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Abstract: This paper studies the sensitivity of posteriors to local and global per-

turbations of conjugate, shrinkage and sparsity priors. The perturbations are

natural, geometrically motivated, and generalize the linear perturbation studied

in Gustafson (1996). A geometric approach is also employed for optimizing the

sensitivity direction function, which is defined on a convex space with non-trivial

boundaries. The robustness of multi-dimensional models with shrinkage and spar-

sity priors is studied through simulation and through two real data sets; a benign

breast disease study, and an adolescent placement study. Our results illustrate

that there can exist significant sensitivity of the covariate coefficient estimates to

perturbations of the independent weakly informative prior distributions.

Key words and phrases: Bayesian sensitivity, local mixture model, perturbation

space, smooth manifold, shrinkage and sparsity priors.

1. Introduction

Statistical analyses are often performed using assumptions which are not di-

rectly validated. Hence, there is always interest in investigating the degree to

which statistical inference is sensitive to perturbations of the model and data.

Specifically, in a Bayesian context, when priors have been chosen, the sensitivity

of the posterior to prior choice is an important issue. A rich literature on sensi-

tivity to perturbations of data, prior and sampling distribution exists, see for ex-

ample: Cook (1986); McCulloch (1989); Lavine (1991); Ruggeri and Wasserman

(1993); Blyth (1994); Gustafson (1996); Critchley and Marriott (2004); Linde

(2007); Zhu et al. (2007), Zhu, Ibrahim and Tang (2011), Zhu, Ibrahim and Tang

(2014) and Kurtek and Bharath (2015).

In this paper we consider both local and global sensitivity with respect to

perturbations of a conjugate base prior – still the most common case in prac-

tice. We also look at perturbations of weakly informative regularity priors in the

multi-dimensional case. Our method is designed to have four important proper-

ties. Firstly, the perturbation spaces have a structure that allows the analyst to
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select the generality of the perturbation in a clear way. Secondly, we want the

space to be computationally tractable, hence we focus on convex sets inside lin-

ear spaces which have a clear geometric structure. Thirdly, we want, in order to

allow for meaningful comparisons, the spaces to be consistent with elicited prior

knowledge. Thus if a subject matter expert indicates that a prior moment or

quantile has a known value – or if a constraint such as symmetry is appropriate

– then all perturbed priors should be consistent with this information. Finally,

we are going to consider perturbations which are mixtures over standard fami-

lies. The motivation here is that mixing allows us to explore if the analyst has

been over-precise in the specification of the prior by allowing for unthought of

heterogeneity. In general, spaces of mixture models are complex but we build on

the work of Maroufy and Marriott (2016a) which shows how discrete mixtures of

local mixture models can construct a very flexible, but tractable, space, see §2.1.

Sensitivity analysis with respect to a perturbation of the prior, which is the

focus of this paper, is commonly called robustness analysis (Insua and Ruggeri

(2000)). In robustness analysis it is customary to choose a base prior model and

a plausible class of perturbations. The influence of a perturbation is assessed

either locally, or globally, by measuring the change in certain features of the pos-

terior distribution. For instance, Gustafson (1996) studies linear and non-linear

model perturbations, and Weiss (1996) uses a multiplicative perturbation to the

base prior and specifies the important perturbations using the posterior density

of the parameter of interest. Common global measures of influence include diver-

gence functions (Weiss (1996)) and relative sensitivity (Ruggeri and Sivaganesan

(2000)).

In local analysis, the rate at which a posterior quantity changes, relative to a

change in the prior, quantifies sensitivity (Gustafson (1996); Linde (2007),Berger,

Rios Insua and Ruggeri (2000)). Gustafson (1996), which we follow closely, ob-

tains the direction in which a certain posterior expectation has the maximum

sensitivity to prior perturbation by considering a mapping from the space of per-

turbations to the space of posterior expectations. In Linde (2007), the Kullback-

Leibler and χ2-divergence functions are utilized for assessing local sensitivity

with respect to a multiplicative perturbation of the base prior or likelihood model.

They approximate the local sensitivity using the Fisher information of the mixing

parameter under additive and geometric mixing. Non-parametric Fisher infor-

mation is also used in Kurtek and Bharath (2015) to give a geometric framework

for sensitivity analysis with respect to likelihood and prior perturbation.

The approach of this paper to defining the perturbation space extends the
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linear perturbations studied in Gustafson (1996) in a number of ways. We do

not require the same positivity condition, rather use one which is more general

and returns naturally normalized distributions. Further, our space is highly

tractable, due to its intrinsic linearity and convexity. Finally it is clear, with our

formulation, how to remain consistent with prior information which may have

been elicited from an expert. The cost associated with our generalization is the

existence of boundaries defined by (2.3) in Section 2.1 and having to use the

methods developed to work with it. We also can compare our method with the

geometric approach of Zhu, Ibrahim and Tang (2011) which uses a manifold based

approach. Our, more linear approach, considerably improves interpretability and

tractability while sharing a similar underlying geometric foundation.

The paper is organized as follows. In Section 2, the perturbation space is

introduced and its properties are studied. Sections 3.1 and 3.2 develop the theory

of local and global sensitivity analysis. Section 3.3 describes the geometry of the

perturbation parameter space and proposes possible algorithms for quantifying

local and global sensitivity. Section 3.4 presents an illustrative example eluci-

dating how experts’ knowledge may be incorporated in the prior perturbation.

In Section 4 the sensitivity of covariate coefficients in multi-dimensional models

with respect to perturbations of weakly informative priors is studied though two

real data examples: a benign breast disease study and an adolescent placement

study. The proofs are sketched in the Appendix.

2. Perturbation Space

2.1. Theory and geometry

This paper looks at perturbations of a conjugate and sparsity priors which

are generated by a mixing mechanism. Specifically, suppose the parameter µ has

a prior π0(µ; θ), where θ is an, analyst selected, hyperparameter. We perturb by

looking at priors which are mixtures over θ, i.e.∫
π0(µ; θ)dQ(θ).

In this formulation we can think of the distribution the choice of Q as parametris-

ing the perturbation space.

To allow full generality of the mixture structure it is tempting, following

Lindsay (1995), to allow Q to be any finite discrete distribution with an unknown

number of components. i.e.
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π0(µ; θ)dQ(θ) =

N∑
i=1

ρiπ0(µ; θi), (2.1)

where ρi > 0, and
∑N

i=1 ρi = 1. In this case the perturbation space would be

‘parameterised’ by N , the number of components, (θ1, . . . , θN ), the components,

and (ρ1, . . . , ρN ), the mixing weights. However, this parameterization has many

problems in implementation. Specifically, it is poorly identified and has complex

boundaries.

A key example of the identification problems is the case when all the mixing

components are close to one another. Here there are many ways of representing

essentially the same mixing distribution, see Maroufy and Marriott (2016a). We

think of this case, where all mixing components are close to one another, as a

local perturbation of the prior. Having a single set of closely grouped components

– or the much more general situation where Q is any small-variance distribu-

tion – is exactly the situation which motivated the design of the local mixture

model (LMM), see Marriott (2002), and Anaya-Izquierdo and Marriott (2007a).

The intuition is that for a local perturbation all the mixing component distri-

butions will lie close to a low dimensional linear space. This space is spanned

by derivatives of the prior and parameterised with a small number of identified

parameters.

Definition 1. For a density function, f(y; θ), belonging to the exponential fam-

ily, the local mixture model, of order k, centred at ϑ, is defined as

gϑ(y;λ) = f(y;ϑ) +
∑k

j=1
λjf

(j)(y;ϑ), (2.2)

where λ := (λ1, . . . , λk) ∈ Λϑ, f (j)(y;ϑ) = ∂jf(y; θ)/∂θj |θ=ϑ. The parameter

space,

Λθ0 =

{
λ|f(x; θ0) +

∑k

j=1
λjvj(x; θ0) ≥ 0, for all x

}
(2.3)

is convex with a boundary determined by the non-negativity condition in (2.2).

It is shown in Marriott (2002) and Anaya-Izquierdo and Marriott (2007a)

that the local mixture gives an excellent way of parameterising this class of local

perturbations by simply approximating expression (2.1) by (2.2). The parameters

of (2.2) are well identified, however the ‘cost’ of this representation is working

with the boundary of Λϑ, see Maroufy and Marriott (2015).

Example 1. In Section 3.4 we look at an example where a sample of size n = 15

is taken from a normal model N (1, 1), and the base prior, for the mean, is
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N (2, 1). For LMMs of order k = 4, Maroufy and Marriott (2016a) show that

for any δ > 0 there exist an interval I = [ϑ − ε1(δ, ϑ), ϑ + ε2(δ, ϑ)] such that∣∣∫
I f(y; θ)dQ− gϑ(y;λ)

∣∣ < δ, for all x. Here I is interpreted as a domain for

the mixing distribution Q, for which the LMM model gϑ(y;λ) can approximate

the mixture model
∫
I f(y; θ)dQ up to an arbitrary small error, δ. They also give

ways to calculate I for different exponential family distribution. In particular,

for a normal distribution the approximation error δ depend only on σ, and for

a fixed variance σ they give the interval I = [ϑ − 0.6σ, ϑ + 0.6σ]. Then, for

the base prior N(2, 1) it is easy to show that the k = 4 local mixture model

will cover all perturbations of the prior which are mixtures over N (µ, 1), when

the mixing distribution has support inside [1.4, 2.6], see Maroufy and Marriott

(2016a, Example 5).

In Zhu, Ibrahim and Tang (2011, Definition 1) a perturbation manifold is

defined to be a triplet consisting of the space of perturbationsM, a proper metric

closely related to Fisher Information, and the corresponding Levi-Civita connec-

tion. Examples of this perturbation space include an additive ε-contamination

class and can include linear and non-linear perturbation schemes. In our ap-

proach we relax the assumption that the perturbation space is a manifold, since

we include the boundaries. These can be non-smooth and have singularities, see

Maroufy and Marriott (2015). Furthermore, the linear structure on our spaces

agree with the, so-called, mixture connection of Amari (1990), which were shown

to defined an affine structure in measure space, Marriott (2002). Our pertur-

bation spaces are convex subsets of this affine space. Thus the emphasis is on

convex geometry rather than differential geometry.

While local mixtures, and hence local perturbations, have very attractive

inferential properties – unlike general mixture models – they are restrictive in

the sense that they are only ‘local’. This restriction can be completely removed –

while still keeping attractive inferential properties – by considering finite mixtures

of local mixtures, see for example Maroufy and Marriott (2016a).

Definition 2. Let θl be a set of user selected, and suitably separated, grid-points

as defined in Maroufy and Marriott (2016a), then a finite mixture of local mix-

tures is defined as the convex combination

L∑
l=1

ρlh(x;λl, θl),

where λl ∈ Λθl,
∑L

l=1 ρl = 1.
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In this paper, for simplicity, we mostly consider the single component LMM

case but point out that the generalisation of Definition 2 is always possible.

2.2. Prior perturbation

Suppose that the base prior model is π0(µ; θ), the probability (density) func-

tion of a natural exponential family with the hyper-parameter θ.

Definition 3. The local perturbed prior model corresponding to π0(µ; θ) is de-

fined by

π(µ, λ; θ) := π0(µ; θ) +
∑k

j=1
λjπ

(j)
0 (µ; θ)

= π0(µ; θ)

{
1 +

∑k

j=1
λjqj(µ, θ)

}
, λ ∈ Λθ, (2.4)

where λ = (λ1, . . . , λk) is the perturbation parameter vector, and qj(µ, θ) =

(π
(j)
0 (µ; θ))/(π0(µ; θ)) are polynomials of degree j.

In Definition 3, π0 is perturbed linearly, in a way similar to, but distinct

from, the linear perturbation

τ(·, π0, u
∗) = π0(·) + u∗(·), u∗(·) > 0 (2.5)

studied in Gustafson (1996), but with a different positivity condition, and is, as

we shall show, very interpretable for applications. Definition 3 can also be seen

as the multiplicative perturbation model π(µ, λ; θ) = π0(µ, ; θ)h∗(µ;λ, θ) studied

in Linde (2007).

2.3. Sensitivity analyses

We consider two different approaches for evaluating sensitivity with respect

to a perturbation: worst case and average. The first, which is the more con-

ventional approach, maximizes an objective function with respect to the multi-

dimensional perturbation parameter. The function characterizes the discrepancy

between the base model and each feasible perturbed model in the perturbation

space. We exploit this approach both for assessing local and global sensitivity.

Our local sensitivity (Section 3.1) is derived based on maximizing the directional

derivative of the discrepancy function in a similar way to Gustafson (1996). For

global sensitivity (Section 3.2) we characterize the discrepancy between the base

and perturbed models via two different distance measures; the difference between

the posterior means, and the Kullback-Leibler divergence function between the

posterior predictive distributions.

For the averaging approach, see Section 4, we treat the perturbation param-



ROBUSTNESS IN CONJUGATE AND SPARSITY MODELS 585

eters as nuisance parameters and learn about them jointly with the parameters of

interest. We use a Markov Chain Monte Carlo method for the estimation proce-

dure which is shown to be efficient and straightforward to implement because of

the tractable convex geometry of our perturbation space, Maroufy and Marriott

(2016a). This approach is highly efficient for dealing with sensitivity analyses in

multi-dimensional models, see Section 4.

3. Measuring Sensitivity

3.1. Directional sensitivity

In this section we study the influence of local perturbations, defined inside the

perturbation space, on the posterior mean. Following Gustafson (1996) we obtain

the direction of sensitivity using the Fréchet derivative of a mapping between

two normed spaces. Throughout the rest of the paper we denote the sampling

density and base prior by f(x;µ) and π0(µ; θ), respectively, and x = (x1, . . . , xn)

represents the vector of observations.

Lemma 1. Under the prior perturbation (2.4), the perturbed posterior model is

πp(µ, λ|x; θ) =
π0
p(µ|x, θ)
ξ(λ, θ)

{
1 +

∑k

j=1
λjqj(µ, θ)

}
, (3.1)

with λ ∈ Λθ, ξ(λ, θ) := 1+
∑k

j=1 λjE
0
p [qj(µ, θ)] > 0, where π0

p(µ|x, θ) and E0
p(·|x)

are the posterior density and posterior mean of the base model.

The following lemma characterizes the lth moment of the perturbed posterior

model. Note that, throughout the rest of the paper, for simplicity of exposition,

we suppress the explicit dependence of ξ, qj , π
0
p and πp on θ.

Lemma 2. The moments of the perturbed posterior distribution are given by

Ep(µ
l|x, λ) =

1

ξ(λ)

{
E0
p(µl) +

∑k

j=1
λjA

l
j(x)

}
, (3.2)

where λ ∈ Λθ and Alj(x) = E0
p(µlqj(µ)|x).

To quantify the magnitude of the perturbation we exploit the size function

as defined in Gustafson (1996), i.e., the Lp norm of the ratio u∗/π0, for p < ∞,

with respect to the measure induced by π0. Accordingly, the size function for

u(µ) =
∑k

j=1 λjπ
(j)
0 (µ; θ) is

size(u) =

[
Eπ0

(∣∣∣∣∑k

j=1
λjqj(µ)

∣∣∣∣)p]1/p

,
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which, (i) is a finite norm and (ii) is invariant with respect to change of the dom-

inating measure and also with respect to any one-to-one transformation of the

sample space. Clearly, size(u) is finite if the first k + p moments of π0(µ, θ)

exist. In addition, property (ii) holds by use of the change of variable for-

mula and the fact that for any one-to-one transformation m = ν(µ) we have

π̄
(j)
0 (m, θ)/π̄0(m, θ) = π

(j)
0 (µ, θ)/π0(µ, θ).

For a mapping T : U → V, where U and V are, respectively, the perturbations

space normed with size(·), and the space of posterior expectations normed with

their absolute value, the Fréchet derivative at u0 ∈ U is defined by the linear

functional Ṫ (u0) : U → V satisfying

‖T (u0 + u)− T (u0)− Ṫ (u0)u‖V = o(‖u‖U ),

in which Ṫ (u0)u is the rate of change of T at u0 in direction u. Let Cov0
p(·, ·) be

the posterior covariance with respect to the base model. Theorem 1 expresses

Ṫ (u0)u as a linear function of λ, at u0 = 0 which corresponds to the base prior

model.

Theorem 1. For the perturbation in Definition 3, Ṫ (0)u is a linear function of

the perturbation parameter λ obtained by the following equation

ϕ(λ) =
∑k

j=1
λjCov

0
p (µ, qj(µ)), λ ∈ Λθ. (3.3)

Section 3.3 illustrates how this function is maximized with respect to the

perturbation parameter.

3.2. Global sensitivity

Here we use two commonly applied measures of sensitivity – the posterior

mean difference and Kullback-Leibler divergence function – for assessing the

global influence of a prior perturbation on the posterior mean and on predic-

tion, respectively. The following theorem characterizes the difference between

the posterior mean of the base and perturbed models as a function of λ.

Theorem 2. Let Ψ(λ) = Ep(µ|x, λ) − E0
p(µ|x) represent the difference between

the posterior expectations, then

Ψ(λ) =
1

ξ(λ)
ϕ(λ), λ ∈ Λθ. (3.4)

The function in (3.4) behaves in a intuitively natural way, for as λ → 0 we

have ξ(λ)→ 1, and consequently Ψ(λ) behaves locally in a similar way to ϕ(λ).

To assess the influence of the prior perturbation on prediction, we also quan-
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tify the change as measured by the divergence in the posterior predictive distribu-

tion. As an illustrative example, suppose the sampling distribution and the base

prior model are respectively N (µ, σ2) and N (θ, σ2
0). The posterior predictive

distribution for the base model is N (µπ, σ
2
π + σ2), where

µπ =
θσ2 + nσ2

0x̄

nσ2
0 + σ2

, σ2
π =

σ2σ2
0

nσ2
0 + σ2

.

Lemma 3. The posterior predictive distribution for the perturbed model is

gp(y) =
1

ξ(λ)

{
g0
p(y) + Γ

∑k

j=1
λjE

?[qj(µ)]

}
(3.5)

in which, g0
p(y) is the posterior predictive density for the base model, Γ is a func-

tion of (y, x, n, θ0, σ
2
0, σ

2) and E?(·) is the expectation with respect to a normal

distribution.

For probability measures P0 and P1, with the same support, S, and densities

g0
p(·) and gp(·), respectively, the Kullback-Leibler divergence functional is defined

by,

DKL(P0, P1) =

∫
S

log

[
g0
p(y)

gp(y)

]
g0
p(y)dy. (3.6)

Theorem 3. Kullback-Leibler divergence between g0
p(·) and gp(·), as a function

of λ ∈ Λθ is

DKL(λ) =

∫
S

log
[
g0
p(y)

]
g0
p(y)dy + log[ξ(λ)]

−
∫
S

log

(
g0
p(y) + Γ

∑k

j=1
λjE

?[qj(µ)]

)
g0
p(y)dy. (3.7)

In Section 3.3 we discuss the maximization process of the above discrepancy

functions with respect to the perturbation parameter.

3.3. Optimising and estimating the perturbation parameter

Throughout the rest of this paper we let k = 4, as it gives a perturbation

space which is flexible enough for our analysis and, as has been illustrated in

Marriott (2002) , simply increasing the order of local mixture models does not

significantly increase flexibility. Nevertheless, all the results and algorithms can

be generalized to higher dimensions. This section outlines the theoretical frame-

work for obtaining λ in the maximization method.

To obtain the values of λ which finds the most sensitive local and global

perturbations, as described in Section 1, we apply an optimization approach to
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the functions (3.3), (3.4) and (3.7). We have that ϕ(λ) is a linear function of λ on

the convex space Λθ which represents the directional derivative of the mapping

T at λ = 0. Thus, for obtaining the maximum direction of sensitivity, called

the worst local sensitivity direction in Gustafson (1996), we need to maximize

ϕ(λ) over all the possible directions at λ = 0, but restricted by the boundary

of Λθ. However, Ψ(λ) and DKL(λ) are smooth non-linear objective functions on

the convex space Λθ, for which we propose a suitable gradient based constraint

optimization method that exploits the geometry of the parameter space. By

Definition 1, for a fixed known θ, the space Λθ is a non-empty convex subspace

in Rk with its boundary obtained by the following infinite set of hyperplanes

H =

{
λ
∣∣∣1 +

∑k

j=1
λjqj(µ) = 0;µ ∈ R

}
.

Lemma 4 describes the boundary of Λθ as a smooth immersed manifold which

can have self intersections, see Maroufy and Marriott (2016b) for proof.

Lemma 4. The boundary of Λθ is a the union of smooth manifolds in R4.

In addition, the interior of Λθ, which guarantees positivity of π(µ, λ; θ) for all

µ ∈ R, can be characterized by the necessary and sufficient positivity conditions

on general polynomials of degree four. Comprehensive necessary and sufficient

conditions are given in Barnard and Child (1936) and Bandy (1966).

Lemma 5. The function ϕ(λ) attains its maximum value at the gradient direc-

tion ∇ϕ if it is feasible; otherwise, the maximum direction is the direction of the

orthogonal projection of ∇ϕ onto the boundary plane corresponding to λ4 = 0.

DKL(λ) and Ψ(λ) are smooth functions which can achieve their maximum

either in the interior or on the boundary of Λθ. Therefore, optimization shall

be implemented in two steps: searching the interior using a regular Newton-

Raphson algorithm, and then searching the boundary using a generalized form

of Newton-Raphson algorithm for smooth manifolds (Shub (1986)).

3.4. An illustrative example

As an illustrative example, suppose the sampling distribution and the base

prior model are respectively N (µ, σ2), and N (θ, σ2
0) and both σ and σ0 are con-

sidered known. We use this example to illustrate both directional and global

sensitivity. We also show how we can exploit the interpretability of our pertur-

bation space to adapt the perturbation to be consistent with certain types of

prior knowledge in the optimization approach.
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Figure 1. This shows, respectively, plots for the sample, and the posterior densities of
the based (solid) and perturbed (dashed) model corresponding to λ̂Ψ.

We can calculated the relative difference between the Bayes estimates by

d =
|E0

p(µ)− Eλ̂p (µ)|
std0

p(µ)

in which E0
p(µ) and Eλ̂p (µ) are the Bayes estimates with respect to the base and

perturbed models, respectively, and std0
p(µ) is the posterior standard deviation

under the base model.

Example 2. A sample of size n = 15 is taken from a normalN (1, 1) distribution,

and the base prior for the mean is N (2, 1). The estimate λ̂Ψ = (−0.323, 1.44,

−0.218, 0.441) is obtained from minimizing Ψ(λ), defined in Theorem 2, and

the corresponding relative discrepancy in Bayes estimate is d = 1.19; that is,

the resulted change in posterior expectation is 119% of the posterior standard

deviation of the base model. The corresponding density plots of both models are

given in Figure 1.

For a directional analysis, we obtained the unit vector λ̂ϕ which maximizes

the directional derivative ϕ(λ). Figure 2 shows the posterior density displacement

corresponding to the perturbation parameter λα = αλ̂ϕ for different values of

α > 0, as well as the boundary point λb in direction of λ̂ϕ. The corresponding

relative differences in posterior expectation are d = 0.09, 0.15, 0.3, 0.55. Hence,

additionally to obtaining the worst direction, these values suggest how far one

can perturb the base prior along the worst direction so that relative discrepancy

in posterior mean estimation is less than, say 50%.

We can extend this analysis by looking at cases where we might want to leave

unchanged some aspect of the prior specification. For example we might only
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Figure 2. Posterior density displacement corresponding to λ = αλ̂ϕ for α =
(a)0.1, (b)0.15, (c)0.25 and (d) the boundary point at the maximum direction.

want to look at perturbations which leave the prior mean unchanged, or do not

add prior skewness. These intuitive restrictions can be accommodated into our

model simply by restricting the moment structure of the perturbed prior model.

The central moments of the perturbed prior model, in Definition 3, are linearly

related to the perturbation parameter λ. Specifically, for the normal model the

mean, second and third central moments are

µ̄π = θ + λ1, µ̄(2)
π = σ2 + 2λ2 − λ2

1,

µ̄(3)
π = 6λ3 + 2λ3

1 − 6λ1λ2. (3.8)

Clearly, λ1 modifies the mean value, (λ1, λ2) adjust variance, and (λ1, λ2, λ3)

adds skewness to the normal base model. Assuming λ1 = 0, guarantees the

perturbed model has its mean unchanged, and restricting λ1 = λ3 = 0 returns a

symmetric perturbed model with same mean as the base prior model.

Example 3. For concreteness we look at perturbations where the prior mean is

left invariant. By implementing the restriction λ1 = 0, we are restricting the per-

turbation space Λθ to a lower dimensional space defined by the intersection of Λθ
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Figure 3. Panels (a),(b) correspond to λ̂Ψ and λ̂D, under λ1 = 0, respectively, including
the base (solid) and perturbed posterior (dashed). Panel (c) presents posterior densities

of based model (Base), and perturbed models for λ̂Ψ (Rst psi) and λ̂D (Rst KL) under
λ1 = 0, and the full perturbed posterior model (Full pert) from Example 2.

with the hyperplane defined by λ1 = 0. The resultant space is a three dimensional

convex space. Then we can find the most effective local and global perturbations

in the new space using similar theoretical methods used for the earlier case. The

estimate λ̂D = (1.821,−0.011, 0.482) and λ̂Ψ = (1.836, 0.016, 0.481) are obtained

from maximizing DKL(λ) and minimizing Ψ(λ), respectively. The corresponding

relative discrepancies in the Bayes estimate are respectively d = 1.19, 1.2; that is,

the resultant changes in posterior expectation are respectively 119% and 120%

of the posterior standard deviation of the base model. Also, the corresponding

posterior distributions are plotted in Figure 3.

4. Sensitivity in Multi-dimensional Models

In this section we apply our perturbation and sensitivity analysis to multi-

dimensional models; specifically looking at both shrinkage and sparsity priors.

In these cases we show how studying the space of mixtures of these priors gives

insight into the sensitivity to prior choice.

In the shrinkage case of ridge regression, Sec. 4.1.1, we use the local mixture

methods of Definition 3 where we mix over the location parameter. These result

in the same expansions as used in the previous examples.

In the case of sparsity priors, Sec. 4.1.2, we follow the approach of Griffin

and Brown (2010, 2017), and focus on scale mixtures of normal priors, as well as

looking at other possible mixture structures. These can have exact closed form

structure (for example the Laplace prior), have a local mixture structure, or be

finite mixtures of local mixtures as describe in Definition 2.

In general we think of both shrinkage and sparsity priors as being families of
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priors indexed by the level of regularity required by the analyst. This common

structure adds a little complexity to a sensitivity analysis as we do not want

to conflate perturbations which just change the amount of regularity with other

forms of perturbation.

4.1. Methodology: logistic regression

To show the methodology explicitly we focus on logistic regression, but em-

phasis that this is not a constraint and the methods can be applied to any gen-

eralised linear model.

Consider a logistic regression model logit(p) = Xβ where X is a n × p

design matrix and β = (β1, . . . , βp)
T is a vector of unknown covariate coefficients.

The maximum likelihood method is a common approach for estimating β via

maximizing

`(β) =

n∑
i=1

yi(xiβ)− log {1 + exp (xiβ)} , (4.1)

where xi is the ith row of X. Correspondingly, ridge regression parameters are

obtained by maximizing

`r(β) = `(β)− γ
p∑
j=1

β2
j (4.2)

where γ is the regularization parameter and is often determined through cross

validation techniques, Le Cessie and Van Houwelingen (1992). This problem can

also be seen as a Bayesian inference problem with weakly informative priors

π(βj) ∝ e−β
2
j /2;

i.e an independent set of standard normal prior models on β1, . . . , βp.

4.1.1. Ridge prior

Let the base prior for βj be

π(βj) ∝
1

σ
√

2π
e−β

2
j /(2σ

2)

where σ2 presents the minimum variation in the prior. Here σ is a measure of

the degree of regularity in this problem. Then the perturbed prior is

π(βj , λ
j) ∝ e−β

2
j /(2σ

2)

(
1 +

4∑
k=1

λjkqk(βj)

)
,
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where

q1(βj) =
βj
σ2
, q2(βj) =

β2
j

σ4
− 1

σ2
, q3(βj) =

β3
j

σ6
− 3βj

σ4
, q4(βj) =

β4
j

σ8
−

6β2
j

σ6
+

3

σ4
.

The perturbed prior is not symmetric and has more variation than the minimum

variance σ2, due to extra flexibility added by λj parameters. Therefore, we can

extend (perturb) the model (4.2) to

`r(β, λ) = `(β)− γ
p∑
j=1

β2
j

2
+ γ

p∑
j=1

log

(
1 +

4∑
k=1

λjkqk(βj)

)
, (4.3)

where λ = [λjk] is a 4× p perturbation parameter matrix.

Instead of optimisation over the perturbation space we average over it via

MCMC methods. One reason for doing this is to allow the data to be more

involved in the selection of the regularity prior. In this case the variance term

σ2, in the expansion above, gives a lower bound, but the local mixing can increase

this if the data indicates this is desirable. We would therefore recommend setting

σ at the lower end of what might be of interest and let the sensitivity analysis

point out if inflation is needed.

4.1.2. Sparsity priors

There are a number of ways of modelling sparsity with prior distributions

which are mixtures of different kinds. For example a two component finite mix-

ture of a discrete point mass at β = 0 and a continuous component, typically

normal. This the ‘spike-and-slab’ model of Mitchell and Beauchamp (1988). A

completely continuous alternative is double exponential or Laplace prior of Park

and Casella (2008). Griffin and Brown (2010) generalise this approach by looking

at scaled mixture of mean zero normals where

βi|Ψi ∼ N(βi|0,Ψi),Ψi ∼ G. (4.4)

If the distributionG is selected to be gamma then this results in a two dimensional

family which includes the Laplace prior as a special case.

Approximating (4.4) as a local mixture model is more subtle than in the

case considered above since it requires an expansion around the delta function at

β = 0. In fact it requires the methods of Definition 2. The space of mixtures is

approximated by a finite mixture, one of whose components is the delta function

at β = 0 and the remaining components of the form

f(β;σi, λi) := e−β
2/σ2

i

(
1 + λi1

β − σ2
i

σ3
i

+ λ2i
(2σ4

i − 5σ2
i β

2 + β4)

σ6
i

)
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for a set of user selected σi. The parameter space of the λi is determined by

the positivity of the expression as above. We will discuss this approach in more

detail in the discussion section. For concreteness, in the data examples below,

we use a specific path through this mixture space by using Griffin and Brown

(2010) normal-gamma family.

4.2. Data examples

Example 4 (Benign Breast Disease study). The study is focused on exam-

ining the risk factors associated with benign breast disease, and comprises 200

observations, including 50 women who were diagnosed as having benign breast

disease and 150 age matched controls (Pastides et al. (1985)). The covariates

considered here are: age of the subject at the interview (AGMT), highest grade

in School (HIGD), weight of the Subject (WT), age at last menstrual period

(AGLP), with coefficients β1, β2, β3, β4, respectively. To assess the sensitivity of

the covariate coefficients to weakly informative prior models, we compare their

estimates under the base and the perturbed models. For the perturbed model

we are computing the estimates by marginalising over the perturbation space.

Table 1 presents the estimated parameters and their standard deviation for

the covariate coefficients as well as the absolute relative difference of the estimates

between the two models, defined as

r-bias =
|β̂base − β̂ptb|
sd(β̂base)

.

The results illustrate significant difference between the parameter estimates be-

tween the two models, the largest of which is that reported for β3 at 570% of the

standard deviation. Hence, simply selecting weekly informative priors here can

cause significant bias in the coefficient estimates.

Example 5 (Adolescent Placement Study). In this example we examine

sensitivity of the regression parameters in a study on aftercare placement for 508

psychiatrically hospitalized adolescents based on the data presented in Fontanella,

Early and Phillips (2008), also see Hosmer, Lemeshow and Sturdivant (2013, Sec.

1.6.4). The outcome variable has four categories: 0 = Outpatient, 1 = Day Treat-

ment, 2 = Intermediate Residential and 3 = Residential. For the purpose of our

modelling we combine the outcome variable into two categories 0 = Outpatient

or Day Treatment and 1 = Intermediate Residential or Residential. The predic-

tors considered are Age, Race, Gender, Length of Hospitalization and State of

Custody.
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Table 1. The first two rows are the estimates and standard deviations of the coefficients
based on the base model. The next two represent the same numbers marginalised over
the perturbed model. The term r-base is the relative absolute difference between the
estimates of the two models. The final two represent the results of using the normal-
gamma shrinkage prior.

parameter β1 β2 β3 β4

Estimate base model 0.004 0.098 −0.023 0.0143
Standard deviation base model 0.010 0.047 0.001 0.007

Estimate perturbed model −0.007 0.021 −0.015 0.028
Standard deviation perturbed model 0.005 0.029 0.002 0.008

r-bias 1.225 1.618 5.723 2.082
Shrinkage mean −0.006 0.064 −0.030 0.055

Standard deviation 0.020 0.056 0.007 0.033

Table 2. The first two rows are the estimates and standard deviations of the coefficients
based on the base model. The next two represent the same numbers marginalised over
the perturbed model. The term r-base is the relative absolute difference between the
estimates of the two models. The final two represent the results of using the normal-
gamma shrinkage prior.

parameter β1 β2 β3 β4 β5

Estimate base model −0.176 0.318 0.250 0.074 3.165
Standard deviation base model 0.014 0.221 0.225 0.011 0.251

Estimate perturbed model −0.184 0.304 0.272 0.082 3.248
Standard deviation perturbed model 0.022 0.242 0.254 0.0135 0.272

r-bias 0.585 0.063 0.096 0.691 0.331
Shrinkage mean 0.073 −0.534 0.411 0.081 3.377

Standard deviation 0.084 0.285 0.281 0.013 0.312

Unlike the previous study, Table 2 does not illustrate any significant dif-

ference for the covariate coefficients. Here the likelihood dominates the prior

information as a result of a relatively large sample size so that the results are

reasonably stable with respect to the defined prior perturbations.

5. Discussion

This paper has looked at the sensitivity of Bayesian inference to perturba-

tions of the prior. It takes a geometric approach throughout. The key idea is to

think of mixing over priors as defining a plausible perturbation space. Within

this space – or the approximation of it generated by local mixing – we used both

gradient and averaging approaches to explore this space.

The spaces defined by local mixture models have some nice properties
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such as convexity, low-dimensionality and identifiability, Marriott (2002); Anaya-

Izquierdo and Marriott (2007b) but do come with boundaries which can be com-

plex, Maroufy and Marriott (2015). In this paper we have explored some ways

of exploiting the advantages and dealing with the boundaries.

The space of scale mixture of normal (Section 4.1.2) is a very interesting

one from the point of view of local mixtures since it contains a singular limiting

point which is the delta function at β = 0. Thus it naturally includes the ‘slab-

and-spike’ priors of Mitchell and Beauchamp (1988). The extreme point of this

space are the unmixed models, N(0, σ2), including the singular case. It would

be a great utility to find good, finite dimensional, approximations to this space.

Using the methods of finite mixtures of LMM define in Definition 2 may be one

way of doing this. The key open problem is to find optimal ways of placing the

grid-points σi balancing the dimensionality of the approximating space with the

approximation error.
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Appendix: Proofs

Lemma A1.

πp(µ|x, λ) =
π(µ, λ)f(x;µ)

g(x, λ)
, (A.1)

where

g(x, λ) =

∫
π(µ, λ; θ)f(x;µ)dµ

=

∫
f(x;µ)π0(µ; θ)dµ

+
∑k

j=1
λj

∫
qj(µ, θ)f(x;µ)π0(µ; θ)dµ

= g(x)

{
1 +

∑k

j=1
λjE

0
p [qj(µ, θ)]

}
. (A.2)

Since f(x;µ)π0(µ; θ) = g(x)π0
p(µ|x, θ) and g(x) =

∫
f(x;µ)π0 (µ; θ)dµ where,

g(x) is the marginal density of sample in the base model. Hence,
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πp(µ, λ|x; θ) =
f(x;µ)π0(µ; θ)

{
1 +

∑k
j=1 λjqj(µ, θ)

}
g(x)

{
1 +

∑k
j=1 λjE

0
p [qj(µ, θ)]

}
=
π0
p(µ|x, θ)
ξ(λ, θ)

{
1 +

∑k

j=1
λjqj(µ, θ)

}
, λ ∈ Λθ

with ξ(λ, θ) = 1 +
∑k

j=1 λjE
0
p [qj(µ, θ)].

Also ξ(λ, θ) > 0, since 1 +
∑k

j=1 λjqj(µ, θ) > 0, for all µ ∈ R and λ ∈ Λθ, and

ξ(λ, θ) = E0
p [1 +

∑k
j=1 λjqj(µ, θ)].

Lemma A2. Result follows by direct calculation and using the fact that,

Alj(x) :=

∫
µlqj(µ)π0

post(µ|x)dµ = E0
p [µlqj(µ)]. (A.3)

Theorem A1. Substitute u∗(·) by u(·) in Gustafson (1996, Result 8).

Theorem A2. By direct calculation and use of align (A.3)

Lemma A3.

gp(y) =

∫
f(y;µ)πp(µ, λ|x)dµ (A.4)

is the convolution of N (µ, σ2) and N (µπ, σ
2
π). Since,

(y − µ)2

σ2
+

(µ− µπ)2

σ2
π

=

(
µ− (σ2

πy + σ2µπ)/(σ2 + σ2
π)
)2

(σ2σ2
π)/(σ2 + σ2

π)
+

(y − µπ)2

σ2 + σ2
π

hence, the posterior predictive distribution for base model is N (µπ, σ
2
π + σ2) and

(3.5) is obtained by direct calculation, where,

Γ =
1√

2π(σ2
π + σ2)

exp

{
− (y − µπ)2

2(σ2
π + σ2)

}
and E?(·) is expectation with respect to µ according to the following normal dis-

tribution

N
(
σ2
πy + σ2µπ
σ2
π + σ2

,
σ2
πσ

2

σ2
π + σ2

)
.

Theorem A3. Use of Lemma 3 and direct calculation finishes the proof.

Lemma A4. Implied by direct application of the implicit function theorem,

Rudin (1976, p.225), see Maroufy and Marriott (2016b).

Lemma A5. ∇ϕ = (a1, a2, a3, a4), is a vector originated at λ = 0, where

aj = Cov0
p (µ, qj(µ)). If it is feasible then clearly gives the maximum direction.

However, if it is not feasible then a4 ≤ 0 since the condition a4 > 0 is necessary
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for feasibility. Thus, the direction of the orthogonal projection of ∇ϕ onto the

boundary plane corresponding to λ4 = 0 is the closest we get to a maximum and

feasible direction.
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