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Abstract: Many contemporary studies involve the classification of a subject into two

classes based on n observations of the p variables associated with the subject. Under

the assumption that the variables are normally distributed, the well-known linear

discriminant analysis (LDA) assumes a common covariance matrix over the two

classes while the quadratic discriminant analysis (QDA) allows different covariance

matrices. When p is much smaller than n, even if they both diverge, the LDA

and QDA have the smallest asymptotic misclassification rates for the cases of equal

and unequal covariance matrices, respectively. However, modern statistical studies

often face classification problems with the number of variables much larger than

the sample size n, and the classical LDA and QDA can perform poorly. In fact,

we give an example in which the QDA performs as poorly as random guessing even

if we know the true covariances. Under some sparsity conditions on the unknown

means and covariance matrices of the two classes, we propose a sparse QDA based

on thresholding that has the smallest asymptotic misclassification rate conditional

on the training data. We discuss an example of classifying normal and tumor colon

tissues based on a set of p = 2, 000 genes and a sample of size n = 62, and another

example of a cardiovascular study for n = 222 subjects with p = 2, 434 genes. A

simulation is also conducted to check the performance of the proposed method.

Key words and phrases: Classification, high dimensionality, normality, smallest

asymptotic misclassification rate, sparsity estimates, unequal covariance matrices.

1. Introduction

Consider the problem of classifying a p-dimensional normally distributed

vector x into one of two classes represented by two p-dimensional normal distri-

butions, Np(µ1,Σ1) and Np(µ2,Σ2), where µk’s are mean vectors and Σk’s are

positive definite covariance matrices. If µk and Σk, k = 1, 2, are known, then

an optimal classification rule having the smallest possible misclassification rate

can be constructed. However, µk and Σk, k = 1, 2, are usually unknown and

a classification rule has to be constructed using a training sample to estimate

unknown parameters. In the traditional setup where the dimension p of x is

fixed, the well-known linear discriminant analysis (LDA) for the case of Σ1 = Σ2

or quadratic discriminant analysis (QDA) for the case of Σ1 ̸= Σ2 has the small-

est asymptotic misclassification rate in the sense that its misclassification rate
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converges to that of the optimal rule as the training sample size n → ∞. In

fact, Shao et al. (2011) showed that the LDA still has the smallest asymptotic

misclassification rate when p diverges to infinity at a rate slower than
√
n as

n → ∞. A similar result for the QDA is established in this paper.

Nowadays, many more characteristics are collected simultaneously, which re-

sults in a high dimensional x. In many recent applications, p is much larger than

the training sample size n, referred to as the large-p-small-n problem, or ultra-

high dimension problem when p is of the order en
ν
with a constant ν ∈ (0, 1).

An example is a study with genetic or microarray data. In one of our examples

presented in Section 4, to classify tumor and normal colon tissues by Oligonu-

cleotide microarray technique, p = 2, 000 genes are involved whereas the size of

the sample is only n = 62. Other examples include data from radiology, biomed-

ical imaging, signal processing, climate, and finance. When p > n, Bickel and

Levina (2004) and Shao et al. (2011) showed that the LDA may be asymptotically

as bad as random guessing.

Some improvements over the LDA for large p problems have been made in

recent years. See, for example, Bickel and Levina (2004), Fan and Fan (2008),

Guo, Hastie, and Tibshirani (2007), Clemmensen, Hastie, and Ersbøll (2008),

Qiao, Zhou, and Huang (2009), and Zhang and Wang (2011). Moreover, Shao

et al. (2011) proposed a sparse LDA (SLDA) by thresholding and showed that it

has the smallest asymptotic misclassification rate under some sparsity conditions

on unknown parameters. Another attempt to improve LDA is to directly find a

linear rule that minimize the misclassification rate. Under normality, Fan, Feng,

and Tong (2012) proposed a Regularized Optimal Affine Discriminant (ROAD)

that directly minimizes the misclassification rate and showed consistency of their

method to the Bayes rule. Han, Zhao, and Liu (2012) relaxed the normality

assumption and extended the linear rule to a copula model, reaching a similar

consistency result. Cai and Liu (2011) built a linear rule by finding a sparse

classification direction and showed the consistency of their method.

To the best of our knowledge, most theoretical work on the asymptotic mis-

classification rate of discriminant analysis assumes a common covariance matrix.

Very little has been done for the QDA, even for the case where p < n. Cheng

(2004) established some asymptotic results for the QDA, but assumed that Σ1

and Σ2 are diagonal. Simon and Tibshirani (2011) proposed a regularization-

based algorithm to estimate parameters in the QDA for high-dimensional set-

tings, but didn’t discuss asymptotical optimality.

The purpose of this paper is to construct a sparse QDA (SQDA) and estab-

lish its asymptotic optimality under some sparsity conditions on µ2 − µ1, Σ1,

and Σ2. Although our proposed SQDA is based on the well-known thresholding

methodology, the study of asymptotic properties of the SQDA is much more com-

plicated and difficult than that for the SLDA studied in Shao et al. (2011). First,
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the misclassification rate of the LDA has a closed form, but the misclassification

rate of the QDA does not, since it involves a probability related to a compli-

cated quadratic form of x. Second, for a good performance of the QDA, we need

sparsity conditions on each of µ2 − µ1, Σ1, Σ2, and the difference Σ2 −Σ1 lest

the QDA be asymptotically as bad as random guessing. This is quite different

from the LDA, in which we only need sparsity of µ2 −µ1 and Σ = Σ1 = Σ2. To

accommodate this, we construct mean estimators by thresholding and covariance

matrix estimators by double thresholding, one for the covariance matrices and

another for their differences. Finally, because of the existence of quadratic forms

of x, we have to handle convergence of estimated covariance matrices in terms of

not only the usual L2 norm, but also L1 norm, the Frobenius norm, and another

norm defined in Section 2. For the SLDA, however, only L2 norm is needed.

As by-products, we derived some results on convergence of estimated covariance

matrices in terms of several norms that may be useful in other studies.

The rest of this paper is organized as follows. In Section 2, we introduce some

notation and preliminary results, including a result showing that the classical

QDA has the smallest asymptotic misclassification rate when p → ∞, but at

a rate much slower than n, and an example indicating that it is necessary to

regulate the difference of covariance matrices. The main results are presented

in Section 3, where we first state some sparsity conditions on µ2 − µ1 and Σk

and construct sparse estimators of µk and Σk based on the training data, which

results in our proposed SQDA classification rule. Asymptotic properties of sparse

estimators and the SQDA are established under the sparsity conditions and some

conditions on the divergence rate of p. Section 4 contains a simulation comparison

of the SQDA, SLDA, and ROAD. It also presents two data example, in which we

compare the SQDA with the SLDA, ROAD, and some other popular classifiers

in the literature. Proofs are given in a supplementary document.

2. Preliminary Results

For vector a, a′ denotes its transpose and ∥a∥ denotes its L2 norm. For sym-

metric p×pmatrixA whose (i, j)th element is aij , we take ∥A∥G=
∑p

i=1

∑p
j=1|aij |,

∥A∥F =(
∑p

i=1

∑p
j=1 a

2
ij)

1/2, ∥A∥1= max
1≤i≤p

∑p
j=1 |aij |, and ∥A∥2= max

1≤j≤p
|λp,j(A)|,

where λp,j(A) is the jth smallest eigenvalue of A. Here, ∥A∥F is the Frobenius

norm related to the L2 norm, and ∥A∥G is a counterpart of ∥A∥F related to the

L1 norm: ∥A∥2 ≤ ∥A∥1 ≤ ∥A∥G and ∥A∥2 ≤ ∥A∥F .

Lemma 1. If L, C, and R are symmetric p× p matrices,

∥LCR∥G ≤ ∥L∥1∥C∥G∥R∥1 and ∥LCR∥F ≤ ∥L∥2∥C∥F ∥R∥2.
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Let µk be the mean and Σk be the covariance matrix of the p-dimensional

normal distribution, k = 1, 2, I be the identity matrix of order p, and

δ = µ2 − µ1, ∆ = Σ2 −Σ1, ∇ = Σ−1
2 −Σ−1

1 , Λ = Σ
1/2
1 Σ−1

2 Σ
1/2
1 − I.

Throughout, we assume the following conditions on µk andΣk: there are positive

constants m and M (not depending on p) such that

(C1) all absolute values of components of µk ≤ M ;

(C2) m ≤ all eigenvalues of Σk ≤ M ;

(C3) m ≤ lim infp→∞Dp, where Dp =
√

∥∆∥2F + ∥δ∥2.

Condition (C3) avoids the trivial case where the two classes are the same as

p → ∞.

When µk and Σk are known, the optimal classification rule, the Bayes rule,

classifies x to class 2 if and only if

(x− µ1)
′∇(x− µ1)− 2δ′Σ−1

2 (x− µ1) + δ′Σ−1
2 δ − log(|Σ1|/|Σ2|) < 0. (2.1)

It has a misclassification rate of

RB =
RB1 +RB2

2
, RBk = P (incorrectly classify x to class k) . (2.2)

If Σ1 = Σ2, then the probabilities in RB are related to normal distributions.

Otherwise, these probabilities have no known form and we need the following.

Lemma 2. Suppose that (C1)−(C2) hold. Let z ∼ Np(0, I) and Tp = z′Λz −
2δ′Σ−1

2 Σ
1/2
1 z. If Dp → ∞ as p → ∞, then [Tp − E(Tp)]/

√
Var(Tp)

D−→ N(0, 1),

where
D−→ denotes convergence in distribution.

When µk and Σk are unknown, the optimal rule cannot be used. To estimate

µk and Σk, we assume that there is a training sample X = {xki, i = 1, . . . , nk,

k = 1, 2}, where nk is the sample size for class k, xki ∼ Np(µk,Σk), k = 1, 2,

all xki’s are independent, and X is independent of x to be classified. For any

unknown a or A, let â and Â be their estimators based on the training sample

X. Then the sample analog of the optimal rule classifies x to class 2 if and only

if

(x− µ̂1)
′∇̂(x− µ̂1)− 2δ̂

′
Σ̂

−1
2 (x− µ̂1) + δ̂

′
Σ̂

−1
2 δ̂ − log(|Σ̂1|/|Σ̂2|) < 0. (2.3)

Its conditional misclassification rate, given X, is

R(X) =
R1(X) +R2(X)

2
,
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where

Rk(X) = P (incorrectly classify x to class k | X) , (2.4)

and the probability is with respect to x conditional on X. Unlike the LDA case

where R(X) has a simple explicit form, the probability Rk(X) is complicated

and does not have an explicit form.

The limiting process we consider has n = n1 + n2 → ∞ with n1/n → a

constant strictly between 0 and 1. Throughout, p is considered as a function of

n and p may diverge to ∞ at a certain rate as n → ∞.

Theorem 1. Suppose that conditions (C1)−(C3) hold.

(i) When Dp is bounded as p → ∞, if p = o(n1/5), and

(C4) the density function of Tp is bounded by a constant not depending on p,

then

RQDA(X)−RB
P−→ 0, (2.5)

where RQDA(X) is the conditional misclassification rate of the QDA given the

training data X, RB is the optimal rate of the Bayes rule, and
P−→ denotes con-

vergence in probability.

(ii) When Dp → ∞ as p → ∞ and p < n, if p2/(nD2
p) → 0, then (2.5) holds.

(C4) holds when Σ1 = Σ2, or when Λ = Σ
1/2
1 Σ−1

2 Σ
1/2
1 − I has some eigen-

values that are always equal to 0; (C4) also holds if Λ has at least two eigenvalues

of in (−∞,m] or [m,∞) (see the proof of Theorem 3).

When Σ1 = Σ2 = Σ and p > n, the results in Bickel and Levina (2004)

and Shao et al. (2011) indicated that some sparsity conditions on δ and Σ are

necessary in order to obtain an asymptotically optimal classification rule. When

Σ1 ̸= Σ2 and p > n, we need sparsity conditions on δ and Σk, k = 1, 2. Further,

some condition on ∆ = Σ2 −Σ1 is necessary.

We consider the case where p/n → ∞, Σ1 and Σ2 are known, but µ1 and

µ2 are unknown. In this case, the QDA classifies x to class 2 if and only if

T̂p − E(T̂p|X) < −ϕ̂p,

where T̂p = (x − µ̂1)
′∇(x − µ̂1) − 2δ̂

′
Σ−1

2 (x − µ̂1), E(T̂p|X) = tr(Λ) + (µ̂1 −
µ1)

′∇(µ̂1 − µ1) − 2δ̂
′
Σ−1

2 (µ1 − µ̂1) when x ∼ Np(µ1,Σ1), and ϕ̂p = tr(Λ) −
log(|Σ1|/|Σ2|) + (µ̂1 − µ1)

′∇(µ̂1 − µ1) − 2δ̂
′
Σ−1

2 (µ1 − µ̂1) + δ̂
′
Σ−1

2 δ̂. We now

show that the conditional misclassification rate of QDA converges to 1/2 when

∥Σ2 −Σ1∥F → ∞ and µ1 = µ2.

Following the proof of Lemma 2, we can show that

[T̂p − E(T̂p|X)]/[Var(T̂p|X)]1/2
D|X−−−→ N(0, 1),
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where Var(T̂p|X) = 2∥Λ∥2F+4δ̂
′
Σ−1

2 Σ1Σ
−1
2 δ̂ and the convergence is with respect

to the distribution of the new observation x, conditioned on X. Under (C2),

−1 <
m

M
− 1 ≤ λp,j ≤

M

m
− 1, j = 1, . . . , p, (2.6)

which implies ∣∣tr(Λ)− log
( |Σ1|
|Σ2|

)∣∣ ≤ M2

2m2
∥Λ∥2F .

Then, |ϕ̂p|/[Var(T̂p|X)]1/2 is bounded by

M2

2m2 ∥Λ∥2F + |2δ̂′Σ−1
2 (µ1 − µ̂1)− δ̂

′
Σ−1

1 δ̂|+ |(µ̂1 − µ1)
′∇(µ̂1 − µ1)|√

2∥Λ∥2F + 4δ̂
′
Σ−1

2 Σ1Σ
−1
2 δ̂

. (2.7)

We consider Σ1 = I, a diagonal Σ2 with jth diagonal σ2
2j = 2 for j = 1, . . . ,K,

σ2
2j = (

√
17 − 3)/2 for j = K + 1, . . . , 2K, σ2

2j = 1 for j = 2K + 1, . . . , p, and
n1 = n2 = n/2. Then, µ̂1 − µ1 ∼ N(0, (2/n)I) and µ̂2 − µ2 ∼ N(0, (2/n)Σ2).
Let ϵ1j and ϵ2j be independent standard normal random variables. Then,

δ̂
′
Σ−1

1 δ̂ − 2δ̂
′
Σ−1

2 (µ1 − µ̂1) =
2

n

p∑
j=1

[
(σ2jϵ2j − ϵ1j)

2 + 2
ϵ1j(σ2jϵ2j − ϵ1j)

σ2
2j

]

=
2

n

p∑
j=1

[(
1− 2

σ2
2j

)
ϵ21j + 2

(
1

σ2j
− σ2j

)
ϵ1jϵ2j + σ2

2jϵ
2
2j

]
,

which has mean 0 for the particular set of σ2
2j ’s we have chosen. Hence, by

the Central Limit Theorem, δ̂
′
Σ−1

1 δ̂ − 2δ̂
′
Σ−1

2 (µ1 − µ̂1) = OP

(√
p/n

)
. Also,

4δ̂
′
Σ−1

2 Σ1Σ
−1
2 δ̂ = OP (p/n), ∥Λ∥2F = (11 −

√
17)K/8 = O(K), and (µ̂1 −

µ1)
′∇(µ̂1 − µ1) = OP (K/n). Therefore, the quantity in (2.7) is bounded by

|ϕ̂p|√
Var(T̂p|X)

≤
O(K) +OP (

√
p/n) +OP (K/n)√

O(K) +OP (p/n)
,

which is o(1/
√
n) if we choose K = o(

√
p/n). This together with the asymptotic

normality of T̂p shows that the conditional misclassification rate of the QDA
converges to 1/2, provided that K = o(

√
p/n).

3. Sparse Estimators and SQDA

For δ, we adopt the sparsity measure in Shao et al. (2011),

dp =

p∑
j=1

|δj |2g, (3.1)
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where δj is the jth component of δ and g is a constant in [0, 1). As n → ∞,

dp may diverge to ∞, but if its divergence rate is much slower than p, then δ is

sparse. If g = 0, then dp is the maximum of the numbers of non-zero components

of δ. Similarly, we consider a sparsity measure for covariance matrices:

cp = max
k=1,2

max
i=1,...,p

p∑
j=1

|σkij |h, (3.2)

where σkij is the (i, j)th element of Σk and h is a constant in [0, 1). When cp
is much smaller than p, Σk’s are sparse in terms of off-diagonal values, but the

diagonal elements of Σk’s are not sparse.

We need to regulate the magnitude of ∆ = Σ2 − Σ1 in some sense. We

consider the sparsity measure

c1p =
∑

1≤i, j≤p

|∆ij |η, (3.3)

where ∆ij is the (i, j)th element of ∆ and η is a constant in [0, 1). If c1p is much

smaller than p, then ∆ is sparse. Unless otherwise mentioned, we eliminate the

case of c1p = 0.

We allow p > n to be ultra-high, but assume that, as n → ∞

(C5) n−1 log p → 0.

Condition (C5) allows that p diverges at the rate en
ν
for some ν ∈ (0, 1).

We need sparse estimators of δ, Σ1, Σ2, and ∆ that asymptotically valid in

terms of several measures.

A sparse estimator of δ is obtained by thresholding the MLE x̄2 − x̄1 at

tn = M0

(
n−1 log p

)α
(3.4)

for some constants α ∈ (0, 1/2) and M0 > 0, where x̄k = n−1
k

∑nk
i=1 xki. The

thresholded estimator of δ is δ̂ with jth component (x̄2j− x̄1j)I(|x̄2j− x̄1j | > tn),

where I(A) is the indicator function of the event A and x̄kj is the jth component

of x̄k. The parameter µk in (2.3) is estimated by µ̂k = x̄k without thresholding.

From the proof of Theorem 3 in Shao et al. (2011), if

(S1) bn = dpt
2(1−g)
n → 0,

where dp is given by (3.1), then

∥δ̂ − δ∥2 = OP (bn) . (3.5)

The estimation of Σk is more complicated, since we need estimators of Σk’s

to be sparse in terms of off-diagonal elements as well as a sparse estimator of ∆.
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We propose an estimator with two steps of thresholding. Let Sk be the MLE

of Σk based on {xki, i = 1, . . . , nk} and let skij be the (i, j)th element of Sk,

k = 1, 2. S2 − S1 is a natural estimator of ∆, but it is not sparse. In the first

step, small elements of S2 − S1 are thresholded to 0. That is, we replace s1ij
and s2ij by s̄ij = (n1s1ij + n2s2ij)/n whenever |s1ij − s2ij | is less than or equal

to the threshold value

t1n = M1

(
n−1 log p

)1/2
, (3.6)

where M1 is a constant. This produces an estimator of Σk, Σ̃k, whose (i, j)th

element s̃kij = s̄ij when |s1ij − s2ij | ≤ t1n and s̃kij = skij otherwise, k = 1, 2.

Although Σ̃2−Σ̃1 is sparse, each Σ̃k may not be sparse in terms of its off-diagonal

elements. Hence, we apply the second step of thresholding to the elements of Σ̃k,

which results in the estimator Σ̂k whose (i, j)th element is s̃kijI(|s̃kij | > t2n),

k = 1, 2, i ̸= j, where t2n is given by (3.6) with M1 replaced by a possibly

different constant M2. The resulting estimator Σ̂k is sparse in terms of its off-

diagonal elements and Σ̂2 − Σ̂1 is sparse. Here

max
i,j

|s̃1ij − σ1ij | = max
i,j

{|s1ij − σ1ij |I(|s1ij − s2ij | ≥ t1n)

+ |s̄ij − σ1ij |I(|s1ij − s2ij | < t1n)}
≤ max

i,j
{|s1ij − σ1ij |+ |s1ij − s2ij |I(|s1ij − s2ij | < t1n)}

≤ max
i,j

|s1ij − σ1ij |+M1(n
−1 log p)1/2

= OP

(
(n−1 log p)1/2

)
,

where the last equality follows from (12) of Bickel and Levina (2008). Similarly,

max
i,j

|s̃2ij − σ2ij | = OP

(
(n−1 log p)1/2

)
.

Following the proof of Theorem 1 in Bickel and Levina (2008), we have that, if

(C2) and (C5) hold and

(S2) an = cp(n
−1 log p)(1−h)/2 → 0,

where cp is given by (3.2), then

∥Σ̂k −Σk∥2 = OP (an) , k = 1, 2. (3.7)

Hence, Σ̂1 and Σ̂2 are asymptotically invertible and (3.7) also holds with ∥Σ̂k −
Σk∥2 replaced by ∥Σ̂−1

k − Σ−1
k ∥2. In fact, from the proof in Bickel and Levina

(2008), (3.7) still holds with ∥Σ̂k −Σk∥2 replaced by ∥Σ̂k −Σk∥1.
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Lemma 3. Under (C2) and (C5), if anvp → 0, where vp=max{∥Σ−1
1 ∥1, ∥Σ−1

2 ∥1}
and an is as in (S2),

∥Σ̂−1
k −Σ−1

k ∥1 = OP

(
anv

2
p

)
, k = 1, 2.

We estimate ∆ by ∆̂ = Σ̂2 − Σ̂1 and ∇ by ∇̂ = Σ̂
−1
2 − Σ̂

−1
1 .

Theorem 2. Assume that (C2)−(C3) and (C5) hold.

(i) If a1n = c1p(n
−1 log p)(1−η)/2 → 0, then ∥∆̂−∆∥G = OP (a1n).

(ii) If

(S3) τn = c1pcpv
3
p(n

−1 log p)(1−max{h,η})/2 → 0,

where vp is as defined in Lemma 3, then ∥∇̂−∇∥G = OP (τn).

We define the SQDA to be the classification rule (2.3) with the sparse esti-

mators δ̂, Σ̂k, and ∆̂ previously described, and µ̂k = x̄k. We allow the number

of non-zero estimators (for the mean differences or covariances) to be much larger

than n; this differs from variable selection and is necessary when there are many

components of x that have no mean effects for classification but are correlated

with those having mean effects.

The tuning parameters M0, M1, and M2 can be selected by searching the

optimal thresholds for x̄2− x̄1, S2−S1, and Σ̃k that minimize the leave-one-out

cross-validation estimate of the misclassification rate. We propose the following

“bisection” strategy. Set the search intervals for thresholds of x̄2 − x̄1, S2 −S1,

and Σ̃k as [0,H1], [0, H2], and [0,H3], respectively, where H1 = maxj |x̄2j − x̄1j |,
x̄kj is the jth element of x̄k, H2 = maxij |s2ij−s1ij |, andH3 = maxk maxi ̸=j |skij |.
Consider thresholds that are the end points of search intervals, eight possible

threshold combinations, and find the best thresholds by minimizing the leave-

one-out cross-validation over them. If the best choice is (0,H2,H3), set the

search intervals to be [0,H1/2], [H2/2, H2] and [H3/2,H3], and repeat the search

procedure, iterating until the maximal length of all three search intervals is less

than a pre-defined small positive number.

If H2 is finally chosen to be the optimal threshold for S2−S1, then Σ̂1 = Σ̂2

and the quadratic term in (2.3) disappears so that the SQDA becomes the SLDA

in Shao et al. (2011).

Under some conditions, we now establish that the conditional misclassifica-

tion rate of the SQDA converges to the same limit as RB, the misclassification

rate of the Bayes rule. To this end, we study the difference between the left hand

sides of (2.1) and (2.3).

Lemma 4. Assume sparsity conditions (S1), (S2), (C2)−(C3), (C5), and cpqn/n

→ 0, where qn is the number of components of δ whose absolute values are larger

than tn/r with a constant r > 1. If ∥δ∥ is bounded, then, when x ∼ Np(µ1,Σ1),
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∣∣∣δ̂′Σ̂−1
2 (x− µ̂1)− δ′Σ−1

2 (x− µ1)
∣∣∣ = OP

(
max

{√
bn, an,

√
cpqn
n

})
.

Lemma 5. Under sparsity conditions (S1), (S2), (C2)−(C3), and (C5), if ∥δ∥
is bounded, then,

|δ̂′Σ̂−1
2 δ̂ − δ′Σ−1

2 δ| = OP

(
max{

√
bn, an}

)
.

Lemma 6. Under sparsity conditions (S1), (S3), (C2)−(C3), and (C5), when

x ∼ Np(µ1,Σ1),∣∣∣(x− µ̂1)
′∇̂(x− µ̂1)− (x− µ1)

′∇(x− µ1)
∣∣∣ = OP (τn) .

Lemma 7. Under sparsity conditions (S1), (S3), (C2)−(C3), and (C5),∣∣∣tr(Λ̂)− tr(Λ)
∣∣∣ = OP (τn) and

∣∣∣log(|Σ̂1|/|Σ̂2|)− log(|Σ1|/|Σ2|)
∣∣∣ = OP (τn) .

Theorem 3. Suppose that conditions (C1)−(C3) and (C5) hold.

(i) When Dp is bounded as p → ∞, if (C4) holds and

max
{√

bn, an, τn,

√
cpqn
n

}
→ 0, (3.8)

then

RSQDA(X)−RB
P−→ 0, (3.9)

where RSQDA(X) is the conditional misclassification rate of the SQDA given X

and RB is the optimal misclassification rate of the Bayes rule in (2.1).

(ii) When Dp → ∞ as p → ∞, if an → 0 and

max{bn, a1n}
D2

p

→ 0, (3.10)

then (3.9) holds.

(1) Condition (3.8) for the case of bounded Dp.

If we assume that both µ1 and µ2 are sparse instead of a sparse δ, then we

can replace condition (3.8) in Theorem 3 by the weaker condition that max{
√
bn,

an, τn} → 0. In view of (3.5) and (3.7), an → 0 and bn → 0 in (3.8) ensures that

δ̂ and Σ̂k are consistent estimators of δ and Σk, respectively. These conditions

are similar to those for the SLDA in Shao et al. (2011) and for the ROAD in

Fan, Feng, and Tong (2012). The condition
√

cpqn/n → 0 is also required by

Shao et al. (2011), but it is not needed if both µ1 and µ2 are sparse. The

extra requirement by the SQDA is τn → 0 for the quadratic and the nonrandom

terms. To illustrate, we consider g = 0, h = 0, and η = 0, so the sparsity of
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Σ1, Σ2, and Σ2 −Σ1 is measured by their numbers of non-zero elements. Then

τn = c1pv
3
pan, where vp = max{∥Σ−1

1 ∥1, ∥Σ−1
2 ∥1}. To the best of our knowledge,

there is no explicit results on the bound of L1 norm of the inverse of a sparse

matrix. However, we have through numerical studies that, ifΣk is sparse, ∥Σ−1
k ∥1

is usually small. Under sparsity assumption on Σ2−Σ1, c1p is also small. Hence,

τn → 0 is slightly stronger than an → 0.

To check condition (3.8) we can represent dp, qn, c1p, cp, and vp in terms

of powers of n, as dp = O(nαd), qn = O(nαq), c1p = O(nαc1 ), cp = O(nαc), and

vp = O(nαv). Then, (3.8) is implied by αq + αc < 1, 6αv + 2αc + 2αc1 < 1, and

log p = O(nγ), where γ < 1− 6αv − 2αc − 2αc1 . We can choose the threshold tn

in (3.4) with any α > αd/{2(1− γ)}.

(2) Condition (3.10) when Dp → ∞.

The convergence in (3.10) depends on Dp. Again, consider Dp = O(nαD) and

g = 0, h = 0, and η = 0. Then, (3.10) is implied by αc < 1/2, 2αc1 − 4αD < 1,

and log p = O(nγ), where γ < min{1− 2αc, 1− 2αc1 + 4αD}. We can choose the

threshold tn in (3.4) with any α > (αd − 2αD)/{2(1 − γ)}. Compared with the

case of bounded Dp, the conditions for unbounded Dp are much relaxed and the

dimension of p is allowed to be higher. Also, we have larger feasible regions for

the choice of the threshold tn. In general, the faster Dp diverges, the easier that

(3.10) holds and the larger p is allowed. This is intuitively correct, since a larger

value of Dp means that the two populations are more separated.

(3) Sparsity conditions.

We impose sparsity conditions on δ, Σ1, Σ2, and ∆ = Σ2 − Σ1. Alterna-

tively, we may impose sparsity conditions on the inverses of covariance matrices.

From the form of the Bayes rule in (2.1), we only need to assume sparsity for

Σ−1
k δ and ∇ = Σ−1

2 −Σ−1
1 . Indeed, Cai and Liu (2011) established asymptotic

results by assuming that Σ−1δ is sparse in the case where Σ1 = Σ2 = Σ (∇ = 0).

However, the sparsity of δ and covariance matrices and the sparsity of Σ−1
k δ are

not comparable conditions, and their interpretations differ.

When Σ1 = Σ2 = Σ, the SQDA is asymptotically the same as the SLDA

in Shao et al. (2011). On the other hand, if Σ1 ̸= Σ2, the SQDA may be much

better than the SLDA in terms of the asymptotic misclassification rate. In Shao

et al. (2011), an estimator of the covariance matrix (assuming that Σ1 = Σ2)

is obtained by thresholding S = (n1S1 + n2S2)/n. It converges in L2 norm to

Σ∗ = γΣ1 + (1 − γ)Σ2 when actually Σ1 ̸= Σ2, where n1/n → γ ∈ (0, 1). Let
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sij and σ∗
ij be the (i, j)th element of S and Σ∗, respectively. Then,

max
i,j

|sij − σ∗
ij | ≤ max

i,j

(∣∣∣n1s1ij
n

− γσ1ij

∣∣∣)+ ∣∣∣n2s2ij
n

− (1− γ)σ2ij

∣∣∣
≤ max

i,j
[|s1ij − σ1ij |+ |s2ij − σ2ij |+ |n1

n
− γ||σ1ij |

+ |n2

n
− (1− γ)||σ2ij |]

= OP

(
[n−1 log p]1/2

)
+O(|n1

n
− γ|).

If n2/n−γ = O((n−1 log p)1/2), then maxi,j |sij−σ∗
ij | = OP

(
[n−1 log p]1/2

)
. With

this result, we can show that ∥Σ̃−Σ∗∥2 = OP (an), where Σ̃ is S thresholded at

M3(log p/n)
1/2 with a constant M3 > 0. Then, under the regularity conditions

stated in Theorem 3 of Shao et al. (2011),

RSLDA(X)− Φ
(
−

√
δ′Σ∗δ

2

)
P−→ 0.

If ∥δ∥ is bounded as p → ∞, then

lim inf
p→∞

Φ
(
−

√
δ′Σ∗δ

2

)
> lim inf

p→∞
RB ≥ 0

since RB is the misclassification rate of the Bayes rule. These results, together

with Theorem 3, imply that

lim
n→∞

P
(
RSLDA(X) > RSQDA(X) + ϵ0

)
= 1

for some fixed ϵ0 > 0.

If ∥δ∥ → ∞, then RB, RSLDA(X), and RSQDA(X) all converge to 0, and

the asymptotic relative performance between the SLDA and SQDA depends on

∥δ∥ and ∥∆∥F in a complicated manner. We compare the SLDA and SQDA in

a simulation study in the next section.

4. Numerical Work

We first compare the SQDA with the SLDA and ROAD in a simulation

study. Then, we apply the SQDA to two data sets and compare it with other

popular classifiers.

4.1. A simulation comparison of the SQDA, SLDA and ROAD

We considered two scenarios for the mean vectors:

A. µ1 = (1,0p−1)
′, µ2 = (2,0p−1)

′, ∥δ∥ = 1,

B. µ1 = (e5,0p−5)
′, µ2 = (3e5,0p−5)

′, ∥δ∥ = 4.47,
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Table 1. Misclassification Rate (in %) and Simulation Standard Error (in
parenthesis) for balanced design: n1 = 20 and n2 = 20.

mean scenario A mean scenario B
SLDA SQDA ROAD Bayes SLDA SQDA ROAD Bayes

V1
p = 50 46.6(8.1) 44.7( 7.6) 44.2( 9.1) 39.8 22.2(6.3) 24.6(6.9) 26.4(8.1) 18.3
p = 200 45.9(9.9) 46.6( 9.1) 45.2( 8.9) 39.8 22.4(8.6) 22.9(7.5) 26.8(8.8) 18.3
p = 1, 000 48.3(8.3) 44.6( 9.7) 46.1( 9.0) 39.8 23.5(9.9) 21.8(7.9) 24.6(7.9) 18.3

V2
p = 50 45.0(7.9) 23.2( 7.4) 41.7( 9.3) 14.1 11.7(5.3) 10.9(5.2) 18.1(7.2) 5.4
p = 200 45.7(9.7) 23.9( 9.6) 41.8(10.8) 14.1 12.7(6.1) 11.4(6.3) 16.5(6.8) 5.4
p = 1, 000 47.1(8.8) 28.1(10.7) 45.4( 9.4) 14.1 14.2(8.0) 12.6(5.3) 17.9(6.7) 5.4

V3
p = 50 44.2(8.3) 9.6( 5.6) 42.9( 8.8) 6.2 18.2(6.4) 8.8(5.7) 22.2(6.9) 3.7
p = 200 46.6(9.6) 11.6( 6.8) 42.6(10.4) 6.2 17.2(7.4) 10.4(6.3) 22.4(7.5) 3.7
p = 1, 000 48.1(9.3) 13.2( 8.2) 44.5(10.5) 6.2 20.5(9.6) 11.9(6.2) 22.4(6.8) 3.7

where et denotes a t-dimensional vector of 1’s and 0t denotes a t-dimensional

vector of 0’s. For the covariance matrices, we considered three cases:

V 1. Σ1 = Σ2, Σ2 =

(
B 0

0 Ip−5

)
, ∥∆∥F = 0,

V 2. Σ1 = Ip, Σ2 =

(
B 0

0 Ip−5

)
, ∥∆∥F = 8.92,

V 3. Σ1 = Ip, Σ2 =

(
2B 0

0 Ip−5

)
, ∥∆∥F = 16.82,

where It denotes the identity matrix of order t and

B =


4 1 0.5 0 0

1 4 1 0.5 0

0.5 1 4 1 0.5

0 0.5 1 4 1

0 0 0.5 1 4

 .

In each scenario, we took p = 50, 200, 1,000, a balanced design with n1 = n2 = 20,

and an unbalanced design with n1 = 10 and n2 = 30. The tuning parameters

M0, M1 and M2 were chosen by the bisection procedure described in Section 3.

The same procedure was used to choose thresholds in the SLDA. In practice,

if the resulting Σ̂k is not invertible, we used Σ̂k + ρI (e.g., ρ =
√

log p/n)

instead. The ROAD was implemented using the authors’ Matlab code with

tuning parameters chosen by their algorithm. We ran 100 simulations for each

setting. The misclassification rates of the three methods are shown in Table 1

and Table 2, along with the optimal rates of the Bayes rule.

The following is a summary of the results in Table 1 and Table 2.

1. Mean scenario A. With V1 (Σ1 = Σ2), all three methods do not perform

well, since the signal strength ∥δ∥ = 1 is low and ∥∆∥F = 0. Even the Bayes
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Table 2. Misclassification Rate (in %) and Simulation Standard Error (in
parenthesis) for unbalanced design: n1 = 10 and n2 = 30.

mean scenario A mean scenario B
SLDA SQDA ROAD Bayes SLDA SQDA ROAD Bayes

V1
p = 50 47.7(8.1) 43.2(7.4) 41.6(8.8) 39.8 30.3(9.6) 28.1(7.4) 24.9(8.8) 18.3
p = 200 49.9(8.5) 47.5(3.9) 40.2(8.8) 39.8 31.3(8.9) 26.9(5.7) 24.3(8.1) 18.3
p = 1, 000 49.0(8.9) 45.2(0.7) 37.2(8.8) 39.8 32.8(9.7) 28.4(6.5) 24.2(7.9) 18.3

V2
p = 50 47.5(8.7) 21.6(6.4) 41.5(7.6) 14.1 17.6(8.3) 10.8(5.5) 23.4(8.0) 5.4
p = 200 50.3(7.7) 22.4(5.5) 38.9(7.6) 14.1 19.3(8.8) 11.0(4.5) 22.1(7.4) 5.4
p = 1, 000 48.5(8.5) 24.9(2.2) 35.4(7.1) 14.1 20.9(9.3) 13.3(4.2) 20.9(8.3) 5.4

V3
p = 50 48.9(8.0) 10.1(5.1) 43.0(8.5) 6.2 24.8(9.0) 10.7(5.3) 29.4(9.1) 3.7
p = 200 49.7(8.1) 13.3(6.3) 40.1(8.3) 6.2 24.8(8.3) 11.3(5.5) 29.2(8.1) 3.7
p = 1, 000 49.2(8.7) 22.4(4.7) 39.6(9.2) 6.2 27.3(9.5) 12.0(5.5) 28.7(7.6) 3.7

rule has a high misclassification rate. Under V2 or V3, ∥∆∥F is much larger

than that in V1, although ∥δ∥ is small. The SQDA is clearly better than the

SLDA and ROAD, both of which are linear classifiers that cannot capture the

differences between covariances.

2. Mean scenario B. SLDA and ROAD are substantially better when ∥δ∥ is

larger. For V1 (Σ1 = Σ2), the SQDA has a similar performance to those of

SLDA and ROAD. Under V2 or V3, the SQDA is again much better than the

SLDA and ROAD, due to the difference between covariances. The covariance

difference in V3 is larger than that in V2 and, hence, the SQDA performs

better in V3. On the other hand, the SLDA and ROAD both perform better

than in mean scenario A, because ∥δ∥ is larger.

3. Overall, the performance of three methods in the unbalanced design is similar

to or worse than that in the balanced design. But the patterns are the same.

To conclude, a large difference in µk’s is needed to have good performance

of the SLDA and ROAD. The same is true for the SQDA, but the SQDA may

still be good when there is a large difference in covariance matrices. The SQDA

has similar performance to the SLDA and ROAD when ∥∆∥F is small, but

substantially outperforms them when ∥∆∥F is large.

The SQDA requires more computational time than the linear rules. In the

simulation study, the CPU time for the SQDA was 50−60 seconds for p = 200

and 1,600−2,400 seconds for p = 1, 000, whereas the CPU time for the SLDA

was 10−15 seconds for p = 200 and 400−1,000 seconds for p = 1, 000, and the

CPU time for the ROAD was about 4 seconds for p = 200 and about 20 seconds

for p = 1, 000. A long CPU time in SQDA (and sometimes in the SLDA) results

from the computation of the inverse of very large covariance matrices. Research

on short cuts in the computation of SQDA is desired, especially when we want

to handle the case with an even larger p.
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Table 3. Average Misclassification Rates (in %) of 9 Classifiers for Colon
Data

BagBoost RF SVM kNN DLDA Boosting PAM SLDA SQDA
16.10 14.86 15.05 16.38 12.86 19.14 11.90 12.20 10.40

Table 4. Quantiles of Misclassified Objects by the SLDA and SQDA for
Colon Data

Min. 25% Median 75% Max.
SLDA 0 1.25 2.5 3 6
SQDA 1 1 2 2 5

4.2. The example of colon tissues

Alon et al. (1999) studied gene expression difference between tumor and nor-

mal colon tissues using the Oligonucleotide microarray technique. The dataset

contains n1 = 20 observations from normal tissues and n2 = 42 observations

from tumor tissues. A total of p = 2, 000 genes with highest minimal inten-

sity is included in the study. Dettling (2004) used this dataset to compare the

performance of seven different classifiers: the Boosting, Bagging and boosting

(BagBoost), Support Vector Machine (SVM), random forest (RF), the k nearest

neighbor (kNN), the nearest shrunken centroid classifier (PAM), and diagonal

LDA (DLDA), which applies the LDA by assuming that Σ1 = Σ2 is a diagonal

matrix. The dataset was randomly split into a training set of 13 observations

from normal tissues and 29 observations from tumor tissues and a test set of 7

observations from normal tissues and 13 observations from tumor tissues. For

each classifier, a misclassification rate was calculated by classifying observations

in the test set using the rule constructed based on the training set. To reduce

variability, Dettling (2004) independently repeated this process 50 times and

reported the average misclassification rates of the seven classifiers over the 50

random splitting. The results are listed in our Table 3.

To compare, we added the average misclassification rates of the SLDA and

SQDA calculated using the same random splitting process but a necessarily dif-

ferent random seed. We used the same procedure as in the simulation study to

choose the tuning parameters in the SQDA and SLDA. The results are given in

Table 3. In this example, the SQDA is the best among all classifiers. The SLDA,

slightly behind the PAM, is actually the third winner.

The absolute gain in misclassification rate for the SQDA over the SLDA

was 1.8%, a relative gain of 14.8%. Table 4 lists some quantiles of numbers of

misclassified subjects by the SLDA and SQDA in 50 replications.
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Table 5. Mean(Standard Error) of Misclassification Rates (in %) of Seven
Classifiers for GSE12288 Data.

SQDA SLDA ROAD SVM kNN Boosting RF
24.3(5.2) 27.6(5.1) 43.0(5.9) 33.1(4.7) 46.4(4.9) 38.5(5.3) 37.8(4.5)

4.3. A cardiovascular study example

Sinnaeve et al. (2009) studied the relationship between gene expression pat-
terns and atherosclerotic coronary artery disease (CAD). Patients were selected
according to their Duke CAD index (CADi), a validated angiographical measure
of the extent of coronary atherosclerosis. 110 patients were collected with CADi
> 23 and 112 persons without CAD were formed as a control group. Their gene
expression was assessed using Affymetrix U133A chips. A total number of 19,940
genes were collected. The raw data can be accessed from Gene Expression Om-
nibus under the name of “GSE12288”. Since many genes in Affymetrix U133A
platform are not related to CAD, we performed two sample t-tests to each gene
and only kept genes with p-value < 0.1. As a result, p = 2, 434 genes were used
in our analysis.

We compared our method with six other classifiers: SLDA, ROAD, Support
Vector Machine (SVM), k-nearest neighborhood (kNN), Boosting, and Random
Forest (RF), in terms of the misclassification rate. The dataset was randomly
split into a set of 73 patients and 75 healthy persons as the training set (about
2/3 of the entire data set) and a set of 37 patients and 37 healthy persons as
the test set. The SVM, kNN, Boosting, and Random Forest were implemented
by the R packages of “e1071”, “class”, “ada” and “randomForest” with default
settings, respectively. The ROAD was implemented by Matlab code on the au-
thors’ website. For SLDA and SQDA, tuning parameters were chosen by the
same scheme as discussed in Section 3. We repeated the random splitting 200
times. The mean misclassification percentage of each method is listed in Table 5
with standard error in parenthesis.

The SQDA performed significantly better than the other six classifiers. Com-
pared to SLDA, the SQDA had a relative gain of 12.0%.
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