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Abstract: We introduce and study a method for density estimation under an ad-

ditive noise model. Our method does not attempt to maximize a likelihood, but

rather is purely geometric: heuristically, we L2-project the observed empirical dis-

tribution onto the space of candidate densities that are reachable under the additive

noise model. Our estimator reduces to a quadratic program, and so can be com-

puted efficiently. In simulation studies, it roughly matches the accuracy of fully

general maximum likelihood estimators at a fraction of the computational cost.

We give a theoretical analysis of the estimator and show that it is consistent, at-

tains a quasi-parametric convergence rate under moment conditions, and is robust

to model mis-specification. We provide an R implementation of the proposed esti-

mator in the package nlpden.
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1. Introduction

Consider the high-dimensional Gaussian noise model in which we observe

Xi = µi + εi, εi ∼ N (0, 1) independently for 1 ≤ i ≤ n. (1.1)

Following Robbins (1964), this model has often been analyzed from an empirical

Bayes perspective. In a classical Bayesian setting, we assume that µi ∼ G for

some prior distribution G with density g (or, more generally, Radon-Nikodym

derivative g) and that the observations Xi are distributed according to the convo-

lution density f = φ∗g, where φ is the standard normal density. The challenge in

an empirical Bayes setting is that g and f are unknown, and must be estimated

from the Xi.

Having a good estimate f̂ for the marginal density f of the Xi is useful.

For example, f̂ lets us estimate posterior means µ̂i = E[µi|Xi] (e.g., Brown and

Greenshtein (2009), Jiang and Zhang (2009)). Johnstone and Silverman (2004)

showed this formalism to be useful for sparse signal detection, and Efron (2011)

suggested it as a cure for selection bias. Moreover, the fitted density f̂ gives us

a natural estimate φ(Xi)/f̂(Xi) for the local false discovery rate (Efron et al.

http://dx.doi.org/10.5705/ss.2012.355


534 STEFAN WAGER

(2001)), which is a useful upper bound on the posterior probability that the ith

effect µi is zero.

At first glance, we might expect the problem of estimating f to be fairly

straightforward, provided we accept the model (1.1). The family of densities

that can be written as f = φ ∗ g is fairly small, suggesting that selecting the

density f̂ = φ ∗ ĝ that is “closest” to the empirical distribution of the Xi should

be a simple and well-behaved operation.

Most papers aiming to use the Gaussian noise model in an empirical Bayes

analysis, however, use general purpose density estimation techniques rather than

the special form of (1.1) in producing an estimate f̂ for the density of the Xi.

Kernel smoothing methods are quite popular for estimating functionals of the µi
(e.g., Brown and Greenshtein (2009), Butucea and Comte (2009), Jiang (2012),

and Zhang (1997)). In the local false discovery rate literature, Efron (2007, 2010)

has advocated the use of either Poisson regression or log-splines for estimating f

(note that these methods can also be used to estimate false discovery rates when

the structural model (1.1) does not hold). The papers that do explicitly use the

model (1.1) tend to impose stringent constraints on the form of g: Johnstone and

Silverman (2004) assume that g is the mixture of a point mass at 0 and a Laplace

(or quasi-Cauchy) density, while Muralidharan (2010) models g as a mixture of

a finite number of Gaussian bumps N (µj , σ
2
j ).

Jiang and Zhang (2009) and Zhang (2009) have developed general maxi-

mum likelihood techniques for estimating f , using ideas that go back to, e.g.,

Laird (1978). The results achieved by these techniques on simulated data are

impressive, but the algorithms used to compute the general maximum likelihood

estimate for f are still computationally intensive and sensitive to initialization.

That being said, recent advances such as the interior point formulation of Koenker

and Mizera (2012) should make general maximum likelihood density estimation

more computationally tractable in the future.

This paper introduces a simple non-parametric method for estimating f that

takes advantage of the assumption that f = φ∗g for some probability distribution

G. In contrast to most currently available estimators that make explicit use of the

Gaussian convolution model, our estimator is not motivated by likelihood-based

arguments. Rather, our approach is purely geometric: We estimate f using f̂ ,

where f̂ is the closest density to the empirical distribution of the Xi under L2

norm such that f̂ = φ ∗ ĝ.
More precisely, let Q(R) denote the space of distributions whose total mass is

less than or equal to 1, let L2(R) denote the space of square-integrable real-valued
functions, and define

D(R) =
{
g : g ≥ 0, G(a) =

∫ a

−∞
g(dx) ∈ Q(R)

}
. (1.2)
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Then the closure under L2 norm of the space of acceptable marginal densities in

the convolution model can be written as

Eφ = {f ∈ L2(R) : f = φ ∗ g, g ∈ D(R)} . (1.3)

We define a projection operator

Pφ : D(R) → Eφ (1.4)

Pφ(ψ) = argmin
f∈Eφ

{−2⟨ψ, f⟩+ ||f ||22}

that takes any measure ψ and projects it onto Eφ. This operator is motivated

by L2 projection: whenever ψ ∈ L2(R), our operator is equivalent to Pφ(ψ) =

argmin f∈Eφ{||ψ − f ||2}. Here ⟨ψ, f⟩ denotes the inner product
∫
R ψ(x)f̄(x) dx,

and ||f ||22 = ⟨f, f⟩. When ψ is a measure, we interpret the inner product as

⟨ψ, f⟩ = Eψ
[
f̄
]
. Informally, Pφ(ψ) exists and is uniquely defined because it is

a projection onto a closed convex subset of the Hilbert space L2(R). A more

precise existence proof is given in the appendix (Proposition A.1).

Under this notation, our estimator is

f̂NLP = Pφ

( 1

n

n∑
i=1

1({ . = Xi})
)
, (1.5)

the L2 projection of the empirical distribution onto the space Eφ of acceptable

marginal densities. The subscript NLP stands for “non-linear projection”; we

use it to emphasize that f̂ is obtained by constrained projection onto a non-linear

space.

In this paper, we establish the following properties of our estimator f̂NLP .

(a) The projection operator Pφ is stable and well-behaved over D(R), and Pφ is

uniformly continuous under smoothing operations. (b) The estimator f̂NLP is

consistent. Moreover, under moment conditions on f , we show that it attains a

quasi-parametric convergence rate under L2 norm. (c) The procedure is robust to

model mis-specification. Even if f is not actually in the set Eφ, f̂NLP converges—

under a global loss function—to the best possible estimate f̄ = Pφf at the same

rate as when the model was correctly specified. (d) The optimization problem

(1.4) can easily be solved numerically. In fact, the problem can be written as a

fairly low-dimensional quadratic program, and so can be solved efficiently using

off-the-shelf software. (e) The algorithm for computing f̂NLP does not require

an initial guess for f̂ , and has no sensitive tuning parameters such as bandwidth

or degrees of freedom. In general, the advantage of the NLP estimator is that it

is almost as accurate as the full maximum likelihood (ML) estimator, but can be

computed more efficiently.
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As remarked by Omkar Muralidharan (personal correspondence), the NLP

estimator can also be used in conjunction with the maximum likelihood esti-

mator. One of the biggest difficulties with non-parametric maximum likelihood

estimation is that the algorithms used to compute it are sensitive to initializa-

tion. Thus, we could use the NLP estimator as a quick and robust way to get a

good initialization for maximum likelihood estimation.

In Figure 1, we report test results for a suite of estimators in a simulation

study where the prior measure g is the mixture of a point mass at zero and a

uniform density on [−10, 10]; heuristically, this can be thought of as a mixture

of ‘null’ points at zero and ‘interesting’ points away from zero. We notice that

the NLP estimator and the ML estimator have roughly equivalent accuracy, but

the former runs almost 20× faster than the latter. Meanwhile, two commonly

used alternatives, Gaussian mixtures and Poisson regression, advocated by Mu-

ralidharan (2010) and Efron (2007) respectively, are noticeably biased for this

problem; in particular, the Gaussian mixture systematically overshoots the tails,

while Poisson regression undershoots them. We discuss our simulation methodol-

ogy in more detail in Section 4. However, this example shows that our estimator

can achieve high accuracy at low computational cost.

Finally, our estimator f̂NLP has an explicit representation as f̂ = φ ∗ ĝ, and
so our procedure implicitly provides an estimate ĝ for the distribution of the µi.

We do not attempt to study the asymptotic properties of ĝ explicitly here, as it is

known (Carroll and Hall (1988), Fan (1991)) that minimax convergence rates in

the Gaussian deconvolution problem are extremely bad. However, in simulations,

ĝ appeared to perform just as well or better than kernel based methods for

estimating g (e.g., Butucea and Comte (2009), Comte, Rozenholc, and Taupin

(2009), Stefanski and Carroll (1990)). Moreover, unlike kernel estimates for g

which can go negative, ĝ is guaranteed to correspond to a probability distribution.

Thus, studying the behavior of the deconvolution estimate ĝNLP seems like a

promising follow-up to the current work.

1.1. Related methods

Our estimator can be seen as a generalization of minimum distance estima-

tors as pioneered by Wolfowitz (1957) and, when the domain of Pφ is restricted

to square-integrable densities, f̂NLP is in fact the minimum distance density esti-

mator under L2 norm. Beran and Millar (1994) used minimum distance methods

to estimate the distribution of random coefficients in a regression model; these

methods have also been used by, e.g., Cutler and Cordero-Brana (1996) and Tit-

terington (1983) to fit finite mixture models. Typically, the main motivation for

studying minimum distance estimators is that they are robust: In the parametric
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NLP estimator Maximum likelihood
CPU-time (nlpden): 0.15 sec CPU-time (mixfdr): 2.88 sec

Gaussian mixture Poisson regression
CPU-time (mixfdr): 0.46 sec CPU-time (glm): 0.38 sec

Figure 1. Comparison of four density estimators, run on N = 2, 000 data
points drawn independently from the mixture:

Xi ∼ µi + εi with µi ∼
1

2
1({. = 0}) + 1

2
U([−10, 10]) and εi ∼ N (0, 1).

The plot shows 50 simulation runs for each estimator, as well as the true tar-
get density as a thick black line. All estimators were run with default tuning
parameters, most importantly J = 3 for the Gaussian mixture (J indicates
the number of prior components) and df = 7 for the Poisson regression. The
maximum likelihood estimator is approximate, and was computed as a Gaus-
sian mixture with J = 20. CPU-time indicates the average time required to
perform one simulation run on the author’s laptop.

case, Donoho and Liu (1988) show that these estimators have optimal robustness

properties under general conditions. While we do establish robustness proper-
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ties for f̂NLP (see Section 2.3), our main motivation for introducing f̂NLP is its

computational tractability.

The least-squares penalty used by our estimator is related to smoothing

splines. Both estimators attempt to fit a constrained smooth curve to the em-

pirical distribution under L2 penalty, their difference being the nature of the

constraint imposed on the fitted density. Smoothing splines penalize the curva-

ture of the fitted density, while the NLP estimator replaces this curvature penalty

with a shape constraint that comes directly from the Gaussian assumption:

f̂SPLINE = argmin
f

{
− 2

n

∑
i

f(Xi)+||f ||22, subject to
∫
R

(
f ′′(x)

)2
dx<C

}
, vs.

(1.6)
f̂NLP = argmin

f

{
− 2

n

∑
i

f(Xi) + ||f ||22, subject to f = φ ∗ g
}
.

Our estimator can thus be seen as an offshoot of smoothing splines tailored

specifically to the Gaussian noise setting.

More generally, our method fits into the class of shape-constrained density

estimators. In other contexts, it can be useful to estimate a density f under the

constraint that f̂ be for example monotone (Durot, Kulikov, and Lopuhaä (2012),

Grenander (1956)), convex (Groeneboom, Jongbloed and Wellner (2001)), or

log-concave (Cule, Samworth, and Stewart (2010), Dümbgen, Samworth, and

Schuhmacher (2011), Walther (2009)).

2. Theoretical Results

In this section, we outline our main theoretical results concerning f̂NLP . For

simplicity, we focus on the Gaussian noise case εi ∼ N (0, 1), but our results hold

for quite general additive noise εi ∼ H, where H is a distribution with density h.

The consistency result only requires that h ∈ L2(R), while the rate of convergence
result requires that h and all its derivatives be individually bounded. The proofs

are given in the appendix. For notational simplicity, we drop the subscript φ

from Pφ and Eφ from now on.

2.1. Consistency and uniform continuity

The form of the projection operator P from (1.4) does not necessarily inspire

confidence in the stability of P over general probability distributions. After all,

the definition of P in D(R) is merely a formal extension of a definition that

was meaningful and motivated in L2. Because E is a convex set, the projection

operator P shrinks elements of L2 towards each other (under the L2 norm) and

so P must clearly be well-behaved over L2. However, it is not immediately clear

that P is well behaved over probability distributions without a density.
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Our first result aims to dispel any such concerns, as it shows that P is

uniformly continuous under small-scale smoothing for all probability measures

ψ ∈ D(R). A simple and useful corollary of the result is that, if we approximate

any probability measure ψ with a histogram Hw(ψ), then as the bin width w goes

to zero, the projection operator PHw(ψ) converges uniformly to Pψ, no matter

how spiky ψ may be. In our algorithm, we exploit this fact by representing

the empirical distribution as a narrow bin-width histogram, which is extremely

convenient from a computational point of view.

Theorem 1 (Stability with Respect to Smoothing). Let K be a smoothing kernel

with a finite second moment and Kh(x) = h−1K(x/h) for any bandwidth h > 0.

If P is the projection operator (1.4), then

lim
h→0

sup
ψ∈D(R)

||P (Kh ∗ ψ)− P (ψ)||2 = 0.

One consequence here is that f̂NLP is consistent. This follows directly from

the fact that kernel smoothers with appropriately decaying bandwidths are con-

sistent for functions with bounded derivatives.

Corollary 1 (Consistency). Let X1, . . . , Xn be independently sampled from a

distribution with density f0 ∈ E, and let f̂NLP be the estimator from (1.5). Then

lim
n→∞

||f̂NLP − f0||2 =p 0.

We can also use the theorem to establish a more abstract uniform conti-

nuity result. A popular measure of closeness between probability measures is

the Mallows distance (also known as the Wasserstein or earth mover’s distance).

Suppose that FX and FY are in P1, the space of probability distributions with

finite expectation. Then, the Mallows distance between FX and FY is

d(FX , FY ) = inf
(X,Y )∼G

EG [|X − Y |] , (2.1)

where G ranges over all probability distributions on R2 with marginals FX and

FY ; Bickel and Freedman (1981) show that d is a metric over P1. As an outgrowth

of Theorem 1, we can show that our projection map P is uniformly continuous

under the Mallows metric. Samworth and Yuan (2012) prove a related result for

their ICA projection.

Corollary 2 (Uniform Continuity). The restriction P : (P1, d) → (L2, ∥.∥2) of

the projection map P defined in (1.4) is uniformly continuous.
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2.2. Rate of convergence

We can obtain rate of convergence results for f̂NLP using general results from

M -estimation theory. In the language of M -estimation, we can write

f̂NLP = argmin
f∈E

{ 1

n

n∑
i=1

mf (Xi)
}
,

where mf (ψ) = −2⟨ψ, f⟩+ ||f ||22. We interpret mf (Xi) as −2f(Xi) + ||f ||22.
The key technical step in bounding rates of convergence for M -estimators is

to derive a maximal inequality for the empirical process

Gn(mf ) =
√
n
( 1

n

n∑
i=1

mf (Xi)− E[mf (Xi)]
)
,

which measures how far the function mf diverges from its mean. We give such

a maximal inequality below. Because the supremum of Gn is not necessarily

measurable, we need to formulate the result in terms of outer expectation E∗.

The outer expectation of a function f is the infimum of E
[
f̃
]
over all measurable

functions f̃ that dominate f and have a well-defined expectation.

Lemma 1 (Maximal Inequality). Let f0 be a density in E, and let {Xi} be drawn

independently from the distribution F0 with density f0. Then, provided that the

tails of f0 decay faster rate than |x|−a for all a > 0,

E∗
F0

[
sup

{f∈E:||f−f0||2<δ}

∣∣Gn (mf −mf0)
∣∣] = O

(
δ(2k−1)/2k +

δ−1/k

√
n

)
for any k ∈ N∗, where E∗

F0
denotes outer expectation with respect to F0.

This maximal inequality can then be transformed into a rate of convergence

result. For technical reasons, our proof only works when f0 has rapidly decaying

tails, which is equivalent to F0 having finite moments of all orders. This is not

a big problem in practice, however, since empirical Bayes methods are usually

applied to distributions that are only slightly more dispersed than the normal

N (0, 1) distribution.

Theorem 2 (Rate of Convergence). Let f0 ∈ E have rapidly decaying tails as in

Lemma 1, and let f̂NLP be the estimator (1.5). Then, for any α > 0,

lim
n→∞

n
1

2(1+α) · ||f̂NLP − f0||2 =p 0.

Thus, f̂NLP can get arbitrarily close to the ‘parametric’ convergence rate

1/
√
n although it may never reach that rate. This kind of convergence rate is
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often called ‘quasi-parametric’, and is typical in smooth functional estimation

problems (Ibragimov (2001) gives examples of exact minimax rates under the

assumption that f admits an analytic continuation). The minimax rate for non-

parametric estimation of the density of a Gaussian mixture is (Kim (2012))

inf
f̂n

sup
f∈E

En,f
∥∥∥f̂n − f

∥∥∥2
2
≍

√
log n

n
. (2.2)

This rate of convergence is attained by properly chosen kernel estimators (Zhang

(1997)). The standard proof techniques used to establish Theorem 2 are not tight

enough to establish that f̂NLP attains this minimax rate. It is an interesting topic

for further research to see whether f̂NLP in fact attains it.

2.3. Robustness under model mis-specification

Empirical Bayes techniques are often used in cases where the Gaussian noise

model is known to hold approximately, but not exactly. For example, it is com-

mon to take the Xi to be z-values from a two-sample test, and to interpret µi as

a measure of effect size. In this case, the Gaussian approximation (1.1) is very

accurate for small effects, but deteriorates somewhat as effect sizes get large.

Thus, it is important to show that any estimator f̂ used to estimate the

density of the Xi is robust to modest model mis-specification. Our next result

provides such a guarantee: if the model is mis-specified and f0 is not in E , then
our previous results about the convergence of f̂NLP hold provided we replace the

target f0 with the best possible estimate within E , f̄0 = Pf0. Note that the rate

of convergence result is stated in terms of a global measure of loss and so does not

necessarily tell us how f̂NLP reacts locally to small-scale model mis-specification

(see Jankowski and Wellner (2012) for a discussion of this point in the context

of the Grenander estimator).

Theorem 3 (Robustness). Let X0, . . . , Xn be independently sampled from a dis-

tribution F0 with finite expectation and a bounded density f0, and let f̄0 = Pf0.

Then, the projection estimator f̂NLP is consistent in the sense that limn→∞ ||f̂NLP
−f̄0||2 =p 0. Moreover, if f0 has rapidly decaying tails, then for all α > 0,

lim
n→∞

n
1

2(1+α) ||f̂NLP − f̄0||2 =p 0.

3. Computation

Our estimator f̂NLP is obtained by projecting the empirical distribution onto

the space of possible densities in a Gaussian noise model. Specifically, if we write

δn(X) for the empirical distribution,

f̂NLP = argmin
f∈E

{||f − δn(X)||2}, (3.1)
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where E from (1.3) is (the closure under L2 norm of) the set of densities that

can be written as φ ∗ g for some probability measure g. Of course, δn(X) is not

actually in L2, and we addressed this problem formally in our definition (1.4) of

the projection operator P . However, as shown in Theorem 1, f̂ is stable with

respect to small-scale smoothing. Thus, in practice, we can work with a smoothed

version of δn(X), and avoid integrability issues. Our algorithm represents δn(X)

with a narrow bin-width histogram.

We have emphasized that an advantage of our estimator f̂NLP is that it can

be written as a quadratic program, i.e., a problem of the form

Minimize:
1

2
xTQx+ cTx,

Subject to: Ax ≤ b and Ex = d,

where Q is a positive definite matrix, A and E are linear transformations, and

b, c, and d are column vectors; the minimization is over x. The advantage

of formulating a problem as a quadratic program is that such programs can

be solved efficiently using off-the-shelf software, such as the solve.QP program

provided by the quadprog library for the R programming language.

Because convolution is a linear operation, we confirm that f̂NLP is in fact a

quadratic program by writing it as f̂NLP =φ∗ĝNLP , where ĝNLP is the solution to

Minimize: − 2⟨δn(X), φ ∗ g⟩+ ||φ ∗ g||22,

Subject to: g(µ) ≥ 0 for all µ, and

∫
g(µ) dµ = 1.

In order to make the quadratic program formulation complete, we can think of

g as a discrete function taking values over a fine grid; in this case, g can be

represented as a vector in RM where M is the number of grid points. In the

theoretical section we allowed for
∫
R g(x) dx ≤ 1 to ensure that E is closed under

L2 norm; in practice, however, we only work on finite intervals, and so we can

use
∫
g = 1 as our constraint because we do not need to worry about probability

mass escaping to infinity.

Although the expression is a quadratic program, it is still not ideal from a

computational point of view. The difficulty is that its dimension scales with the

number M of grid points used to describe g, and so it can get computationally

intractable as the number of grid points gets large. Thankfully, we can avoid this

problem by moving into Fourier space. In our problem, most of the interesting

signal is concentrated in the low frequencies, while the high frequencies are sub-

merged by noise. Once we switch to Fourier space, we can throw out the high

frequencies without losing hardly any information. This leads to a substantial

dimensionality reduction, and makes our algorithm fast.
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If we assume that δn(X) is in L2, we can transform the problem into Fourier

space using Plancherel’s identity

||Ff −Fδn(X)||2 = ||f − δn(X)||2,

where F stands for the Fourier transform. Our optimization problem then be-

comes

F f̂NLP = argmin
ζ∈L2(R)

{
||ζ −Fδn(X)||2 : F−1

( ζ
φ

)
∈ D(R)

}
, (3.2)

where D(R) from (1.2) is (a closure of) the space of all probability measures on

R. Here, we took advantage of the fact that convolution becomes multiplication

in Fourier space and that φ is its own Fourier transform; thus f = φ ∗ g if and

only if Ff = φ · Fg. We can show that after transformation into Fourier space

our problem is still a quadratic program, but now with a manageable number

of dimensions. We provide an R implementation of the NLP estimator in the

package nlpden. R-style pseudo-code for our algorithm is given in Procedure 1.

Procedure 1 Computes the projection estimate f̂NLP . FFT stands for Fast Fourier
Transform, while the main minimization step is solved by quadratic programming. Mul-
tiplication and division are computed component-wise.

1 # params
2 # data: the raw observations
3

4 data.histogram <- make_histogram(data)
5 data.fft <- fft(data.histogram)
6 deconvolution.coeffs <- sqrt(2 * PI) * exp(xˆ2 / 2)
7 estimate.fft <-
8 MINIMIZE(dummy_var):
9 squared_distance(data.fft, dummy_var)

10 SUBJECT TO:
11 is_non_negative
12 inverse_fft(deconvolution.coeffs * dummy_var)
13 AND is_one
14 sum(inverse_fft(deconvolution.coeffs * dummy_var))
15 estimate.histogram <- inverse_fft(estimate.fft)

Finally, we emphasize that our algorithm is stable in the limit where the bin-width
of the data histogram goes to zero. This is a direct consequence of Theorem 1, which
guarantees that our procedure is uniformly stable under small smoothing operations.
The nlpden package uses, by default, a bin width of 0.01σ where σ is the standard-
deviation of the noise term; the only reason we don’t use an even smaller bin width is
computational efficiency.
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4. Simulation Study

To test our NLP estimator, we matched it up against three commonly used density
estimators: Poisson regression, Gaussian mixtures, and maximum likelihood.

Poisson regression is advocated by Efron (2007) as a general-purpose density esti-
mator for empirical Bayes analysis. The idea of Poisson regression for density estimation
(e.g., Efron and Tibshirani (1996)) is to model the density f as a natural log-spline, or,
more simply, as

f(x) = exp
[ K∑
k=0

αkx
k
]
.

The latter density estimation problem then reduces to a generalized linear model, and
we can obtain the maximum likelihood estimate for f using standard software such as
glm. Following Efron (2007) and Efron’s R package locfdr, we set the tuning parameter
to K = 7, which is equivalent to setting the degrees of freedom to df = 7 (because the
density must integrate to 1).

Muralidharan (2010) showed that finite Gaussian mixtures can be very useful

for density estimation even in an infinite mixture setup. We assume

f(x) =
J∑
j=1

pjφσj (x− aj), where
∑
j

pj = 1 and σj ≥ 1,

and φσj is the centered normal density with variance σ2j . We fit the mixture using

Muralidharan’s R package mixfdr, which implements the EM-algorithm starting

from five automatically generated initialization states. Following Muralidharan

(2010), we use J = 3 components in our mixture.

Maximum likelihood (ML) methods for density estimation have been recently

advocated by Jiang and Zhang (2009) and Zhang (2009). The ML estimator

is probably the most accurate estimator available for density estimation under

Gaussian noise. The main drawback of ML estimation is that, for this problem,

it is extremely demanding computationally. Jiang and Zhang (2009) run an

EM-algorithm over a fine grid to compute the ML-estimator. In the hope of

getting a computational speed-up, we took a slightly less general approach and

approximated the ML-estimator as a Gaussian mixture with 20 components using

the mixfdr program.

The goal of our simulation study was to evaluate overall performance of

the density estimators, rather than performance along some tightly constrained

metric such as L2 error or likelihood. For this reason, we present simulation

results in a graphical form, and plot the fitted densities for each simulation run.

For empirical Bayes applications, it is important to fit the tails of the density

well; we display the y axis on a log scale so that we can inspect tail fit more

carefully.

For reported run times, our goal was to give reasonable estimates for run
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NLP estimator Maximum likelihood
CPU-time (nlpden): 0.03 sec CPU-time (mixfdr): 1.42 sec

Gaussian mixture Poisson regression
CPU-time (mixfdr): 0.12 sec CPU-time (glm): 0.19 sec

Figure 2. Comparison of four density estimators, run on N =2,000 data
points drawn independently from the distribution:

Xi ∼ µi + εi with µi ∼ G and εi ∼ N (0, 1),

such that g(µ) =
(4− |µ|)+

16
.

The plot shows 50 simulation runs for each estimator, as well as the true tar-
get density as a thick black line. All estimators were run with default tuning
parameters, most importantly J = 3 for the Gaussian mixture (J indicates
the number of prior components) and df = 7 for the Poisson regression. The
maximum likelihood estimator is approximate, and was computed as a Gaus-
sian mixture with J = 20. CPU-time indicates the average time required to
perform one simulation run on the author’s laptop.
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times in ‘regular’ use, rather than to give maximally optimized run times for

each estimator. Here, each estimator could easily be made substantially faster

by cutting some corners. The mixfdr package always uses five starts to estimate

maximum likelihood and Gaussian mixtures, and so we could cut the run time

by a factor 5 by only selecting one start and hoping it works. Similarly, both

nlpden and our implementation of Poisson regression use a histogram with bin

width 0.01 to compute estimates. Arguably, this bin width is needlessly small,

and we could speed up the algorithm a lot (asymptotically by a factor 10 for

nlpden) by moving to a bin width of 0.1. However, instead of tuning each

estimator for the simulation study, we chose to use each estimator with ‘default’

computational parameters.

Our simulation distributions were motivated by the local false discovery rate

problem (Efron et al. (2001)). In the context of the Gaussian noise model, the

goal of false discovery analysis is to discern null effects with µi ≈ 0 from “inter-

esting” effects with |µi| ≫ 0. Typically, empirical Bayes analysis is much easier

to perform when most µi are exactly zero and the others are far from zero, i.e.

when the vector of the µi is sparse. In our simulation study, we first tried a dis-

tribution where this sparsity assumption in fact holds, and then tried a second

one with no sparsity at all: for our first simulation (Figure 1), we let the prior g

be the mixture of a point mass at zero and a uniform distribution on [−10, 10],

while for the second (Figure 2), g had a triangle-shaped density with support on

[−4, 4].

In both examples (Figures 1 and 2), we see that our NLP estimator performs

roughly as well as maximum likelihood, but at a 20–50× reduction in CPU-time.

Poisson regression does quite well for the triangle prior, but does not do well

at all for the first mixture. In particular, it badly undershoots the tails. We

tried increasing the degrees of freedom for the Poisson regression, but this didn’t

help much; rather, the fit started to become very unstable after we introduced

more than 15 degrees of freedom. The 3-component Gaussian mixture somewhat

overshoots the tails in both cases, the effect being more pronounced in Figure 1

than in Figure 2.
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Appendix: Proofs

To make sure that convolution is well specified whenever ψ is a measure, we

define convolution as (K∗ψ)(x) = Eψ[K(x−µ)], where µ is distributed according

to ψ.

Proposition A.1. The projection operator P as described in (1.4) is well-defined

and unique.

Proof. Let ψ ∈ D(R), and let ∆ψ : E → R with ∆ψ(f) = −2⟨ψ, f⟩ + ∥f∥22 be

the objective function from (1.4). We need to show that ∆ψ attains its minimum

value at a unique f∗ ∈ E . Let L = inff∈E{∆ψ(f)}. Because ∆ψ is strictly convex

and bounded below on E , we see that L is finite and that ∆ψ can attain its

infimum L at most once. It remains to show that there exists a solution f∗ ∈ E
satisfying ∆ψ(f

∗) = L.

Our argument is closely adapted from the proof of Hilbert’s projection the-

orem in Rudin (1987). Let {fn}n=1, 2, ... be a sequence of functions satisfying

∆ψ(fn) < L+ 1/n for each integer n. Then, for any m and n,

1

2
∥fm − fn∥22 = ∥fm∥22 + ∥fn∥22 − 2

∥∥∥∥fm + fn
2

∥∥∥∥2
2

= ∆ψ(fm) + ∆ψ(fn)− 2∆ψ

(
fm + fn

2

)
<

1

m
+

1

n
,

where on the last line we used the fact that E is convex and so (fm + fn)/2 ∈ E .
Thus, {fn} is a Cauchy sequence. Because L2(R) is complete and E is closed

under L2 norm, {fn} has a limit f∗ ∈ E . By continuity of ∆ψ we conclude that

∆ψ(f
∗) = L.

Proof of Theorem 1. Let χ(ψ)(t) = Eψ
[
eitX

]
be the characteristic function

of ψ and, for any c > 0, let Tc be the spectral truncation operator

Tc(ψ) = χ−1 [1([−c, c]) · χ(ψ)] ,

where 1 is an indicator function.

With this notation, we can bound the expression of interest with

||P (Kh ∗ ψ)− P (ψ)||22 ≤ 3 · ||(P ◦ Tc)(Kh ∗ ψ)− (P ◦ Tc)(ψ)||22
+3 · ||P (Kh ∗ ψ)− (P ◦ Tc)(Kh ∗ ψ)||22
+3 · ||P (ψ)− (P ◦ Tc)(ψ)||22. (A.1)

We start by giving a uniform bound for the last summand, which also applies to

the second summand.
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It is well known that χ(φ ∗ ψ) = χ(φ)χ(ψ), that χ(φ)(t) = e−t
2/2, and that

||χ(ψ)||∞ ≤ ||ψ||1. Given these observations, we can use Parseval’s theorem to

show that for any c > 0 and ψ1, ψ2 ∈ D(R),

|⟨Pψ1, ψ2⟩ − ⟨Pψ1, Tcψ2⟩| =
1

2π
|⟨χ(Pψ1), χ(ψ2 − Tcψ2)⟩|

≤ 1

2π

∣∣∣⟨e−t2/2, 1({|t| > c})
⟩∣∣∣

=

√
2

π
Φ(−c).

Thus, for any ε > 0, we can pick a c > 0 such that

|⟨Pψ1, ψ2⟩ − ⟨Pψ1, Tcψ2⟩| < ε

for all ψ1 and ψ2 ∈ D(R). Now, with this value of c, we can show that for any

ψ ∈ D(R),

−2⟨P (Tcψ), ψ⟩+ ||P (Tcψ)||22 ≤ −2⟨P (Tcψ), Tcψ⟩+ ||P (Tcψ)||22 + ε

≤ −2⟨Pψ, Tcψ⟩+ ||Pψ||22 + ε

≤ −2⟨Pψ, ψ⟩+ ||Pψ||22 + 2ε.

Here, the first and the last inequalities are due to our choice of c, while the middle

inequality is true since, by the definition of P , we know that

P (Tcψ) = argmin
ψ̃∈E

−2
⟨
ψ̃, Tcψ

⟩
+ ||ψ̃||22.

If we expand the square

||P (Tcψ)||22 = ||Pψ||2 + 2⟨Pψ, P (Tcψ)− Pψ⟩+ ||P (Tcψ)− Pψ||22,

we can write the above inequality as

1

2
||P (Tcψ)− Pψ||22 ≤ ⟨P (Tcψ)− Pψ, ψ − Pψ⟩+ ε.

Finally, since E is a convex set, we must have

⟨P (Tcψ)− Pψ, ψ − Pψ⟩ ≤ 0,

as otherwise, by convexity, there would be a point on the line connecting Pψ

and P (Tcψ) that is strictly closer to ψ than Pψ under L2 norm, which would

contradict the fact that Pψ is the L2 projection of ψ onto E . Thus, by picking

a large enough c, we can make the last two summands in (A.1) smaller than ε

uniformly over D.
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We now move to the first summand. Because the smoothing kernel K has

a finite second moment, χKh converges to 1 as h converges to 0, uniformly on

compact intervals of R. For any ψ ∈ D(R) we have ||χ(ψ)||∞ ≤ 1, and so by

Plancherel’s theorem,

||Tc(Kh ∗ ψ)− Tcψ||22 =
1

2π

∫ c

−c
(1− χ(Kh)(t))

2χ(ψ)(t)2 dt

≤ 1

2π

∫ c

−c
||1− χ(Kh)(t)||22 dt.

Thus, for any fixed c, we can pick an h > 0 that makes this quantity arbitrarily

small uniformly over ψ ∈ D(R). Finally, P is a projection onto a convex set, and

so
||P (ψ1)− P (ψ2)||22 ≤ ||ψ1 − ψ2||22

for any ψ1 and ψ2 in L2(R). Thus, given any ε, c > 0, there is an hc > 0 such

that

||(P ◦ Tc)(Kh ∗ ψ)− (P ◦ Tc)(ψ)||22 < ε

for all 0 < h < hc and ψ ∈ D(R).

Proof of Corollary 1. For convenience, let

δn(X)(x) =
1

n

n∑
i=1

1({x = Xi})

be the empirical distribution. Let φh(x) = h−1 φ(x/h) be the standard Gaussian

kernel with bandwidth h. It is well known (e.g., Rosenblatt (1971)) that, when f0
and its first two derivatives are bounded (this condition is satisfied here because

f0 = φ ∗ g0), there exists a sequence of bandwidths hn → 0 such that

lim
n→∞

||φhn ∗ δn(X)− f0||2 =p 0.

Now, since f0 is in E and this set is convex, taking the projection P f̂ of any

estimator f̂ for f0 can only improve the performance of the estimator under L2

norm, and so

||P (φh ∗ δn(X))− f0||2 ≤ ||φh ∗ δn(X)− f0||2. (A.2)

Finally, by Theorem 1,

lim
n→∞

||P (φhn ∗ δn(X))− Pδn(X)||2 =p 0

uniformly in X, which implies the desired conclusion.
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Proof of Corollary 2. Is is well known (e.g., Bickel and Freedman (1981)) that

the Mallows distance (2.1) has the simpler representation:

d(FX , FY ) =

∫ 1

0

∣∣F−1
X (u)− F−1

Y (u)
∣∣ du.

Let FX and FY probability distributions with finite first absolute moments and

corresponding Radon-Nikodym derivatives ψX = dFX/dλ and ψY = dFY /dλ

with respect to Lebesgue measure λ. We need to show that for any ε > 0 there

is a δ > 0 such that

d2(FX , FY ) < δ implies that ∥P (ψX)− P (ψY )∥22 < ε.

Let ε > 0 be fixed. By Theorem 1, we can pick h > 0 such that

∥P (φh ∗ ψ)− P (ψ)∥22 <
ε

4
for all ψ ∈ D.

It follows that

∥P (ψX)− P (ψY )∥22 ≤ ∥P (φh ∗ ψX)− P (φh ∗ ψY )∥22 +
ε

2

≤ ∥φh ∗ (ψX − ψY )∥22 +
ε

2

=
1

2π

∫
R
e−h

2t2χ2(ψX − ψY )(t) dt+
ε

2
.

Here, the second inequality holds because P is a projection onto a convex set,

while the last equality is an application of Parseval’s theorem. Moreover, since

χ2(ψX − ψY )(t) ≤
(∫ 1

0

∣∣∣eitF−1
X (u) − eitF

−1
Y (u)

∣∣∣ du)2

≤ t2
(∫ 1

0

∣∣F−1
X (u)− F−1

Y (u)
∣∣ du)2

= t2 d2(FX , FY ),

we see that ∥P (ψX) − P (ψY )∥22 ≤ d2(FX , FY )/4
√
π h3 + ε/2. This implies the

desired result.

Proof of Lemma 1. We use bracketing numbers. An ε-bracket with respect

to the metric L2(F0) is a pair of functions [l, u] with l(x) ≤ u(x) for all x ∈ R
such that EF0 [(u(x) − l(x))2] < ε2. The [l, u] bracket contains f if l ≤ f ≤
u. For any set B, we can compute the bracketing number N[ ](ε,B, L2(F0)),

which corresponds to the minimum number of ε-brackets required to cover all

the elements of B.
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Let Bδ(f0) = {f̃ : ||f̃ ||2 < δ, f0 + f̃ ∈ E}. Notice that if f̃ = f − f0, then

Gn(mf −mf0) = Gn(f̃). Because f0 ∈ E we know that ||f0||∞ ≤ 1/
√
2π, and so

EF0

[
f̃2

]
≤ ||f0||∞ · ||f̃ ||22 < δ2. (A.3)

With this bound, we can use Lemma 19.36 of Van der Vaart (2000) to show that

E∗
F0

[
sup

f̃∈Bδ(f0)

∣∣∣Gn

(
f̃
) ∣∣∣] = O

(
J[ ] ·

(
1 +

J[ ]

δ2
√
n

))
,

where J is the bracketing integral

J[ ] =

∫ δ

0

√
logN[ ](ε,Bδ(f0), L2(F0)) dε.

Now, we can write f̃ as φ∗ (g− g0), where g and g0 are probability distributions.

Thus, for any k, f̃ is k-times differentiable with f̃ (k) = φ(k) ∗ (g − g0), and the k

first derivatives of f̃ are bounded by the universal constantMk = 2 sup{|φ(j)(x)| :
x ∈ R, j = 0, . . . , k}. Thanks to this, we can use Example 19.9 of Van der Vaart

(2000) to show that for any k ∈ N∗,

logN[ ](ε,Bδ(f0), L2(F0)) ≤M ′
k

(∑
z∈Z

(∫ z+1

z
f0(x) dx

)1/(1+2k)
)(1+2k)/2k

ε−1/k,

where M ′
k is another universal constant and N∗ is the set of positive integers.

Because we assumed f0 to have rapidly decaying tails, the discretized integral

over f0 is finite. Thus, we find that J[ ] = O(δ(2k−1)/2k), which implies the desired

result.

Proof of Theorem 2. Let k ∈ N∗, rn = n1/(2+1/k), and let Sj,n be the set of

f ∈ E with 2j−1 < rn ||f − f0||2 ≤ 2j . Now,

P ∗(rn ||f̂ − f0||2 > 2M ) ≤
∑
j≥M

P ∗
(

inf
f∈Sj,n

1

n

n∑
i=1

(mf (Xi)−mf0(Xi)) ≤ 0
)
.

We can verify that

EF0 [mf (X)−mf0(X)] = ||f − f0||22, (A.4)

and so
1

n

n∑
i=1

(mf (Xi)−mf0(Xi)) =
1√
n
Gn(mf −mf0) + ||f − f0||22.
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By applying Lemma 1 with our constant k, we get

P ∗(rn||f̂ − f0||2 > 2M )

≤
∑
j≥M

P ∗
(

inf
f∈Sj,n

Gn(mf −mf0) ≤ −
√
n · inf

f∈Sj,n

||f − f0||22
)

≤
∑
j≥M

P ∗
(

inf
f∈Sj,n

Gn(mf −mf0) ≤ −
√
n · 4

j−1

r2n

)

≤Kk ·
r2n√
n
·
(
r−(1−1/(2k))
n +

r
1/k
n√
n

)
·
∑
j≥M

1

2j−2

=
Kk

2M−3
,

where the second-to-last step is valid by Markov’s inequality, and Kk is the

constant from Lemma 1. Since this bound holds uniformly in n, we can conclude

that, for any k ∈ N∗

n
1

2+1/k · ||f̂NLP − f0||2 = O∗
P (1),

where O∗
P (1) means ‘bounded in probability under outer measure’. Because this

result holds for all k ∈ N∗, we get the desired result.

Proof of Theorem 3. Since our proofs are mainly built on geometric arguments,

an extension to mis-specified models is surprisingly straightforward. We begin

by establishing consistency. Since F0 has finite expectation, we know from Bickel

and Freedman (1981) that d
(
F̂

(n)
0 , F0

)
converges to zero in probability, where

F̂
(n)
0 is the empirical distribution (in fact, almost sure convergence also holds).

Thus, by Corollary 2, our projection estimator converges in probability to P (f0).

Now, since f0 is bounded and so (A.3) holds up to a constant, we can use

the same proof as in Lemma 1 to show that, for any k ∈ N∗,

E∗
F0

[
sup

{f∈E:||f−f̄0||2<δ}

∣∣Gn

(
mf −mf̄0

) ∣∣] = O
(
δ(2k−1)/2k +

δ−1/k

√
n

)
,

provided that f0 has rapidly decaying tails. With this result, we can mimic the

proof of Theorem 2 to establish the desired rate of convergence result. The only

difference is that we need to replace (A.4) with

EF0 [mf (X)−mf̄0
(X)] = ||f − f0||22 − ||f̄0 − f0||22

= ||f − f̄0||22 + 2⟨f − f̄0, f̄0 − f0⟩
≥ ||f − f̄0||22,

where the last statement is true because E is convex.
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