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ON THE NUMBER OF RUNS AND RELATED STATISTICS
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Abstract: The enumeration of combinations with prescribed number of successions
of specified length and a related occupancy problem are considered. The generating
functions for both situations are derived and the relation between the linear and
circular arrangements is obtained. The results are applied to a variety of well known
problems, including Kaplansky’s “Probléme des Ménages”, the study of Fibonacci
and Lucas numbers and the reliability of consecutive k-out-of-n systems.
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1. Introduction

Many articles in the combinatorial literature consider the problem of the
enumeration of combinations of the first n positive integers {1,2,...,n}, with
certain restrictions on the appearances of successions of consecutive numbers.
Kaplansky (1943), based the solution of the famous “Probléeme des Ménages”,
on the computation (by recurrence) of the number of combinations of n objects
taken k at a time with no two selected objects being consecutive. Many years later
Moser and Abramson (1979) considered combinations with restricted differences
and cospan and gave explicit expressions for a large class of problems, including
the abovementioned situation as a special case. A problem of the same kind,
originating from engineering (short-circuiting of adjacent electrodes) was treated
by Apostol (1988). Derman, Lieberman and Ross (1982), solved the problem
of enumerating combinations with no k consecutive elements by considering an
equivalent formulation through distributions of balls into urns. Recently Hwang
and Yao (1991), considered a generalization of Kaplansky’s result. Closely related
are the problems studied by Hwang (1981) and Konvalina (1981).

In the situations mentioned above there are two possible arrangements of the
n elements (integers): linear and circular (where, in the second case, 1 is consid-
ered to be the next integer following n). The observation which gave rise to the
present paper was that in almost all the known cases there is a simple relation
between the number of combinations in the linear and circular situations (see
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Hwang and Yao (1991), Kaplansky (1943) and Riordan (1958)). Furthermore,
the fact that the recurrence relations satisfied by certain quantities (for example,
reliabilities of consecutive k-out-of-n systems) which are expressed directly via
these numbers, are the same for both the linear and circular cases (see Du and
Hwang (1988), Lambiris and Papastavridis (1985)), was considered a strong in-
dication that some interesting mathematical relation is hidden between the two
arrangements under very general assumptions on the restrictions imposed on the
combinations to be enumerated.

With these facts in mind, we introduce (Section 2) the notion of run (linear
and cyclic) within a combination of the first n positive integers, and treat the
general problem of enumerating the combinations with specific number of pre-
scribed runs. In the same Section, a simple trick is used to transform the initial
problem into an equivalent occupancy model. In Section 3 we give the generating
functions of the numbers appearing in the occupancy setting, while in Section 4
the results are converted to the original problem. Finally, in Section 5 we show
how the outcomes of the previous Sections can be used either to derive directly a
number of well known results or to treat some interesting generalizations of cer-
tain problems. Related results, based on a somewhat different definition of runs
can be found in Fu (1993), Godbole (1990), Hirano (1986), Ling (1989), Papas-
tavridis (1990) and Philippou and Makri (1986). Finally, we mention that these
results have clear potential of statistical applications along the lines suggested by
Agin and Godbole (1991), something that we plan to deal with in a subsequent

paper.

2. Definitions and Notations

Let
1< <zy<--- <z, <n (1)

be an r-combination of the n consecutive integers {1,2,...,n} and a a positive
integer. The a-combination

T; < zTjy1 < < Tjta-1

will be called a run of length a (of the original r-combination), if one of the
following situations arises

a. mj+1=:nj+1,j=1,2,...,a-—1andza“;éxa—{-l

b. zjyy=z;+1,j=4i+1,...,ita—2and g #Fr;+1,j=i-1,i+a-1
(1>1)

C. mj+1=m,~+1,j=r—-a+1,...,r—1andz,_aﬂ#x,_a+1.
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Also let A be any set of positive integers. A run whose length a belongs to A
will be called an A-run. In the case where the n consecutive integers {1,2,...,n}
are considered cyclicly arranged (i.e. 1 is viewed as the next integer following n)
we may similarly introduce the terms of cyclic run of length a and cyclic A-run
(the run is defined now by condition (b) alone, assuming that the addition is
performed mod n).

For n > r > 0 let N(n,r,s) denote the number of the r-combinations of
the integers {1,2,...,n} which contain exactly s A-runs (s is any non negative
integer) in the linear case. Assuming, conventionally, that

1 if s=0,

N(n,0,5) = 650 =
(m,0,5) = bs0 {0 if s3>0,

we may express the total number of combinations with exactly s A-runs in the
form

n
N(n,s) = ZN(n,r,s), n > 0.
=0

Finally, in order to have the aforementioned quantities defined for any nonnega-
tive n, r and s, set

N(0,s) = N(0,0,s) = ds0.

For the circular case, denote by N.(n,,s) the corresponding numbers. Introduc-

ing the convention
N(n,0,8) =650 n>1,

we may express the total number of (cyclic) combinations with exactly s A-runs
in the form
n
N¢(n,s) = ZNc(n,r, s), n>1
r=0

We complete the range of values of n and r by assuming that
Ng(1,5) = Ng(1,0,5) = 850, Nc(0,5) = N(0,0,5) =0, s2>0.

In this paper we shall present a unified study of these sequences of numbers,
emphasizing on the relations between the linear and cyclic cases. It should be
mentioned that many of well known problems can be viewed as special cases of
the general setting given above. For example:

a. If A =1{2,3,...}, the numbers N(n,r,0), Nc(n,r,0) are the quantities
used by Kaplansky (1943) for the solution of the “Probleme des Ménages”, while
N(n,0), N¢(n,0) are the Fibonacci and Lucas numbers respectively. The more
general numbers N(n,r, s) were studied by Riordan (1968, page 11).
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b. If A = {k.k+1,...}, the numbers N(n,0), N¢(n,0) coincide with the
Fibonacci and Lucas numbers of order k respectively (Charalambides (1991),
Hwang and Yao (1991)). In this case the sums

n
R(p,n)=>_ N(n,r,0)¢"p" ™"
= n>k, p=1-g¢

Rc(p,n) = Z Ne(n,r, 0)g"p" ™"
=0

give the reliability of a consecutive k-out-of-n system with component failure
probabilities ¢ (Derman, Lieberman and Ross (1982)).

c. If A = {k}, then N(n,s) gives the number of binary vectors in n-space
with exactly s isolated k-tuples, which was studied by Apostol (1988).

d. The study of the so called strict consecutive-k-out-of-n system (Bollinger
(1985)) corresponds to the case A = {1,2,...,k —1}.

In order to study the generating functions of the numbers N(n,r, ), Ne(n,r,s)
it is convenient to transform our models to some equivalent occupancy mod-
els. For this purpose, to every r-combination (1) assign a place-indicator vector
(€1,€2,...,€n) in n-space defined by

0 if ’l'=.’231,:L’2,...,:I:T,
£, =
1 otherwise.

In the linear case, the n — r 1's determine n — 7 + 1 cells to which the r 0’s are
distributed. It is obvious that from every A-run of the r-combination, a cell is
created containing a € A objects (0’s). In the sequel, such a cell will be called
A-cell. Denoting by M (r,m, s) the number of ways of distributing r like objects
into m different cells with exactly s < m of the cells being A-cells, we obtain

N(n,r,8)=M(r,n—r+1,s) 0<r<mn, (2a)
M(r,m,s)=N(m+r—-1,7rs) m>0, >0 (2b)

In the cyclic case, we have again

Ne(n,r,8) = M (r,n—7+1,5) 0<r<mn, (3a)
M (r,m,s)= N (m+r—-1,rs) m>1 >0, (3b)
with M.(r,m, s) denoting now the number of ways of distributing r like objects

into m different cells with either exactly s — 1 of the cells 2,3,...,m — 1 being
A-cells and cells 1 and m containing together a total number of a € A objects or
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s of the cells 2,3,...,m — 1 being A-cells and cells 1 and m containing together
a total number of a € A objects.

In order to extend the range of validity of (2a) and (2b), we introduce the
following conventions for M(r,m,s)

M(0,m,s) =60 m21

M(r,0,s)=0 r2>1 @

Relations (2a) are now true for 0 < r < n and (2b) form >0,r>0,m+r > 0.
In the same way write

M, (0,m,s) =60 m2>2 (5)
M(r,1,s) = Mc(r,0,8) =0 720 (6)

which allows the extention of (3a) to 0 < 7 < n and (3b) to m 2 0, r 2 0,
m +r > 0. One more convention, used in the sequel with no reference to (2a) or
(2b) is the following

M(0,0,0) = 1. (7)

For the study of the numbers mentioned above we shall make use of the
enumerating generating function (enumerator) of the A-cells, namely

fy=>3_t
i€A
as well as its complement
- 1
g(t) = t'=— - ft), It <1
igA
which enumerates the non A-cells.

3. Generating Functions of the Numbers M(r,m, s) and Mc(r,m,s)

In this section we derive the generating functions of the numbers M (r,m,s)
and M.(r,m,s) (with respect to several combinations of the parameters r, m, s),
recurrence relations, and the connection between the linear and cyclic cases. The
results are presented in the following propositions.

Lemma 1. The generating function G(t;m,s) of the numbers M(r,m,s), r =
0,1,... is gwen by

oo

G(t;m,s) = Z M(r,m,s)t" = ( T: )fs(t)gm"s(t) m > s. (8)

r=0
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Proof. The enumerator for occupancy of a specific cell is f(t) if it is an A-cell
and g(t) if it is not an A-cell. Since we require s of the m distinguishable cells to
be A-cells and the rest m — s non A-cells we easily deduce the expression (8).

Relation (8) justifies the use of initial condition (7) which, at first sight,
seems unreasonable (it contradicts the translation equalities (2a) and (2b)). Also,
because of (8) we may write

m
G(t;m,s) = < )G(t;s,s)G(t;m—s,O),
s
and expanding the generating functions on both sides we obtain

M(r,m,s) = <T>ZT:M(i,s,s)M(r—i,m—s,0)

1=0

_ (T:)ZT:M(r—i,s,s)M(i,m—s,O).

1=0

Theorem 1. The double generating function G(t,z;s) of the numbers M(r,m, s),
r=0,1,..., m=s,s+1,... s given by

G(t,z; s) Z Z M(r,m, )t z™ = [zf(t)]°[1 — zg(t)] ™. (9)

m=s r=0

Proof. By making use of the result of Lemma 1,

G(t,z;s) = ZG(tms)x [zf(t) ]Z( )[:z:g(t

and the assertion of the theorem is an immediate consequence of the well known
identify

i (m)wm_s _ 1 (1-w)! = (1—w)~*". (10)

! s
—~ \s sl dw

The generating function of the above theorem could have been deduced along
lines parallel to Goulden and Jackson (1983) (see Section 2.4). Note also the
following relations which are direct consequences of formula (9)

G(t,z;s) = [zf(1))*G*TH(t,2;0), G(t,2;0) = [1 - zg(t)] ™,

zf(t)

G(t, Z; S) = T:—m

G(t,z;s—1), s>0.



RUNS AND RELATED STATISTICS 283

Corollary 1. a. The triple generating function of the numbers M(r,m,s) 1s
given by

o oo o0 . ms 1
;,,:L;,,Z__.()M(T’m’S)tx z = T + 2@ (11)
b. The double generating function of the numbers M(r,m,s), r = 0,1,..., s =
0,1,... is given by
m oo
Z Z M(r,m,s)t"z° = [g(t) + zf ()™, (12)
s=0r=0

Proof. a. It suffices to multiply (9) by 2°, sum up for s =0,1,... and make use
of the geometric series expansion.

b. The result is easily derived either by expanding the right hand side of (11)
in a power series with respect to « or by multiplying (8) by z°, summing up for
s =0,1,... and making use of the binomial formula.

The next Theorem is of great importance, since it provides the main link
between the linear and cyclic cases.

Theorem 2. The generating function G.(t;m, s) of the numbers M.(r,m,s),
r=20,1,... is given by

<
G(t;m,s) = ZMc(r,m,s)t"
=0

= mt—- 1Gl(t;m -1, 3) + G(tam - 1,8) m > max(l, S), (13>

G.(t;1,0) = 0

(G' denotes here the derivative of G with respect to t ).

Proof. Assume first that m — 1 > s > 1. In this case the cyclic distributions of
interest (i.e. the ones that are enumerated by G.(t;m, s)) may be partitioned into
two disjoint classes according to whether the total number a of objects contained
in cells 1 and m belongs to A or not. If a total number of 1 balls are used for
the first and mth cells, it is evident that there exist 1 +1 possible assignments to
those two cells. Therefore, the joint enumerator of the first and mth cell is

S oG+ DE =t (1) + 9(2)
igA
ifa g A, and .
ST+t =tf(t) + f(1)

i€A
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if a € A. Also the enumerator of the other m — 2 cells is given by G(t;m—2,s) if
a ¢ A, and G(t;m —2,s—1) if a € A. Combining all these arguments we obtain

m — 2

Geltim,s) = )fS(t)ym-S'%t)[tg'(t)+g<t>]

S

(TP 0l @ + 500

s—1

which, after some algebra, yields

Gettim,s) = {(" 70 )+ (D7 ) brewemto

S s—1

ez (7 oz w o)

m— 1 S
t
= Gtm-—1 —G(t:m -1, ).
(’m 78)+m_1 (’m ,3)

f1<s=m-1or0=s<m-—1itis easy to verify that
Ge(t;m, s) = fm2(8)(tf' (1) + £(t))
and
Ge(tym, s) = g™ *(t)(tg' () + 9(t))

respectively, which agree with (13). Finally, for 0 = s = m—1 the initial condition
Gc(t;1,0) = 0 is immediately derived from (6).

Relation (13) implies that the generating functions G.(t;m, s) and G(t;m—1,
s) have the same constant term. This fact explains assumption (5). Note also
that, by differentiating formula (8) with respect to ¢, we may prove that

G'(t;m,s) = mG(t;m — 1,5 — 1) f'(t) + mG(t;m — 1, 5)g'(¢),

and substituting G'(¢;m — 1,s) in (13) we obtain the next alternative expression
for the generating function G (t;m, s)

Ge(t;m,s) = tf'(t)G(t;m — 2,5 — 1) + tg'(t)G(t;m — 2, 5)
+G(t,m—1,s) 0<s<m-—-1. (14)

It should be mentioned that, the cyclic case studied here, has a certain similarity
with the “logarithmic connection” discussed in Goulden and Jackson ( 1984).
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Theorem 3. The double generating function G.(t,; s) of the numbers M(r, m,. s),
r=0,1,...,m=s+1,s+2,... 15 given by

Ge(t,z;8) = 22t f'(t)G(t, z;s — 1) + z(tzg'(t) + 1)G(t, z;8) s> 1, (15)

z’(tg'(t) + 9(1)) (16)

Ge(t,2;0) = —7— 290t)

Proof. We have

G (t,z;8) = Z ZM (r,m,s)t"z™ = E G.(t;m, s)z

m=s+1r=0 m=s+1

oo
= Gc(t;8+1,8)$s+1 + Z Gc(t;m, s)z™
m=s+2

For s > 1 make use of the expression (see (8) and (13))
<%@w+1ﬁ)=éﬁaww)+G@wﬁ)=afuy+ﬂﬂﬁku@

and (14), and after some rather simple algebraic manipulations (15) is obtained.
For s = 0 it suffices to employ formulas

G(t;1,0) =0, G.(t;m,0) = (tg'(t) + g(1))g™ ().

Relations (9) and (15) could be combined to obtain a direct expression for
G.(t,z;s). Specifically,

$s+1fs—1(t)
1 —zg(t))*

Ge(t, 2 8) = {t£/(t)+ F(&)+ (g OF () - F'Dg(®)} s> 0. (17)

Corollary 2. a. The triple generating function of the numbers Mc(r,m,s) is
given by

00 00 00 2 2 /
2 z ZMc(T,m, S)trxmzs — T [tg(t)+t f(t)] ) (18)

s=0m=s+17r=0 1- :B[g(t) + Zf(t)]

b. The double generating function of the numbers M.(r,m,s), r =0,1,..., s =
0,1,...,m —1 is given by

ZZ (r,m, 8)t"2" = [tg(t) + tzf(O))'[g(2) + 2fBI™2, m>1  (19)

(The derivative here is taken with respect to t).
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Proof. Expression (18) is easily derived if we multiply (14) or (17) by 2°, sum
for s = 1,2,... and append the term G.(t,z;0)z% from (16). For (19), expand
(18) in a power series with respect to x and consider the coefficient of z™

4. Generating Functions of the Numbers N(n,r,s) and N.(n,r,s)

The generating functions of the numbers N(n,r, s) and N.(n,r, s) are directly
expressed in terms of the corresponding generating functions of the numbers
M(r,m,s) and M.(r,m,s) as the next propositions show.

Theorem 4. The double generating function F(t,z;s) of the numbers N(n,r,s)
with respect to r and n is given by

o0 n 1
. - T . > 2
F(t,z;s) ;;N(n,r,s)t z zG(tz,x, s), s=>1 (20)
F(t,2;0) = S5 N(n,r,0)t"z" = %{G(tx,:c;O) ~1). (21)
n=0r=0

Proof. For s > 1 we have, in view of (4),

G(t,z;s) = Z{ Z M(r,m,s)z™ }

r=0

Z{ZM(rms)x }

r=1

and employing the transformation 7 + m — 1 = n in the inner sum, we obtain the
expression
G(t,z;s) = Z Z M(r,n—r+1,8)z" "7
r=1ln=r+4s-1

which, by interchanging the order of summation, and making use of (2a), takes

the form
oo n—s+1

G(t,z;8) =z E Z N(n,r,s)t"z""".

n=s r=]1

Since
N(n,0,s)=0, N(n,r,s)=0 r=n-—-s+2,...,n

we deduce that

Gtmxs—xZZNnrs)t’”z F(t,z;s)

n=sr=0

and the proof of (20) is over. For the proof of (21) we may start from

G(t,z;0) = ZO{ Z M(r,m,0)z™ } i{M(T,O,O)+§1M(r,m,0)xm}tr
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which, in view of (4) and (7), becomes

G(t,m;0)=1+§{
r=0

Employing analogous arguments with the ones used in the first part of the proof
we may easily verify the truth of (21).

i M(r,m,O)xm}tr.

m=1

Combining Theorems 1 and 4 we deduce the following direct expression for
the generating function F(t,z; s)

z* ! fe(tx) g(tz)
. — > . = .
F(t,z;s) 1= og(to) s>1, F(t,z;0) T (22)
Corollary 3. The generating function of the numbers
n
N(n,s) =) N(n,r,s)
=0
is given by
= 1 2t~ f*(x)
n— F 1 : = — =
nZ::sN(n, s)z (1,z;s) 2:G(:z:,a:,s) 1= 2g(@)]* " s> 0,
o0 (23)
EN(n 0)z" = F(1,z;0) = —1—{G(:n z,0) -1} = ——ggﬁ——
] ? 7 T ? bl 1 _ xg(m)

n=0

Proof. It is immediate.

Theorem 5. The double generating function Fc(t,z;s) of the numbers N(n,r,s)
with respect to r and n is given by

oo n-—-1
F.(t,z;s) = Z Z Ne(n,r,s)t'z"™ = %G’c(tm,z; s) s > 0. (24)

n=s+1 r=0

Proof. Similar to the proof of Theorem 4.

Corollary 4. The. generating function of the numbers
n-1
Nc(n,s) = Z N(n,r,s) n>s
r=0

is given by

o0
Z Nc(n,s)z™ = F(1,z;8) = %Gc(x,x; s) s> 0. (25)
n=s+1
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Proof. It is immediate.

5. Applications

In this section we examine some interesting special cases which are related
with well known combinatorial problems.

a. Connection between the number of certain restricted combinations
in the linear and circular cases
Substituting the power series expansions

oo x
G(t;m,s) = Z M(r,m,s)t", G.(t;m,s) = Z M.(r,m,s)t"
r=0 r=0
in identity (13) we deduce that
oo t o0 o
;Mc(r, m,s)t" = — Z:l M(r,m—1,s)rt™ ! + g M(r,m—1,8)t"

=§{ r +1}M(r,m—1,s)t’”

= m—1

which proves the following simple relation between the linear and circular dis-
tribution of r like objects into m different cells (with the conditions given in
paragraph 2)

T+ m —

1
Mc(r,m,s) = — M(r,m—1,s) 0<r<m, m#1. (26)

The corresponding relation between numbers N(n,r,s) and N.(n,r,s), is given
by

Theorem 6.

Nc(n,r,s)zn—’f?‘N(n—l,r,s) 0<s<n-r, r#l. (27)

Proof. Immediate consequence of (2), (3) and (26).

Theorem 6 has been proved by Kaplansky (1943) in the special case 4 =
{2,3,...}, s = 0 and by Hwang and Yao (1991) for A = {k,k + 1, .. 3, s=0(k
any positive integer).

b. Binomial moments of certain occupancy distributions

Consider the following occupancy problem: r like objects are distributed into
m distinct cells, arranged in a line and let X (a random variable) be the number
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of A-cells i.e. X counts the number of cells containing a € A objects. The
probability function of X is given by

M(r,m,s)

r

p(s;r,m) = Pr|X =s] = s=0,1,...,m

and the next Theorem supplies a formula for the corresponding binomial moments

B =B[(X)] =S (2 )ptsinm)

? s=0

Theorem 7. Ifa,(m,1) is the coefficient of t” in the ezpansion of fi(t)(1—t)~™*"
in a Taylor series i.e.

——&—. = Za,(m i)’ (28)

( )m— r=0
then the ith binomial moment of the random variable X s given by
(7)ar(m, 1)

(r+m—1)

T

Bi(r,m) = i=1,2,... (29)

Proof. Replacing z by z + 1 in (12) we get

ZZM rm, )" (14 2)° = [g(t) + f(2) + 2£(t)] " = (ri— + Zf(t))m

r=0 s=0 t
or equivalently
£ () S (0= £ ()t

Changing the order of summation in the left hand side and substituting (28) in
the right hand side, it follows that

-1 .
ZZ(T-*_m ){Z(,)p(s;r,m)}trzi—zz< ‘>a,.mz)t
1=07r=0 s=1 t 1=07r=0
which implies (29).
The special case A = {k} (k non negative integer) was treated by Riordan

(1958) (see problems 9 and 10, p.103). The result given there could be easily
derived if we notice that

fiey ko m+r—(k+1)i-1Y,
1-pm A-ymt 2 ( r—ik )t

r2>ik
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and substitute
m+r—(k+1)z’—1)

r —1k

ar(m,i) = (

in formula (29).

c. Enumeration of binary vectors in n-space containing prescribed
subsets of consecutive ones

In this section we treat a generalization of the combinatorial problem pro-
posed and solved by Apostol (1988). Let (ey,€2,...,6,) be a binary vector
in n-space, that is, each component ¢; is either 0 or 1. We say that the bi-
nary vector contains an isolated a-tuple of consecutive ones if for some index
i €{1,2,...,n—a+1} we have

€i-1=0, e =¢€r1 =" =¢€i4o-1=1, €i4a=0

(in the cases i = 1 and ¢ = n — a + 1 we ignore the first and last condition
respectively).

Introducing the term A-tuple for an isolated a-tuple with a € A, we may
state the next two interpretations:
(i) N(n,r,s) gives the number of binary vectors in n-space with exactly r com-
ponents equal to “1”, containing s A-tuples

n

(ii) N(n,s) = Z N(n,r,s) gives the total number of binary vectors in n-space

r=0

with s A-tuples.

The double generating function of the numbers N(n,r,s) is given by (20), (21)
or alternatively by (22). The generating function of the numbers N(n, s),n =
s, +1,... has the much simpler form (23). Note that, for A = {k} we obtain

1
t) =tk )= —— — ¢
£(t) 9(t) =
and substituting in (23) yields
$Sk+s_1(1 _ :L.)s—f—l
(1 — 2z + zh+1 — gh+2)s+1

(2 — ¥ 4 ghH)
1 — 2z + gh+l — gh+2

i N(n,s)z" = F(1,z;s) =

n=s

iN(n,O):c" =F(l,z;0)-1=

n=1

which agree with Theorem 13 of Apostol (1988). These expressions could also
be used for the derivation of the recurrences (given also by Apostol (1988)) for
the numbers N(n,0). Finally, it may be noted that, employing formulas (17) and
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(25), we may also derive the generating function and recurrence relations for the
cyclic analogue of the abovementioned problem (which seems not to have been
studied yet).

d. Fibonacci and Lucas numbers

Consider first A = {2,3,...}. Then the corresponding quantities N(n,r, s),
N.(n,r,s) may be interpreted as the number of r-combinations of the n con-
secutive integers {1,2,...,n} placed on a line and a circle respectively, with s
successions of at least two consecutive integers. The corresponding generating
functions (which imply directly certain reccurrences) are given again by Theo-
rems 4 and 5.

In the special case s = 0, the problem reduces to the much simpler situa-
tion where no two integers consecutive are allowed to enter in the combination.
The corresponding numbers N(n,r,0) are related to the famous “Probleme de
Ménages” which was solved by Kaplansky (1943). We mention here that it is very
easy to derive an explicit expression for N(n,r,0) (and by (26), for N.(n,r,0))
by making use of Theorem 4. Thus, replacing g(t) = 1+ ¢ in (22) we obtain

1+tz
1-z(1+1tz)

F(t,z;0) =
and expanding the right hand side into powers of ¢t and z we deduce the well

known formula
- 1
N(n,r0) = < nore )
r

Notice also that the numbers
Fo=N(n-10)= ZN(n 1,7,8) n>1

whose generating function is, by virtue of (23),

2(33-4-2)
"1-—z — 22

ZF.'E =zF(1,z;0) =

n=1

are the Fibonacci numbers.

Let us consider now A = {k,k + 1,...} with k a positive integer. Then the
Theorem of Paragraph 3 in Hwang and Yao (1991), can be viewed as the special
case s = 0 of (26), while Theorem 1 of Hwang (1986) can be extracted from the
formula (see (22))

1— thzk

F(t,2;0) = 1—t—z(1 — thzk)
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by expanding the right hand side in a double power series. For the corresponding
cyclic case we may easily verify (see Corollary 4) that

k
jz’

oS . 2
Z Nc(n, O):L‘n = Fc(l, T; 0) — ng (m) + g(.’l}) _ j=1
n=1 1-—- wg(:z:) k ‘

1- Z xt
Jj=1

which agrees with formula (2.10) of Charalambides (1991). The numbers N (n, 0)
are known as Lucas numbers of order k, and have been extensively studied by
Charalambides (1991).

e. Reliability of consecutive k-out-of-n systems

A consecutive k-out-of-n system is usually defined as a system of n compo-
nents arranged on a line (linear consecutive k-out-of-n system) or a circle (circular
consecutive k-out-of-n system) where the system fails if and only if at least k con-
secutive components fail. We consider here the case of independent components
with common failure probability ¢ = 1 — p. Introducing A = {k,k+1,...} it is
not difficult to verify that the reliability of the linear system is

R(p,n) =) _ N(n,r,0)¢p""
=0

while, for the circular system,

( n—1
Z N.(n,r,0)¢"p" " if n>k,
Re(pm) =4 '~

n-—1
Z N¢(n,r,0)g"p" ™" + ¢" if 0<n<k.

\ r=0

Hence

gR(p, n)z" = i { iN(n,r,O)q’p”—"}z" = F(%,pz; 0)

n=0 * r=0

oo 0o n—1 oo
> Re(p,n)" = > { Ne(n,r, O)q’p""}z" + Y (g2)"
n=1 =0 n=1

n=1 =

)k—l

1-—
— Fc(_q_,pz; 0) + qz____(_q_z_
P 1-gz
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and making use of Theorems 4 and 5 we easily deduce the following expressions for
the generating functions of the reliabilities of the linear and circular consecutive
k-out-of-n systems

1—(gz)F
1 — z + pgkzk+1’

s 1 — kpghkzk+t 2)k
Z Rc(p, n)zn — pq _ (q )
n=0

Io'e)
> R(p,n)z"
n=0

1—z+pgkzktl  1-gqz

2k
1 { k_k k_k+1 -1
= 1—qz-—(k—1)pqz++2pq” 2" 5.
_ k k1
1 —2z+4pg~z e

Expanding the right hand side of these formulas in power series with respect to
z, one could readily obtain the expressions given by Lambiris and Papastavridis
(1985) (Theorems 1 and 2), or Hwang (1986) (Theorem 4). Also, the recurrence
relations mentioned by Lambiris and Papastavridis (1985) and Du and Hwang
(1988) are immediately derived if we multiply the above formulas by 1 — z +
pg*zF*t1 and consider the coefficients of 2" in both sides. Note, also, the common
denominator in the generating functions, which explains the fact that in both
linear and circular systems the reliabilities satisfy the same recurrence relations
for n > 2k.
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