,
H;=He J is an RKHS with a square norm J and an RK, say, Ry, and the
systematic part of the model implied by (1.1) is effectively determined by J,,
Rj, and the smoothing parameter \.

We now specify the construction of an RKHS with an ANOVA decomposi-
tion built in on [0, 1]2. Side conditions in the ANOVA decomposition will affect
the construction, and in the examples of this article we set [ g,dt = [ g,du =
J 9:,dt = [ gy, du = 0. Starting from any positive definite function R(z,y) on
a domain X, an inner-product can be defined in {R(z,-),z € X'} to make it an
RKHS with R(x,y) as its RK (cf. Aronszajn (1950)), hence it suffices to construct
an RK on the domain. The approach of Aronszajn (1950) for RK construction on
a product domain starts with the construction of RK’s on marginal domains. On
the marginal domain [0,1], a commonly used roughness measure is J = [ i?dx
with J, = {1, (- —.5)}. The function space {g : [ §°dz < oo} can be written as a
tensor sum H.BH,DHs, where H. = {1} hasan RK R. = 1, H, = {(-—.5)} has
an RK Ry (t,s) = (t—.5)(s —.5), and Hs = {g : [ §*dz < o0, [ gdz = [ gdx = 0}
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has an RK Rg(t,s) = ko(t)k2(s) — ks(Jt — s|) dual to the norm J(g) = [ j?dx,
where k, = B, /v! and B, are the vth Bernoulli polynomials (cf. Craven and
Wahba (1979)). A univariate ANOVA decomposition is in place where H,. carries
the constant and H, ® H, carries the “treatment effect” satisfying the side con-
dition [ gdz = 0. The product of a positive definite function on 7 and a positive
definite function on U is a positive definite function on 7 x U (cf. Aronszajn
(1950)), so an RK on a product domain can most conveniently be constructed by
taking the product of marginal RK’s, and the resulting RKHS is called the tensor
product of the corresponding marginal RKHS’s. From the three term tensor sum
decomposition of the marginal RKHS above, one naturally obtains a tensor prod-
uct RKHS with nine tensor sum terms H = ©geycn 52 Hg, Where for example
H, s is generated from the RK R, 4((t,u), (s,v)) = Rs(t,s)Rs(u,v). An ANOVA
decomposition is in place where H,. . carries the constant, Hr .®H; . carries the ¢
main effect, H. »®H, s carries the u main effect, and Hy ®Hr O Hs B Hs s car-
ries the interaction. Let the roughness penalty be J = 33 9§1J5 where Jg are the
square norm in Hg. Setting 63 = 0 eliminates H g from the model space and set-
ting 3 = oo puts Hg in J,. One has Hj = @p,e(0,00)Hp and Ry = )9, oo U5 Rp-
The subspaces Hcc, Her, Hr,c, and Hy » are of finite dimension and are often
included in J,. The other terms can only appear in H ;. For density estimation,
the constant H, . should be eliminated to maintain a one-to-one logistic density
transform f < €7/ [ e"dx. Formulas of Jg in this construction can be found in
Gu (1996) but are not needed for computation.

When L(n) depends on 7 only through evaluations n(X;) as in the regression
problem of Example 1.1, the solution of (1.1) is in a data-adaptive finite dimen-
sional subspace H,, = J; @ {R;(X;,-)} (cf. Wahba (1990)). The restriction
to a finite dimensional space makes the numerical calculation of the estimates
possible. For density estimation, the minimizer 7 of (1.3) in H generally does
not have a finite dimensional expression. Nevertheless, an asymptotic analysis
in Gu and Qiu (1993) shows that there is no loss of asymptotic efficiency when
the model space is restricted to H,, in the sense that the minimizer 7, of (1.3)
in ‘H,, shares the same asymptotic convergence rates as 7, so in practice one may
calculate 7, to estimate 7.

Write & = Ry(X;,-) and J, = {¢,},. A function n € H,, has an expression
n(z) = Y0 ciéi(x) + XM dy¢,(z). Fixing smoothing parameters, 7, can be
calculated by minimizing

—%1T(Qc + Sd) + log / exp(¢fc + ¢l d)dx + %CTQC, (2.1)

where £ and ¢ are vectors of functions and ¢ and d are vectors of coefficients,
Q is n x n with (4, j)th entry R;(X;, X;) = J(&,&;) where J(-,-) indicates the
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inner-product in H;, and S is n x M with (i,v)th entry ¢,(X;). Let pu,(h) =
Jheldz/ [ e"dx and V;(h,g) = py(hg) — py(h)pn(g). From an estimate 7
£T¢ + ¢'d, the one-step Newton update for minimizing (2.1) satisfies

V¢7§ V¢7¢ d STl/n — u¢ + V¢777 ’ '

where pre = p7(8), py = na(@), Vee = Vi(€.67), Veo = Vi(€.97), Voo =
Vile, 1), Vey = Vi(€,7), and Vi, = Vi(eh,77); see Gu (1993a) for details.

With varying smoothing parameters, (2.2) defines a class of estimates, and
one may try to choose a better performing one from the class as the update. A
performance-oriented iteration simultaneously updating A and n was developed
in Gu (1993a), where the performances of n’s are compared on a computable
proxy Li(n,m0) (cf. Gu (1993a), Eq. 3.6) of the symmetrized Kullback-Leibler
between the true density e/ [ e™dx and the estimate €/ [ e"dx, SKL(n,ny) =
o (M0 — M) + y(n — 10), where the one-step Newton update 7 is dependent on
7, 03, and A through the terms of (2.2). The arguments and formulas in Gu
(1993a), Section 3 remain valid when 63 hidden in R; are also to be updated,
but the single smoothing parameter algorithm of Gu (1993a), Section 4 is no
longer sufficient. More details and a multiple smoothing parameter algorithm
will be described in the next section.

Parallel results hold for hazard estimation. Let N = >"%%_, d;« and T;, i =
1,..., N, be the observed failure times, where i* runs over all observations but
i only runs over observed failures. The minimizer 7, of (1.4) in H, = J, U
{R;((T;,U;),-)} shares the same asymptotic convergence rates as 7 in H (cf. Gu
(1996)). The estimate 7, = YN | ;R (T3, Ui), ) + S M dyo, () = €Te+ ¢Td

can be computed via minimizing

n
—11T(Qc + Sd) + S > / Vi« exp(€lc + ¢pld)dt + icTQc, (2.3)
n n It 2

where Q is N x N with (i, j)th entry (T3, U;) = R;(T3,Us), (T3,U;)), Sis NxM
with (i, v)th entry ¢, (T3, U;), Yi«(t) = I[x,.>¢>7,.] is the at-risk process of the i*th
observation, &;« is N x 1 with ith entry & (¢, U;+), and ¢;» is M x 1 with vth entry
¢u(t, Ui+ ). The one-step Newton update for minimizing (1.4) again satisfies (2.2)
but with the entries modified according to the modified definitions of u,(h) =
(1/n) Y%y [7 hi=Yi=e*dt and V) (h,g) = py(hg), where hi-(t) = h(t,Us) and
0+ (t) = n(t, U ). With a performance measure SKL(n,10) = [, [7(e" —e™)(n —
1) Smdtdu where S(t,u) = P(X >t > Z|U = u) is the at-risk probability and
m(u) is the density of U, the formula of f)ﬁ(n,ng) holds verbatim, up to the
entries appearing in (2.2), as a computable performance proxy for the one-step
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Newton updates in the hazard estimation setting. An argument can be found in
Gu (1994) for a singleton U, which extends readily to the general setting.

Finally come a few words on the uniqueness of the estimate. Fixing smooth-
ing parameters, (1.3) is strictly convex and has a unique solution in H,, as long as
the maximum likelihood estimate exists in J; (cf. Gu and Qiu (1993)). For (1.4),
an extra condition is needed for strict convexity, that H,, keeps its dimension on
the restricted domain U {(Z;, X;] x {U;}} (cf. Gu (1996)). This is usually not
a problem in practice. Even when (1.3) or (1.4) has a unique solution, (2.1) or
(2.3) may not have a unique minimizing c if there are replicated data which yield
duplicated &;, but the algorithm is carefully designed to take care of this; see
discussion in Gu (1993a), Appendix.

3. Algorithm

Write V;,(h) = V,(h,h). One has SKL(n,n0) = Viy(n —no) and pz(n) —
pino (1) = Viyr(n,1—m0), where i’ is a convex combination of 1 and 7y, and 1" that
of 77 and n9. Replacing " and n” by 7 in the preceding equations, one can derive a
proxy of SKL(n, no) of the form A(n,7) — 24, (1) +C(7,m0), where A(n, 1) can be
computed, C(7,10) can be dropped for comparative purposes, and the terms of
tino (1) can be estimated by sample means or cross-validated sample means. The
computable proxy fLﬁ (n,mo) for the comparison of the one-step Newton updates
from 7 is simply A(n,7)/2 — fin,(n). See Gu (1993a), Section 3 for further details
and the formulas for computing fLﬁ (n,m0)-

In a performance-oriented iteration, one tries to minimize ﬁﬁ(n, M) with
respect to the smoothing parameters where n is the one-step Newton update
from 7 satisfying (2.2), and one takes the resulting 1 as the new 7. When the
iteration converges to a fixed point, the converged 7 is clearly the minimizer 7,
of (2.1) or (2.3) with the smoothing parameters set to the converged values, and
there is no other one-step Newton update that performs better according to the
estimated performance measure fLﬁ (n,m0). Informally, the existence of the fixed
point and the convergence of the iteration depends on how parallel fLﬁ (n,mo0) of
different 7)’s are to each other, and the performance of the converged estimate
depends on how parallel the f)ﬁ(n, o) at convergence is to SKL(n, n9), as functions
of the smoothing parameters; an analytical treatment seems formidable.

The multiple smoothing parameter algorithm we will be using consists of
an initialization step and an updating step. For the initial value of 03, say 01,
one first sets §; = 1 and 6, = 0, v # 1, then invokes the single smoothing
parameter algorithm of Gu (1993a), Section 4 to obtain an automatic A, say
A1, with R; being the only penalized term, and then sets 6; = 1/A;. After
separate calculations of initial 63 in this manner, one puts all penalized terms
back together and employs the fixed 6 algorithm once more to set up for the
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updating step. Such a procedure is invariant of individual scalings of R, which
are usually arbitrary and not comparable to each other. When the penalized
terms contribute somewhat “independently” to the estimate, in the sense that
each term’s relevance/importance are not affected much by the presence of other
terms in the estimate, the relative weights chosen this way should not be too far
from the “optimal” ones.

In each iteration of the updating step, one first fixes A and 7) and updates 03
one at a time through the list, then invokes the fixed 6z algorithm to calculate
A and 7 for the next iteration. To update a certain 0g, say 01, other 63 are
fixed at their latest values and Lj 7#(n,mo) is evaluated at three different values of

0%1. a quadratic in

6,: the current value, say 6, and two adjacent values 6;1
logyo th is then fit through the three points and the minimum of the quadratic
on [logy 01 — .5, logq 61 +.5] is determined, and Ly (n,70) is evaluated once more
at the minimum; the smallest of the four evaluations gives the new 61. Note that
this is just a standard safe-guarded Newton search, with the first and second
derivatives at 6; approximated by finite differences. The order in which 6 is up-
dated could be arbitrary, but for definiteness we choose to follow the descending
order of the traces of (6gR3(X;, X;)) at the outset of each iteration. Note that
only relative values of 63 matter so a standardization procedure should follow
the 65 updating, for which we choose to set the trace of @ (cf. 2.2) to one. The
algorithm is clearly invariant of the scaling and the indexing of Rg. Convergence
is declared when the supremum change in e is within a user-supplied error limit,
where the supremum is taken over evaluations on the quadrature points and the
data points that contribute to the terms of (2.2), and the change is measured
by a combination of the absolute and relative error similar to the suggestion of
Gill, Murray and Wright (1981), Section 2.1.1. For the “inner-loop” fixed 63
iteration, an error limit in the order of 107> ~ 1079 is stringent yet affordable;
for the “outer loop” of the iteration, an error limit in the order of 1072% ~ 1073
works well in practice.

The choice of such a simple coordinate-wise updating procedure is out of the
following considerations. First, the derivatives of ﬁﬁ(n,no) with respect to the
smoothing parameters are beyond reach so the Newton method is not feasible
for the minimization of ﬁﬁ(n,ng). Second, f)ﬁ(n,ng) will change from iteration
to iteration anyway and so will the minimizing smoothing parameters, and it is
not advisable to invest too much for the minimization of flﬁ (n,7m0) in any single
iteration; this rules out the usual quasi-Newton approach because the evaluation
of ﬁﬁ(n, 7o) is costly. Drawing a very crude parallel to a standard optimization
method, the one-step Newton updates of (2.2) define a “search direction” whereas
the performance proxy fLﬁ (n,mp) drives a “line search” on the “direction”. Note
that our real objective function SKL(n,n) is beyond reach. We give up on an
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exact “line search” for its formidable cost, but the algorithm can still be effective
as long as the fixed point of the iteration remains the same.

Numerical details are not of primary interest here and hence are omitted. The
algorithm is implemented in portable RATFOR code packaged in RKPACK-II,
currently available in beta version at http://www.stat.purdue.edu/"chong/software.
html. The numerical performance of the algorithm will be discussed along with
the examples in sections to follow. Empirical results concerning the statistical
performance of the fixed point of the performance-oriented iteration relative to
the best possible performance of all 7, can be found in Gu (1993a, 1994) in
settings with a single smoothing parameter. Similar statistical performance is
expected of the method in the multiple smoothing parameter settings since the
statistical aspects of the method essentially remain the same, but similar simula-
tion studies appear formidable due to the cost of locating the best-performing 7,
with a multivariate index. Simulations of limited scale are included in the next
two sections to illustrate the absolute performance of the method.

4. Density Estimation Examples

First let us look at a data set listed in Wang (1989) concerning AIDS patients
infected by blood-transfusion. The variables are the time 7" from HIV infection to
AIDS diagnosis and the time U from HIV infection to the end of data collection,
both in months. The data set consists of 3 subsets: 34 “children” of age 1-4, 120
“adults” of age 5-59, and 141 “elderly patients” of age 60 or above. Clearly only
data with T" < U can be observed, i.e., the observations are randomly truncated.
Of interest is the estimation of the distributions of 7" and U.

Under the assumption of pre-truncation independence of T and U, the dis-
tributions of 7" and U were estimated separately in Gu (1993b) via a penalized
conditional likelihood approach. Using penalized full likelihood with multiple
smoothing parameters, one may also estimate the distributions of T" and U simul-
taneously. As an illustration, we conduct the analysis for the “elderly patients”
and compare the results with those in Gu (1993b).

The pre-truncation domain was chosen to be [0,100]? which covered all the
observations. The domain to use in (1.3) was the triangle X' = [0,100]2N{t < u}.
The domain [0,100]? was mapped onto [0,1]2. Employing the tensor product
spline construction of Section 2, we used a null space J, = {¢1,d2, 03} =
{(t =.5),(u—.5),(t —.5)(u—.5)} with M = 3 dimensions and an RK R; =
Os.cRsc+ O0csRes + 05 nRsn + Or sRr s + 05 sRs s with 5 terms. Letting z =
(t,u), the fit n(z) = Y21 ¢ (x)d, + S0y Ry(Xi,x)c; decomposes into n(x) =
9:(t) + g,(u) + gt’u(t,u), where g, = dig1(z) + il Os.cRso(Xi, 2)ci, g, =
daga(z) + 3271 O sRe s(Xi, x)ei, and g, ,, = d3pa(z) + D27 (Osn R n(Xiy w) +
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Or sRr s(Xi,x)+0s sRs (X, x))c;. Pre-truncation independence is characterized
by ¢,, = 0.

T
0 20 40 60 80 100

time from infection to data collection (months)

time from infection to diagnosis (months)

Figure 4.1. Blood-Transfusion Data of “Elderly Patients”. Dashed contours
are density estimate without pre-truncation independence. Solid contours are
density estimate with pre-truncation independence. Marginal densities of the
independence model are plotted as solid lines on their axes; marginals esti-
mated by penalized conditional likelihood are superimposed as long-dashed
lines.

The estimated density with pre-truncation independence is contoured in Fig-
ure 4.1 as solid lines, the data are superimposed as circles, and the domain X is
surrounded by the dotted lines. The integrations were calculated by summation
over a 50 x 50 equally spaced grid restricted to the triangle domain, with the grid
points on the diagonal carrying half weight. The marginal densities are superim-
posed in the blank space on their corresponding axes, where the solid lines are
estimates based on full likelihood calculated here and the long-dashed lines are
estimates based on conditional likelihoods taken from Gu (1993b). The heights
of the solid and long-dashed lines are adjusted so the areas under them are the
same. It is clear that the two sets of estimates of the marginals agree well in the
light truncation areas but depart a bit in the heavy truncation areas.

The density estimate without pre-truncation independence is also super-
imposed in Figure 4.1 as dashed lines. To assess the feasibility of pre-
truncation independence, one possible diagnostic is the log likelihood ratio

Ml og(f1(X;)/ f2(X;)) where f; and f, are the estimates without and with
pre-truncation independence. In lack of parametric model assumptions for the
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systematic part, however, such a score no longer follows the usual x? sampling
distribution under the “null”, and due to the automatic smoothing parameter se-
lection, such a score may even turn out to be negative occasionally. Nevertheless,
the score is informative when it is “too small”, say less than 1.9 < X.205,1 /2, or
“t00 big”, say larger than 10 > x%;5 19/2, where x2 , is the (1 — a)th percentile
of x2. The score, however, had value 7.243 in the grey area for the current
example, so other means was needed. A closer look at the components of the
estimate revealed that d3¢s dominated the interaction term in log f1, and after
calculating a new fit f3 by setting ds = 0 and allowing only penalized interaction
terms in the estimation, we observed Y2141 log(f;(X;)/f3(X:)) = .179, so the
interaction appeared “real” albeit of minor magnitude. One may conclude that
the independence model bears a slight lack of fit.

The performance-oriented iteration implemented in the algorithm operates
on mathematically different performance proxies ﬁﬁ(n, no) at different 7, so con-
vergence is not guaranteed. Nevertheless, divergence rarely occurs in our ex-
periments with a single smoothing parameter (cf. Gu (1993a, 1993b, 1994)).
Multiple smoothing parameters introduce greater flexibility, and one may expect
a bit more difficulties. For the blood-transfusion data, however, the algorithm
converged in all cases without incidence. On an IBM-RS6000, a run for the
n = 141 blood-transfusion example with 5 63’s took about 30 cpu minutes.

To empirically check the statistical performance of the estimation tools pro-
posed, we conducted a small scale simulation study, which however is computa-
tionally expensive. Truncated data X = (T, U) were generated on [0, 1]2N{t < u}
with T' ~ fo and U ~ fy, independent of each other before truncation, where
fo is the half-half mixture of N(.3,.01) and N(.7,.01) truncated to [0,1]. One
hundred replicates of samples of size n = 200 were generated. Automatic fits
were calculated for each of the replicates under two different formulations as in
the blood-transfusion example, and the log likelihood %% log f (X;) and the
symmetrized Kullback-Leibler SKL(7,19) were collected for each of the fits.

Without pre-truncation independence, call it the dependence model, the it-
eration converged within 15 outer-loop steps on 90 of the replicates. For the 10
cases on which the iteration did not converge, estimates were still available from
the last iterates, and it is not surprising to notice that these fits are rather poor
as indicated by the large SKL values; see Figure 4.2 below. With pre-truncation
independence, call it the independence model, the iteration converged within 15
outer-loop steps on 87 of the replicates, of which 86 are among the 90 replicates
on which the dependence model iteration converged.
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Figure 4.2. Summary of Simulation Results. Left: SKL’s of independent and
dependent fits. Center: SKL’s of unrestricted and restricted independent fits.
Right: A “Q-Q plot” of log likelihood ratio.

The diverged cases are virtually trapped to interpolation at certain 6z com-
binations. When this happens, however, one still has the choice of using other
t’s, say the starting values, unless the inner iteration diverges on the outset at
the starting 03 values. Of the 10 diverged dependence replicates, none was stuck
at the starting 0z values. Of the 13 diverged independence replicates, only 2 were
stuck at the starting 63 values. We also calculated fits with starting 63 values for
the diverged cases, call them backup fits, and recorded the corresponding SKL’s.

The SKL’s of the fits under the two models are plotted against each other
in the left frame of Figure 4.2, where circles are cases on which both iterations
converged and triangles are cases on which at least one iteration did not converge.
The backup fits for diverged cases are also superimposed as crosses. The star
marks the best fit under the independence model and the plus marks the worst of
the converged fits under the independence model. The best and the worst of the
converged fits under the independence model are contoured in the two frames of
Figure 4.3 as solid lines, with the test density superimposed as dotted lines and
data as circles; the estimated and test marginals are plotted in the blank space
as solid and dotted lines, respectively.

Besides the unrestricted independent fits with free 81 and 05, we also cal-
culated restricted independent fits with #; = 65. The SKL’s of the restricted
independent fits are plotted against those of the unrestricted fits in the center
frame of Figure 4.2, where the circles mark cases on which both iterations con-
verged, triangles mark cases on which the unrestricted iteration did not converge,
and the stars mark cases on which both of the iterations did not converge; the
backup fits for the diverged cases are superimposed as crosses. The two test
marginals are identical, so it is reassuring to see that the restriction leads to bet-
ter estimates. Such practice is only practical on simulated data, but the exercise
is indicative of the fact that the incorporation of extra information often yields
performance improvement.
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Figure 4.3. Best and Worst Independent Fits. Density estimates are in solid
contours and test density in dotted contours. Circles are data. KEstimated
and test marginal densities are plotted as solid and dotted lines on their axes,
respectively.

The right frame of Figure 4.2 plots the ordered log likelihood ratio of the 86
“good” cases, say l(;), versus the (i—.5)/86 x 100%-th percentile of x3. Note that
we are not plotting the “x?-statistic” 2l(;) but one-half of it. Several similar plots
with different multiples of the log likelihood ratio and different degrees of freedom
for the y? percentiles have been looked at, and the one presented appears to be
the “closest” to the 45 degree line. The first 5 [;)’s are negative but very close
to 0. It is clear that the log likelihood ratio does mot follow a x? distribution.
We do not yet know how to properly calibrate it, especially in the gray area.
Hypothesis testing with a “nonparametric null” has not been well formulated
yet, but deserves major research effort.

5. Hazard Estimation Examples

The first example we will be looking at is the Stanford heart transplant data
listed in Miller and Halpern (1982). Recorded were survival or censoring times of
184 patients after (the first) heart transplant (in days), their ages at transplant,
and a certain tissue type mismatch scores for 157 of the patients. There were
113 recorded deaths and 71 censorings. There is no truncation in the data, i.e.,
Z; = 0. Due to the insignificance in the analyses by Miller and Halpern (1982)
and by others, and also due to the missing values, we first discard the tissue type
mismatch score in the analysis.

Let T be time after transplant and U be age at transplant. The time axis was
transformed by t* = ¢1/2 to make the survival/censoring times more evenly scat-
tered, and then the hazard was estimated on (t*,u) € [0,61] x [10,65] =7* x U
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which covered all the observations. From the estimated hazard on the trans-
formed time axis ¢"*" %) = —dlog S(t*,u)/dt*, the hazard on the original time
axis is simply e (dt* /dt) = e”(tl/Q’“)/(Ztl/g). The domain 7* xU was mapped
onto [0,1]? for calculation using the same tensor product spline construction as
in the density estimation examples but with the constant term included.

The fitted e”*"*) with interaction is contoured as dashed lines and that
without interaction (proportional hazard, PH henceforth) as solid lines in the
left frame of Figure 5.1, where the data are superimposed as circles (deceased) or
crosses (censored). To assess the plausibility of hazard proportionality, the log
likelihood ratio 3153 {8 (ny — 0, ) (X4, Us) —fOXi(e%(t’Ui) —entUD)dtY (cf. 1.4) was
calculated to be 3.376, which led to a “y2-statistic” 6.65, where 7, is the PH fit
and 7, is the fit with interaction. Once again we are in the gray area. Looking at
the “p-values” .010, .036, and .084 of 6.65 treated as x2, v = 1,2, 3, one however
may conclude that the interaction is at most marginally significant, and in turn
hazard proportionality looks plausible. The “base hazard” on the original time
axis 690+gt*(t1/2)/ (2t'/2) and the age multiplier e« in the proportional hazard
model share the right frame of Figure 5.1 as the solid line on the solid axes and
the dotted line on the dotted axes, respectively. It can be seen that beyond
the first 250 days or so highly hazardous period the risk remains rather stable
through the rest of the time axis, with the lowest risk at about 750 days after
transplant. The age effect is virtually uniform for those under 40 but the risk
takes off quickly beyond age 45.

0.005

age at transplant
0.003

0.0 0.001

age at transplant
10 20 30 40 50 60

10 20 30 40 50 60

0 10 20 30 40 50 60 0 1000 2000 3000
survival time after transplant (days*1/2) survival time after transplant (days)
Figure 5.1. Stanford Heart Transplant Data. Left: e?(!"-*) without inter-
action (solid lines) and with interaction (dashed lines); circles are observed
deaths and crosses censorings. Right: “Base hazard” on the original time
axis edot9:+ (t''*) /(241/2) and age multiplier €% of the proportional hazard
fit.

To double check the relevance of tissue type mismatch scores, we also tried
a few proportional hazard models with covariates U = (V, W) = (age, mismatch)
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using the 157 complete data points. Fitted were models of forms n (t*, v, w) =
9p + Gpe + G, M2t 0,w) = gy + g + gy, + Gy, and N3(E7, v, W) = gy + G + Gy +
9w T G- The log likelihood ratios were ST (ny — 1y ) (X5, Uy) —fOXi (ema(tU:) —
entU)dry = 348 and Y151{6i(ny — no)(Xs, Ui) — [+ (€ (W0 — em(tU)dr}y —
1.012, so it appeared appropriate to discard the tissue type mismatch scores.
Detailed formulations are not of primary interest and hence are omitted. See,
e.g., Gu and Wahba (1993) for a general discussion concerning the construction
of tensor-product splines.

All iterations in the Stanford heart transplant data example converged with-
out incidence. Entries of (2.2) for hazard estimation have multiple terms of
integrals as seen in (2.3), so the calculation is generally slower than that for
density estimation. For example, the n = 184 fit with interaction took 50 cpu
minutes on an IBM-RS6000 and the n = 184 proportional hazard fit took 29.

We now conduct a simulation study to assess the performance of the tech-
nique for hazard estimation. Data of size n = 200 were generated, where
we took Uyij_y4r = (5 —5)/50, j = 1,...,50, k = 1,...,4. The life time
T|U was generated from the distribution with a proportional hazard function
e = 24t% exp(4(u — .5)?), the censoring time C from an exponential den-
sity e=¢/3, and the truncation time Z from an exponential density e %%, in-
dependent of each other. Using the same tensor-product spline construction,
automatic fits with and without interaction were calculated on 100 replicates.
The log likelihood S2%{8;7(X;, Us) — fz)fi(eﬁ(t’Ui))}, the symmetrized Kullback-
Leibler SKL(f) — no) = f,, J7(e" — e™)(f — no)Sm, and a weighted mean square
error MSE(9) — no) = [, J7(1 — no)2e™Sm were collected for all fits, where
S(t,u) = P(X >t > Z|U = u) and m(u) were substituted by their respec-
tive empirical versions.

For the PH model, the iteration converged within 15 outer-loop steps on 98
replicates and diverged towards interpolation on the other 2. With interaction,
the iteration converged within 15 outer-loop steps on 98 replicates, diverged
towards interpolation on 1 replicate, and was zigzagging after 15 outer-loop steps
on 1 replicate.

Plotted in the left and center frames of Figure 5.2 are the SKL.’s and MSE’s
of the PH fits versus those of the fits with interaction, where the circles, the star,
and the plus are 97 “good” cases and the triangle is the case with converged PH
fit but zigzagging interaction fit. The 2 diverged PH fits are not included. The
best and the worst PH fits marked by the star and the plus in the left and center
frames of Figure 5.2 are plotted in the two frames of Figure 5.3 in the same
manner as in the right frame of Figure 5.1. Similar to the right frame of Figure
4.3, the right frame of Figure 5.2 shows plots of the log likelihood ratios versus
the (i — .5)/98 x 100th-percentiles of x2Z for the 98 cases plotted in the left and
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center frames, where 7 negative log likelihood ratios are truncated to 0. Again
the log likelihood ratio does not follow a x? distribution, and inference can be
drawn only for “extreme” values.

o
& - 1 B o
=] . P .

15

0.10
B,

Log Likelihood Ratios
10

0.0
0.0
0

SKL of non PH Fits
0.10
MSE of non PH Fits

0.0 0.10 0.20 00 010 020 0 5 10 15 20
SKL of PH Fits MSE of PH Fits Percentiles of Chisq_6
Figure 5.2. Summary of Simulation Results. Left: SKL’s of PH fits and fits

with interaction. Center: MSE’s of PH fits and fits with interaction. Right:
A “Q-Q plot” of log likelihood ratio.
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Figure 5.3. Best and Worst PH Fits. Estimates of base hazard are in solid
lines on solid axes and those of covariate effect in dotted lines on dotted axes.
Corresponding components of test hazard are in long and short dashed lines.

6. Discussion

In this article, structural nonparametric estimation of multivariate probabil-
ity densities and covariate dependent hazard functions is implemented through
tensor product splines. Examples are presented to illustrate potential applica-
tions of the technique in data analysis. Although demanding in memory and ex-
ecution time, the algorithm is generic to fit various model configurations and the
data-driven multiple smoothing parameter selection makes the estimation fully
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automatic. The code comprises part of a collection of RATFOR routines for pe-
nalized likelihood density and hazard estimation by the name RKPACK-II, avail-
able in beta version at http://www.stat.purdue.edu/ chong/software.html,
as a sequel to RKPACK, a collection of routines for smoothing spline regression.

In the existing literature on multivariate nonparametric density estimation,
little attention is paid to the exploration/exploitation of independence structures
of random variables and no means seems available to allow for truncated domains.
The blood-transfusion example of Section 4 shows how these aspects may be
incorporated in estimation using tensor product splines. Tensor product estimate
respects qualitatively different axes and the automatic selection of smoothing
parameters makes the estimation invariant with respect to axis scaling. On
multidimensional domains with comparable scaling but not so interpretable axes
such as geographical maps, rotation invariant estimation using thin-plate splines
would be more appropriate.

Generalizations of Cox’s (1972) partial likelihood proportional hazard model
have received much attention in recent literature. Cast as special cases of models
available through tensor product splines, O’Sullivan (1988b) set Gty = 0 while
Zucker and Karr (1990) restricted g, € Hcr and g;,, € Hzrr @ Hsx, and both
treated the “base hazard” e%"9 as nuisance and employed penalized partial
likelihood to estimate the remaining terms. Gray (1992) illustrated the use of
regression splines in penalized partial likelihood for fitting these models, with the
amount of smoothing tuned via a certain definition of “degrees of freedom”. In
comparison, all terms are estimated simultaneously via penalized full likelihood in
this article, and the amount of smoothing is tuned automatically according to the
estimated performance proxies of the fits. Kooperberg et al. (1995) implemented
an adaptive tensor product linear regression spline approach to the estimation
of covariate dependent hazard functions, where the ANOVA decomposition is
implicit.

For density estimation, the development represents a modest step forward
towards nonparametric estimation of graphical models (cf. Whittaker (1990)).
Related work on conditional density estimation can be found in Gu (1995). For
hazard estimation, a further topic is the incorporation of a time dependent co-
variate, on which a theory has yet to be developed.

If the observed (T,U) center around some monotone curve in 7 x U, the
estimated terms in an ANOVA decomposition may suffer from an identifiability
problem called concurvity. If T and U are independent for distribution data or
if hazard proportionality holds for survival data, the estimated interaction in
an ANOVA decomposition should be negligible. This calls for the assessment
of the practical “significance” of the estimated ANOVA terms; some informal
analysis of this nature has been explored in the examples, such as the use of
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the log likelihood ratio. A systematic treatment of these issues however poses
a challenging problem by itself, and is beyond the scope of this article. Some
diagnostic tools for regression can be found in Gu (1992), which may help to
provide heuristics for similar development in density and hazard estimation.

Numerically, the execution time for each iteration of the algorithm is of
the order O(kn?), where k is the number of 05’s and n is the number of ob-
servations. This poses practical limitations on the size and complexity of the
problems that can be feasibly solved using the techniques developed. From a
statistical point of view, the larger the k is the less reliable f}ﬁ(n, no) tend to be
as proxies of SKL(n,ng) (cf. Section 3), so one has to impose some structures for
high dimensional problems; this is somewhat related to the very curse of dimen-
sionality. For very large n, one may calculate penalized likelihood estimates of
the form n = 3>, & + M | d, ¢, with execution time of order O(km?), where
{&, i =1,...,m} is a subset of {R;(Xj;,-), i =1,...,n}. Details await further
study.
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