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Abstract: Empirical likelihood is developed for autoregressive models with inno-

vations that form a martingale difference sequence. Limiting distributions of the

log empirical likelihood ratio statistic for both the stable and unstable cases are

established. Behavior of the log empirical likelihood ratio statistic is considered

in nearly nonstationary models to assess the local power of unit root tests and to

construct confidence intervals. Resampling methods are proposed to improve the

finite-sample performance of empirical likelihood statistics. This paper shows that

empirical likelihood methodology compares favorably with existing methods and

demonstrates its potential for time series with more general innovation structures.
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1. Introduction

Empirical likelihood was introduced by Owen (1988, 1990) as a way to ex-
tend likelihood based inference ideas to certain nonparametric situations. In the
simplest situation, one is interested in obtaining a confidence region for the mean
µ of some unknown distribution F which gives rise to n independent and iden-
tically distributed (i.i.d.) (p× 1) observations X1, . . . ,Xn. Without specifying a
parametric form for F, Owen (1988, 1990) obtains the empirical likelihood ratio
L(µ0) for testing µ = µ0 and constructs the corresponding confidence region for
µ with approximate coverage probability 1 − α given by

{µ0 : l(µ0) ≤ c1−α}, (1.1)

where c1−α is the 1 − α quantile of χ2
p and χ2

p is a chi-square random variable
with p degrees of freedom. The confidence region (1.1) has the advantage that
its shape is determined by the observations through l(µ) and is not necessarily
ellipsoidal, as in the case for confidence regions based on normal approximations.
Furthermore, empirical likelihood in this situation is Bartlett-correctable so that
a simple analytic correction gives (1.1) an actual coverage probability that differs
from the nominal coverage probability of 1−α by a term of order n−2. These at-
tractive properties have motivated various authors to extend empirical likelihood
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methodology to other situations; see Owen (1991) for linear models, Kolaczyk
(1994) for generalized linear models, and Qin and Lawless (1994) for connections
with general estimating equations.

In this paper, empirical likelihood methodology is developed for autoregres-
sive models with innovations that form a martingale difference sequence, and
we focus on the use of this methodology for a general unstable autoregressive
model. In Section 2, we study how one can define an empirical likelihood ratio
for autoregressive models and we review some of the recent literature on em-
pirical likelihood methodology for dependent data. In Section 3, we derive the
limiting distribution of the log empirical likelihood ratio statistic introduced in
Section 2 for both the stable and unstable cases, and consider a second-order
model as an example. We characterize the limiting distribution for the unstable
case using Brownian functionals, as in Chan and Wei (1988). A special case of
our results appears in Wright (1999). In Section 4, the unstable case is studied
further and unit root tests obtained via empirical likelihood in the first-order
model are compared with existing tests in the literature by using simulations
and local power analyses. We also construct confidence intervals for the largest
autoregressive root in nearly nonstationary models. Section 5 concludes and the
appendix contains the proofs.

2. Empirical Likelihood for Autoregressive Models

We first review the definition of empirical likelihood for the mean, as dis-
cussed by Owen (1988, 1990). Let X1, . . . ,Xn be i.i.d. (p × 1) random vectors
having a common unknown distribution F, and let X = (X1, . . . ,Xn). The non-
parametric maximum likelihood estimate of F is the empirical distribution F̂
which puts equal mass n−1 on X1, . . . ,Xn. Letting F̂ (µ0) be the distribution that
maximizes the empirical likelihood L(X;F ) =

∏n
i=1 F ({Xi}) among all distribu-

tions F with F ({Xi}) > 0 subject to the constraint that the mean of F is µ0,
Owen (1988, 1990) obtains the log empirical likelihood ratio statistic

l(µ0) = 2{logL(X; F̂ ) − logL(XF̂ (µ0))}. (2.1)

He shows further that l(µ0) has a limiting chi-square distribution with p degrees
of freedom provided E||X1||2 <∞. Let pi = F ({Xi}). To maximize L(X , F ) =∏n
i=1 F ({Xi})=∏n

i=1 pi subject to the constraint F has mean µ0, one can intro-
duce a Lagrange multiplier λ and arrive at the following equation for λ:

n∑
i=1

(Xi − µ0)/{1 + λ′(Xi − µ0)} = 0, (2.2)

where λ′ denotes the transpose of λ, with p−1
i = n{1 + λ′(Xi − µ0)}. Since

L(X; F̂ ) = n−n, (2.1) can be written as

l(µ0) = 2
n∑
i=1

log{1 + λ′(Xi − µ0)}. (2.3)
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By appealing to the chi-square approximation, l(µ0) can be used to provide a con-
fidence region for the mean using (1.1). More generally, if θ is associated with F,
information about θ and F is available through r estimating equations g1, . . . , gr
so that E(gi(X1, θ)) = 0 for i = 1, . . . , r. For simplicity, consider the case where
p = r. A similar constrained optimization problem leads to the consideration of

l(θ) = 2
n∑
i=1

log{1 + λ′g(Xi, θ)} (2.4)

as the log empirical likelihood ratio statistic, where g(Xi, θ) = (g1(Xi, θ), . . .,
gr(Xi, θ))′ and the Lagrange multiplier λ satisfies

n∑
i=1

g(Xi, θ)/{1 + λ′g(Xi, θ)} = 0. (2.5)

Note that (2.4) is simply (2.3) with Xi − µ0 replaced by g(Xi, θ), and a similar
connection can be made between (2.5) and (2.2). This formulation is discussed by
Owen (1988, 1990) for M -estimates, and by Qin and Lawless (1994) for general
estimating equations, where they permit r > p.

Mykland (1995) generalizes the definition of empirical likelihood for i.i.d.
data to statistical models with a martingale structure by using the concept of dual
likelihood. In these models, which include conditional least squares estimation
for autoregressive models, the derivative of the objective function with respect
to the unknown parameter given by the “score” function is a martingale under
the true parameter. The “score” function is then used to construct the dual
likelihood ratio statistic. Consider an AR(p) model given by

yt = β1yt−1 + · · · + βpyt−p + εt, (2.6)

where yt is the observation, εt is the unobservable random disturbance at time t,
p is the order of the model, and β1, . . . , βp are the parameters of the model. In
what follows, we assume that the disturbances {εt} form a martingale difference
sequence with respect to an increasing sequence of σ-fields Ft, i.e., εt is Ft-
measurable and E(εt|Ft−1) = 0 a.s. for every t.We also assume that E(ε2t |Ft−1) =
σ2 a.s. for every t. The initial values y0, . . . , y1−p are assumed to be F1-measurable
so that yt is Ft-measurable. The unknown parameter β = (β1, . . . , βp)′ can
be estimated by the conditional least squares estimate β̂ which maximizes the
conditional least squares criterion

−1
2

n∑
t=p+1

(yt − E(yt|Ft−1))2 = −1
2

n∑
t=p+1

(yt − β′yt−1)
2, (2.7)
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where yt = (yt, . . . , yt−p+1)′; see Hall and Heyde (1980, Section 6.3). Thus we
have

β̂ =


 n∑
t=p+1

yt−1y′
t−1




−1
n∑

t=p+1

yt−1yt. (2.8)

Partial differentiation of (2.7) with respect to β yields the “score” function∑n
t=p+1(yt − β′yt−1)yt−1 =

∑n
t=p+1mt, where mt = (yt − β′yt−1)yt−1. Let β0

denote the true parameter value for β. When β = β0,mt = εtyt−1 forms a mar-
tingale difference sequence, and the “score” function then forms a martingale.
The estimate β̂ is the value of β which equates the “score” function to 0.

For autoregressive models, Mykland’s approach leads to the dual/empirical
likelihood ratio statisic

l(β) = 2
n∑

t=p+1

log(1 + λ′mt), (2.9)

where λ satisfies
n∑

t=p+1

mt/(1 + λ′mt) = 0. (2.10)

One could have arrived at the expressions (2.9) and (2.10), in analogy with (2.4)
and (2.5), by treating mt as i.i.d. with E(mt) = 0. Note that (2.3) is well defined
only if µ0 lies in the convex hull of X1, . . . ,Xn. Otherwise l(µ0) = ∞ since it is
then impossible to reweight the data so that the weighted mean is µ0, as pointed
out by Owen (1990, p.106). Similarly, (2.10) is well-defined only if 0 lies in the
convex hull of mp+1, . . . ,mn and l(β) = ∞ otherwise. With this convention, the
value of β which minimizes l(β) is also the conditional least squares estimate β̂.

One reason that Mykland calls (2.9) a dual likelihood statistic is that it
shares properties of parametric likelihood ratio statistics when viewed as a like-
lihood ratio statistic in the dual parameter λ for each fixed β. Let l(ψ) be the
log likelihood based on i.i.d. observations and ψ̂ be the maximum likelihood es-
timate of ψ. The log likelihood ratio statistic for testing ψ = ψ0 is given by
2(l(ψ̂) − l(ψ0)). Let lψ(ψ0) and lψψ(ψ0) be the first and second derivatives of
the log likelihood function evaluated at ψ0. It is well known that the log likeli-
hood ratio statistic is asymptotically equal to the quadratic score (Wald) statistic
−l′ψ(ψ0)l−1

ψψ(ψ0)lψ(ψ0), where l′ψ(ψ0) denotes the transpose of lψ(ψ0), or the score
function at ψ0, and l−1

ψψ(ψ0) denotes the inverse of lψψ(ψ0), or the Hessian ma-
trix. Now, when the dual parameter λ in (2.9) is regarded as freely varying and
β is regarded as fixed, the first and second derivatives of (2.9) with respect to λ
evaluated at λ = 0 are given by

∑n
t=p+1mt and −∑n

t=p+1mtm
′
t. We shall see in
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the next section that familiar Taylor expansion arguments for (2.9) and (2.10),
such as those given in Owen (1990) and Mykland (1995), show that l(β) and

Q(β) =
n∑

t=p+1

m′
t(

n∑
t=p+1

mtm
′
t)
−1

n∑
t=p+1

mt (2.11)

are asymptotically equivalent, and Q(β) is the analogue of the parametric quad-
ratic score statistic.

Recently, Kitamura (1997) and Monti (1997) define empirical likelihood for
certain types of dependent data using different ideas. Kitamura considers models
with weakly dependent observations and uses blocks of observations to define
empirical likelihood by extending the approach of Qin and Lawless (1994) based
on estimating equations. For autoregressive models, (2.9) and (2.10) seem more
natural since we do not need to study the choice of block size. Monti considers
autoregressive models with moving average errors and defines empirical likelihood
in the frequency domain.

3. Asymptotic Distribution of Empirical Likelihood Ratio and Confi-
dence Regions

In this section, the asymptotic distribution of the dual likelihood ratio (2.9)
is obtained for both stable and unstable autoregressive models. Let

φ(z) = 1 − β1z − · · · − βpz
p (3.1)

denote the characteristic polynomial of the autoregressive model (2.6). Then
(2.6) is termed stable when the roots of (3.1) lie outside the unit circle, and
unstable when the roots of (3.1) lie either on or outside the unit circle, with
at least one root on the unit circle. For the rest of the paper, we write

∑
for∑n

t=p+1 . Also, we assume that the sequence {εt} satisfies the additional condition
supt≥p E(|εt|2+α|Ft−1) < ∞ for some α > 0. Proofs are given in the Appendix
and all limits are taken as the sample size n tends to infinity. The following
lemma provides the asymptotic distribution for β̂ and l(β) in the stable case:

Lemma 1. Assume all roots of (3.1) lie outside the unit circle. Then
(i) (

∑
yt−1y′

t−1)
1/2(β̂ − β) converges in distribution to the normal distribution

with mean 0 and dispersion matrix σ2Ip, where Ip is the p×p identity matrix.
(ii) l(β) given by (2.9) converges in distribution to χ2

p.

The Appendix provides arguments that l(β) and the quadratic score Q(β) given
by (2.11) are asymptotically equivalent and that

∑
mtm

′
t =

∑
yt−1y′

t−1ε
2
t can

be replaced by σ2 ∑
yt−1y′

t−1 without affecting the asymptotic distribution of
l(β), so part (ii) then follows from part (i). Let σ̂2 = n−1 ∑

(yt − β̂′yt−1)2. The
following lemma states that σ̂2 is strongly consistent for σ2.
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Lemma 2. Assume all roots of (3.1) lie either on or outside the unit circle.
Then σ̂2 → σ2 a.s.

Consequently, if the model is known to be stable, an approximate 1−α confidence
region for β can be based on either l(β) = 2

∑n
t=p+1 log(1+λ′mt) defined in (2.9),

or S(β) = σ̂−2(β̂−β)′(
∑

yt−1y′
t−1)(β̂−β), and such a confidence region is given

by {β : R(y, β) ≤ c1−α}, where R(y, β) is either l(β) or S(β) and c1−α is the
1−α quantile of χ2

p. The choice of S(β) as the “root” R(y, β) leads to the familiar
ellipsoidal confidence region for β.

We now turn to the unstable case. An unstable AR(1) model is given by
the random walk model with β = β1 = 1. When εt are i.i.d. with common mean
0 and variance σ2, White (1958) shows that (

∑n−1
t=1 y

2
t )1/2(β̂ − 1)/σ converges in

distribution to

L(0) =
1
2
(W (1)2 − 1)/(

∫ 1

0
W (t)2dt)1/2, (3.2)

where W (t) is standard Brownian motion. For a general unstable AR(p) model,
and when εt forms a martingale difference sequence satisfying the conditions in
Section 2, Chan and Wei (1988) show that (

∑
yt−1y′

t−1)
1/2 is of the same order

as a block diagonal non-random matrix (Q′G′
n)

−1 (Q and Gn are defined on
page 379 of Chan and Wei (1988)), and characterize the limiting distribution
of (Q′G′

n)
−1(β̂ − β) with stochastic integrals. The analogue of their result for

empirical likelihood ratio statistics is given by the following theorem (the proof
is given in the Appendix).

Theorem 1. Assume all roots of (3.1) lie either on or outside the unit circle,
with at least one root lying on the unit circle. Then Q(β), S(β) and l(β) all have
the same limiting distribution.

The limit distribution is characterized by Theorem 3.5.1 in Chan and Wei
(1988), which provides the limiting distributions for the three terms in braces in
S(β) = σ̂−2{(β̂ − β)′(GnQ)−1}{GnQ∑

yt−1y′
t−1Q

′G′
n}{(Q′G′

n)
−1(β̂ − β)}.

For the remainder of this section, we use an AR(2) model to explicitly illus-
trate the ideas. Let {yt} be an AR(2) process given by

yt = β1yt−1 + β2yt−1 + εt, (3.3)

with characteristic roots |z1| and |z2| and |z1| ≥ |z2|.
Corollary 1. Let W1(u) and W2(u) be two independent standard Brownian
motions, W̃1(u) =

∫ u
0 W1(s)ds, ξ = (

∫ 1
0 W̃1(u)dW1(u),

∫ 1
0 W1(u)dW1(u))′, and

F =




∫ 1
0 W

2
1 (u)du

∫ 1
0 W1(u)W̃1(u)du∫ 1

0 W1(u)W̃1(u)du
∫ 1
0 W̃

2
1 (u)du


 .
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Let Z be a standard normal random variable independent of W1 and W2. Consider
the AR(2) model {yt} from (3.3) with |z2| = 1. Then Q(β), S(β), and l(β) all
have the same limiting distribution given by

(i) 1
4(W 2

1 (1) − 1)2/
∫ 1
0 W

2
1 (u)du + Z2, if z1 and z2 are both real and |z1| > 1,

(ii) 1
4(W 2

1 (1) − 1)2/
∫ 1
0 W

2
1 (u)du+ 1

4(W 2
2 (1) − 1)2/

∫ 1
0 W

2
2 (u)du, if z1 = −z2 = 1,

(iii){(∫ 1
0 W1(u)dW1(u)+

∫ 1
0W2(u)dW2(u))2+(

∫ 1
0W1(u)dW2(u)−

∫ 1
0 W2(u)dW1(u))2}

/{∫ 1
0 W

2
1 (u) +W 2

2 (u)du}, if z1 and z2 form a pair of complex roots, and
(iv) ξ′F−1ξ, if z1 = z2 = ±1.

Corollary 1 can be used for testing the null hypothesis that β = β0. Let �
be the (closed) triangle in the (β1, β2)-plane with vertices (−2,−1), (2,−1) and
(0, 1), and let int(�) denote its interior, bd(�) its boundary. It is well known
that {yt} is stable when β′ = (β1, β2) lies in int(�) and unstable when β′ lies
on bd(�); see, for example, Brockwell and Davis (1990). One then rejects the
null that β = β0 at level α if l(β0) (or S(β0)) exceeds u1−α(β0), with u1−α(β0)
chosen as follows. When β0 lies in int(�), u1−α(β0) = c1−α. When β0 lies on
bd(�), then u1−α(β0) is either u1−α(i), u1−α(ii), u1−α(iii) or u1−α(iv), the 1 − α

quantiles corresponding to the limiting distributions in cases (i), (ii), (iii) or
(iv) of Corollary 1, respectively. The choice u1−α(β0) when β0 lies on bd(�)
depends on well-known relations between β0 and the roots z1 and z2. Case (i) in
Corollary 1 corresponds to β′ lying on the edge between (0, 1) and (2,−1) (when
β1 + β2 = 1 and z2 = 1) or to β′ lying on the edge between (0, 1) and (−2,−1)
(when β1 + β2 = −1 and z2 = −1). Case (ii) corresponds to β′ = (0, 1). Case
(iii) corresponds β′ lying on the edge between (−2,−1) and (2,−1), whereas case
(iv) corresponds to β′ = (−2,−1) (when z1 = z2 = −1) or β′ = (2,−1) (when
z1 = z2 = 1).

To see how we can compute quantiles, it is useful first to consider the unstable
AR(1) model with yt = yt−1 + εt. Then S1/2(1) = σ̂−1(

∑n
t=2 y

2
t−1)

1/2(β̂ − 1) has
limiting distribution given by L(0) at (3.2), and l(1) has limiting distribution
given by L2(0) by Theorem 1. Let u1−α be the 1 − α quantile of L2(0). Let
Z1t be i.i.d. standard normal random variables, x10 = 0 and x1m =

∑m
t=1 Z1t.

Let �x� denote the greatest integer not exceeding x. Since n−1/2x1,�nu� converges
weakly to W (u), the limiting distribution of L1n = 1

2(x2
1n − n)/(

∑n
t=1 x

2
1,t−1)

1/2

is L(0). Thus u1−α can be approximated by the 1 − α quantile of L2
1n, which

can be obtained by simulation. The numerical results from Chan (1988) suggest
that n = 5000 is sufficiently large to ensure that the effects of discretization
are small. The second row of Table 1 reports the simulated quantiles u1−α for
1 − α = 0.5, 0.8, 0.9, 0.95, 0.975 and 0.99. Each entry was obtained by averaging
the results over 25 simulations based on 99,999 replications (standard errors are
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given in parentheses). Abadir (1995) has computed these quantiles by numerical
methods based on Laplace inversion and his numerical values are summarized in
the first row of Table 1 as u1−α(A). A comparison of the first two rows of Table
1 suggests that this simulation method gives sufficiently accurate answers.

The preceding discussion suggests the following simulation methods for ob-
taining the quantiles for the AR(2) model. Let Z2t be another sequence of i.i.d.
standard normal random variables which are independent of Z1t, and let x20 = 0
and x2m =

∑m
t=1 Z2t. We then approximate the quantiles u1−α(i) and u1−α(ii)

by the 1 − α quantiles of L2
1n + Z2

21 and L2
1n + L2

2n, respectively, where L2n has
a similar expression as L1n with x1t replaced by x2t. The quantile u1−α(iii) is
approximated by the 1 − α quantile of {1

4 (x2
1n + x2

2n − 2n)2 + (
∑n
t=1 x1,t−1Z2t −

x2,t−1Z1t)2}/(∑n
t=1 x

2
1,t−1 +x2

2,t−1). As before the entries in Table 1 are the aver-
ages over 25 simulations based on 99,999 replications and n = 5000. The entries
in Table 1 for u1−α(iv) were computed in the following way. Since case (iv) cor-
responds to β′ = (2,−1) or (−2,−1), we simulated v1t = 2v1,t−1 − v1,t−2 + Z1t

and v2t = −2v2,t−1 − v2,t−2 + Z2t and obtained the 1 − α quantiles of

(
5000∑
t=3

vi,t−1Zit)′(
5000∑
t=3

vi,t−1v
′
i,t−1)

−1
5000∑
t=3

vi,t−1Zit

for i = 1, 2 based on 99,999 replications. Table 1 gives averages based on 25
quantiles from v1t and 25 quantiles from v2t.

Table 1. Percentiles of the limiting distribution for the empirical like-
lihood ratio in unstable AR(1) and AR(2) models (standard errors
are given in parentheses).

Percentiles
0.5 0.8 0.9 0.95 0.975 0.99

u1−α(A) 0.601 1.885 2.978 4.129 5.321 6.938
u1−α 0.601 1.887 2.982 4.133 5.322 6.932

(0.001) (0.002) (0.003) (0.005) (0.007) (0.011)
u1−α(i) 1.536 3.424 4.826 6.232 7.633 9.481

(0.002) (0.003) (0.004) (0.005) (0.009) (0.012)
u1−α(ii) 1.687 3.623 5.051 6.461 7.875 9.723

(0.002) (0.002) (0.004) (0.005) (0.007) (0.010)
u1−α(iii) 1.505 3.408 4.824 6.230 7.640 9.477

(0.001) (0.002) (0.003) (0.005) (0.006) (0.013)
u1−α(iv) 1.971 4.021 5.508 6.966 8.404 10.305

(0.001) (0.002) (0.003) (0.005) (0.007) (0.010)
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We now illustrate the construction of confidence regions through empirical
likelihood.

Example 1. Consider the “deseasonalized” U.S. monthly housing starts data
for the period January 1965 through December 1974, given in Example 6.3
of Reinsel (1997). The series yt has length n = 120 and has been identified
as AR(2). The fitted least-squares model is ŷt = 0.688yt−1 − 0.262yt−2. Also
σ̂ = (

∑120
t=3(yt − β̂yt−1)2/120)1/2 = 5.808,

∑120
t=3 y

2
t−1 = 30424.75,

∑120
t=3 y

2
t−2 =

30283.85, and
∑120
t=3 yt−1yt−2 = 28114.77. Let S(β) = σ̂−2(β̂ − β)′

∑120
t=3 yt−1y′

t−1

(β̂ − β). Given these numbers, an approximate 90% ellipsoidal confidence region
subject to the restriction that the true model is stable is given by {β : S(β) ≤
4.61} ∩ int(�), since c0.9 = 4.61 for χ2

2. This is the region bounded between
the dashed and dotted lines in Figure 1. Note that a point β = (β1, β2) lies
on the dotted segment in Figure 1 if it satisfies β1 + β2 = 1. Also shown in
Figure 1 is the approximate 90% empirical likelihood confidence region subject
to {β : l(β) ≤ 4.61}, which is bounded by the solid and dotted lines. This
region was computed by adapting the Splus function elm written by Art Owen
for computing empirical likelihood ratios for the mean, available on his web page
http://www-stat.stanford.edu/∼art.

0.1

0.2

0.3

0.4

0.5 0.6 0.7 0.8

Figure 1. Approximate ellipsoidal (dashed) and empirical likelihood (solid)
90% confidence regions for β for the housing starts data fitted as an AR(2)
model. Values of β for which the fitted AR(2) model is stable are shown, and
the dotted segment comprises β which satisfy β1 + β2 = 1. The least squares
estimate given by (0.688, 0.262)′ is marked with +.

Example 1 simply serves to illustrate that the shapes of empirical likelihood
confidence regions are not constrained to be elliptical. For these data, a casual
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look at Figure 1 suggests that the data are consistent with β1 + β2 = 1 since
{β : S(β) ≤ 4.61} contains values of β for which β1 + β2 = 1 and β̂1 + β̂2 = 0.95;
note, however, that the chi-square approximation is not valid when β1 + β2 = 1
since we are then in case (i) of Corollary 1. A formal test of β1 + β2 = 1
is considered in the next section. Furthermore, if there is one root of (3.1)
that is near 1 while the remaining roots lie outside the unit circle, the methods
of Stock (1991) can be used to provide asymptotic confidence intervals for the
autoregressive root that is near 1. We return to this point in the next section.

For general AR(2) (or AR(p)) models with possibly multiple roots near or on
the unit circle, the chi-square approximation is poor or invalid. Here the hybrid
resampling method of Chuang and Lai (2000) can be used to obtain a confidence
region for β based on inverting hypothesis tests given by {β : R(y, β) ≤ û1−α(β)}
when εt are assumed to be i.i.d. To describe the resampling method, let the
centered residuals be given by ε̃t = ε̂t − (n − p)−1 ∑n

t=p+1 ε̂t and ε̂t = yt − β̂yt−1

for t = p+1, . . . , n. For a given value of β, we simulate yt(β) = β1yt−1(β)+ · · ·+
βpyt−p(β) + ε∗t for t = p + 1, . . . , n, where ε∗t are generated independently from
the centered residuals ε̃t with the initial values yt(β) set to be yt for t = 1, . . . , p.
Based on each series y(β) = {yt(β)}nt=1, we compute the root R(y(β), β) and then
use the 1−α quantile based on B replications as the quantile û1−α(β). Note that
the hybrid resampling method differs from the usual bootstrap method in that the
simulated quantiles depend on the parameter β (so that one inverts hypothesis
tests), whereas the bootstrap method uses only the least-squares estimate β̂ to
obtain a single 1 − α quantile of the bootstrap distribution.

4. Empirical Likelihood Ratio Unit Root Tests and Confidence
Intervals

In this section, we apply empirical likelihood methodology to the unit root
autoregressive models which have received so much attention in the statistics
and econometrics literature since the seminal work of Dickey and Fuller (1979).
For a general AR(p) autoregressive model given by (2.6), we are concerned with
testing the null hypothesis that exactly one root of φ(z), as given by (3.1), is 1
with the remaining roots outside the unit circle. Note that

β· = β1 + · · · + βp = 1 (4.1)

if and only if φ(1) = 0. An AR(p) model with β· = 1 and all of its remaining
roots outside of the unit circle could have arisen from a model whose difference
is a stationary AR(p − 1) model. An AR(1) model with β1 = 1 corresponds to
the random walk model given by yt = yt−1 + εt.

In parametric problems, testing a constraint such as (4.1) using likelihood
entails that the nuisance parameters be profiled out. The same principle applies
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when empirical likelihood is used. As we have pointed out in Section 2, Mykland’s
dual likelihood for an AR(p) model is given by

LD(β) =
n∏

t=p+1

1
n(1 + λ′mt)

, (4.2)

where λ satisfies (2.10). The unconstrained likelihood is given by LD(β̂) =∏n
t=p+1 n

−1. The empirical likelihood ratio test rejects the null hypothesis that
β· = 1 if

l1 = 2 logLD(β̂) − max
β : β·=1

2 logLD(β) = min
β : β·=1

l(β) (4.3)

is too large, where l(β) is defined in (2.9).
One way to obtain a critical value for such a test is to consider the asymptotic

distribution of l1. As we have pointed out, the empirical likelihood ratio l(β) is
approximately equal to S(β). Let β̂· = β̂1 + · · · + β̂p. The minimum of S(β)
subject to the constraint that β· = 1 is given by

S1 = σ̂−2(β̂· − 1)2/1′ (∑
yt−1y′

t−1

)−1
1, (4.4)

where 1 = (1, . . . , 1)′, which is the square of the usual t-ratio for testing whether
β· = 1. A common procedure for testing whether β· = 1 is to compare the
coefficient of yt−1 with 1 through the t-ratio in a linear regression of yt on yt−1,

yt−1 − yt−2, . . . , yt−p+1 − yt−p, and the square of this t-ratio is equal to (4.4).
Also, when β· = 1, it is well known that the limiting distribution of S1 is given
by L2(0), as defined in (3.2). Taylor expansion arguments similar to those used
to establish Theorem 2 in Owen (1990) for smooth functions of means show that
the limiting distribution of l1 is L2(0).

To apply these ideas, consider again the housing starts data discussed in the
previous section.

Example 2. The observed S(1) for these data is (−1.486)2 = 2.208; note that
Reinsel (1997, p.189) obtains a t-ratio of −1.47 because he uses a divisor of
n − 2 = 118 rather than n = 120 in the estimate of σ2. From u1−α(A) given in
Table 1, since 1.885 < 2.208 < 2.978, the p-value for the null hypothesis that
β1 + β2 = 1 is between 10% and 20%. We used nlmin in Splus to minimize l(β)
subject to the constraint that β1 + β2 = 1 and found a minimum of l1 = 1.819
at (0.688, 0.312)′ . Therefore the p-value for the null hypothesis that β1 + β2 = 1,
using the empirical likelihood ratio unit root test, is larger than 20% since 1.819 <
1.885. This analysis shows that the data are consistent with the hypothesis that
β1 + β2 = 1.
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The behavior of l1 and S1 under local alternatives provides information on
the power of unit root tests. Consider first the AR(1) model

yt = βyt−1 + εt. (4.5)

By Theorem 1, rejecting β = 1 when l1 (or S1) ≥ u1−α is an asymptotically level
α test. We now show that the power of the two tests under local alternatives
of the form β = 1 − γ/n for some fixed γ in (4.5) are asymptotically the same.
Chan and Wei (1987) study the distribution of the least squares estimate in
this situation and show that (

∑n
t=2y

2
t−1)

1/2(β̂ − β)/σ converges in distribution

to L(γ) =
∫ 1
0X(t)dW (t)/(

∫ 1
0 X

2(t)dt)1/2, where X(t) is the Ornstein-Uhlenbeck
process

dX(t) = −γX(t)dt + dW (t), X(0) = 0, (4.6)

and W (t) is standard Brownian motion. A direct argument shows that σ̂ con-
verges to σ in probability so that S(β) is asymptotically L2(γ). Theorem 2 below
states that the limiting distribution of l(β) is also L2(γ). Furthermore, under the
same sequence of local alternatives, l1 and S1 have the same limiting distribution
so that the two unit root tests have the same power against local alternatives, to
first order.

Theorem 2. Let yt = βyt−1 + εt, where β = 1 − γ/n and γ is a fixed constant.
Let X(t) be the Ornstein-Uhlenbeck process given by (4.6). Then the limiting
distribution of l(β) is L2(γ), and l1 and S1 have the same limiting distribution
{L(γ) − γ(

∫ 1
0 X

2(t)dt)1/2}2.

Table 2 summarizes the results of a simulation study which assesses the
small-sample properties of the two unit root tests based on l1 and S1. When
n is large, a test with approximate level 5% rejects the null that β = 1 when
l1 (or S1) ≥ 4.129. To assess whether this approximation is adequate in small
samples, we generated time series according to the model (4.5), starting from
y0 = 0 with independent εt. We used three different distributions for εt: the
standard normal; t with 8 degrees of freedom, denoted t8 in Table 2; χ2

4 − 4 (so
that E(εt) = 0), and n = 50. When the εt were chosen to be standard normal,
we also considered n = 25. Table 2 reports the observed proportions of rejections
based on 10,000 replications. We computed empirical likelihood ratios for l1 by
using Brent’s method (Press, Teukolsky, Vetterling and Flannery (1992)) to solve
for λ, as explained in Owen (1988).

As is evident from Table 2, the actual levels of the two unit root tests can be
rather different from the nominal level of 5% when n is small and the distributions
of S1 and l1 are not well approximated by L2(0). DiCiccio, Hall and Romano
(1991) show that empirical likelihood for the mean is Bartlett-correctable (as are
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parametric likelihoods) so that an analytic correction renders empirical likelihood
confidence regions that have coverage probabilities that differ from their nominal
ones by a term of orderO(n−2).Mykland (1994, 1995) and Kitamura (1997) study
Bartlett corrections for dependent data. However, in most of these situations,
the Bartlett factor is already complicated. For unit root tests, Bartlett correction
appears to be impossible, and Nielsen (1997) has in fact shown that the usual
conditions for Bartlett correction fail even in a simple parametric Gaussian unit
root autoregressive model.

Table 2. Power comparisons for l1 and S1 of nominal level 0.05 and their
modified versions l1r and S1r. The observed levels of the tests are given
under the column β = 1.

β

n εt Test 0.70 0.80 0.85 0.90 0.95 0.99 1.00 1.02 1.10
25 N(0, 1) S1 0.59 0.34 0.24 0.15 0.09 0.06 0.06 0.09 0.66

l1 0.59 0.36 0.26 0.18 0.11 0.08 0.08 0.11 0.67
S1r 0.49 0.27 0.18 0.11 0.06 0.05 0.05 0.07 0.64
l1r 0.44 0.25 0.17 0.11 0.07 0.05 0.05 0.08 0.63

50 N(0, 1) S1 0.97 0.76 0.54 0.31 0.13 0.06 0.05 0.18 0.96
l1 0.95 0.73 0.53 0.31 0.14 0.06 0.06 0.19 0.96
S1r 0.96 0.71 0.48 0.27 0.11 0.05 0.05 0.17 0.96
l1r 0.92 0.67 0.47 0.26 0.11 0.05 0.05 0.16 0.96

50 t8 S1 0.97 0.76 0.54 0.30 0.13 0.06 0.06 0.18 0.96
l1 0.93 0.73 0.55 0.33 0.15 0.07 0.07 0.19 0.96
S1r 0.96 0.71 0.49 0.27 0.11 0.05 0.05 0.17 0.96
l1r 0.88 0.65 0.46 0.27 0.11 0.05 0.05 0.17 0.95

50 χ2
4 − 4 S1 0.97 0.75 0.53 0.30 0.13 0.06 0.06 0.18 0.96

l1 0.91 0.73 0.55 0.33 0.16 0.07 0.07 0.20 0.96
S1r 0.94 0.68 0.46 0.25 0.11 0.05 0.05 0.17 0.96
l1r 0.87 0.64 0.45 0.25 0.12 0.05 0.06 0.17 0.96

Nevertheless, one can use resampling to modify the two tests so that the
levels are closer to the nominal ones. Consider the resampled time series given
by y∗t = y∗t−1 + ε∗t , t = 2, . . . , n and y∗1 = y1, where ε∗t are independent from the
centered residuals ε̃t = ε̂t − (n − 1)−1 ∑n

t=2 ε̂t and ε̂t = yt − β̂yt−1. To obtain
an alternative critical value for S1, compute σ̂∗−2 ∑n

t=2 y
∗2
t−1(β̂

∗ − 1)2 for each
resampled series, where σ̂∗ and β̂∗ are the quantities σ̂ and β̂ computed based on
y∗t instead of yt. The upper 5th percentile after repeating this procedure B times
is then used as the critical value. A similar procedure can be used to obtain an
alternative critical value for l1. Note that this resampling method uses the value
of β = 1 as prescribed by the null hypothesis rather then β̂ used in the usual
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bootstrap. Basawa et al. (1991) show that the bootstrap method based on β̂

gives inconsistent critical values, and the method used here is based on that of
Ferreti and Romo (1996) and Chuang and Lai (2000). In principle the m out of
n bootstrap method can be used, as pointed out by Bickel in his discussion to
Chuang and Lai (2000). However the above resampling method can be easier to
implement since it does not require the user to choose m. The modifications of
l1 and S1 thus obtained based on B = 1999 are denoted by l1r and S1r in Table
2, and the levels are closer to the nominal level of 5%. Again, the observed levels
were obtained based on 10,000 replications.

Table 2 also presents the results of a simulation of the power of the two
tests based on S1 and l1 and their modified versions S1r and l1r, by reporting
the observed proportions of rejections based on 10,000 replications when the true
value of β ranges from 0.7 to 1.1. Similar power studies are reported by Dickey
and Fuller (1979) and Ferreti and Romo (1996). The test based on l1 has slightly
higher power than that based on S1 for values of β ranging from 0.85 to 1.1 for
the cases considered. However, note that the test based on l1 also has slightly
higher levels than that based on S1. For β = 0.7 and 0.8, the test based on S1 has
slightly higher power. Table 2 also indicates that the two unit root tests based
on S1 and l1 have uniformly higher power functions than their modified versions
S1r and l1r, but this appears to be due to the slightly inflated levels of the tests
based on S1 and l1. The power functions of the modified versions S1r and l1r are
quite similar, but S1r has slightly higher power than l1r for β = 0.7 and 0.8.

Finally we generalize the nearly nonstationary AR(1) model (4.5) with β =
1−γ/n to an AR(p) situation. Consider yt = θ1yt−1+xt, where θ1 = 1−γ/n and
xt satisfies an AR(p−1) model given by xt = θ2xt−1+· · ·+θpxt−p+1+εt, with the
roots of 1− θ2z−· · ·− θpzp−1 lying outside of the unit circle. Stock (1991) shows
that the process {yt} can be rewritten as yt = β1yt−1+· · ·+βpyt−p+εt, where β1 =
θ1 + θ2, βi = θi+1 − θ1θi for i = 2, . . . , p− 1, and βp = −θ1θp. The characteristic
polynomial (3.1) factors as (1 − θ1z)(1 − θ2z − · · · − θpz

p−1) so that there is a
single root near the unit circle, given by z = 1/θ1 = (1− γ/n)−1. The arguments
in Stock (1991) can be used to establish that the limiting distribution of S1 as
defined in (4.4) is {L(γ) − γ(

∫ 1
0 X

2(t)dt)}2, which is the same as that given in
Theorem 2 for a nearly nonstationary AR(1) model. Taylor expansion arguments
then show that l1 as defined in (4.3) has the same limiting distribution. These
results can be used to construct confidence intervals for θ1 = 1−γ/n and 1/θ1 by
using signed square roots of either l1 or S1, sgn(β̂·−1)

√
l1 or sgn(β̂·−1)

√
S1. The

limiting distribution of the signed roots is L(γ) − γ(
∫ 1
0 X

2(t)dt), or equivalently
by

1
2
(X2(1) − 1)/(

∫ 1

0
X2(t)dt)1/2, (4.7)
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where X(t) is the Ornstein-Uhlenbeck process given in (4.6); see Chan (1988,
p.859). To find confidence intervals, we need the quantiles of (4.7), which can be
tabulated as follows. We approximate the integral in (4.7) by 1

n

∑n−1
i=0 X

2(i/n),
where X0 = 0. To simulate X(i/n), note that its conditional distribution given
X((i − 1)/n) is normal with mean exp(−γ/n)X((i − 1)/n) and variance {1 −
exp(−2γ/n)}/(2γ); see Karatzas and Shreve (1991, p.358). The 0.01, 0.025,
0.05, 0.1, 0.8, 0.9, 0.95 and 0.99 percentiles are provided in Table 3 for selected
values of γ. We used n = 500 and 99,999 replications to compute the quantiles,
each averaged over 25 such simulations.

Table 3. Percentiles of the limiting distribution of (X2(1) − 1)/{2(
∫ 1

0
X2(t)

dt)1/2}, where X(t) is the Ornstein-Uhlenbeck process dX(t) = −γX(t) +
dW (t) with X(0) = 0 (standard errors are given in parentheses for γ < 0,
the standard errors for the entries with asterisks are at most 0.002 and the
standard errors for the rest of the entries are at most 0.001).

Percentiles
0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

−5 −0.975 1.08 4.02 9.06 122.7 146.2 167.3 192.5
(0.007) (0.012) (0.014) (0.021) (0.07) (0.083) (0.119) (0.149)

−4 −1.599 −0.86 0.46 2.75 45.14 53.82 61.58 70.82
(0.004) (0.006) (0.007) (0.008) (0.028) (0.031) (0.04) (0.053)

−3 −1.929 −1.452 −0.948 0.059 16.67 19.90 22.81 26.23
(0.003) (0.003) (0.002) (0.004) (0.010) (0.012) (0.017) (0.023)

−2 −2.179 −1.779 −1.416 −0.951 6.262 7.532 8.66 10.00
(0.002) (0.002) (0.002) (0.002) (0.004) (0.005) (0.007) (0.009)

−1 −2.384 −2.026 −1.713 −1.347 2.437 3.037 3.559 4.166
(0.002) (0.002) (0.001) (0.001) (0.002) (0.002) (0.003) (0.003)

1 −2.730∗ −2.407∗ −2.137 −1.835 0.126 0.444 0.721 1.051∗

2 −2.878∗ −2.566∗ −2.309 −2.022 −0.322 −0.051 0.192 0.486∗

3 −3.014∗ −2.712 −2.463 −2.188 −0.618 −0.388 −0.171 0.098∗

4 −3.141∗ −2.849 −2.606 −2.338 −0.835 −0.637 −0.443 −0.196∗

5 −3.262∗ −2.975 −2.739 −2.477 −1.014 −0.834 −0.660 −0.433
6 −3.377∗ −3.095 −2.863 −2.606 −1.170 −1.000 −0.840 −0.633
7 −3.486∗ −3.209 −2.980 −2.728 −1.311 −1.147 −0.997 −0.805
8 −3.59∗ −3.317 −3.092 −2.843 −1.441 −1.280 −1.138 −0.958
9 −3.689 −3.421 −3.199 −2.953 −1.563 −1.404 −1.266 −1.095
10 −3.786∗ −3.520 −3.301 −3.058 −1.677 −1.520 −1.384 −1.221
15 −4.222 −3.970 −3.759 −3.526 −2.175 −2.021 −1.891 −1.741
20 −4.604 −4.361 −4.156 −3.929 −2.595 −2.440 −2.311 −2.164
25 −4.950 −4.711 −4.512 −4.289 −2.964 −2.808 −2.679 −2.533
50 −6.344 −6.122 −5.933 −5.721 −4.414 −4.254 −4.120 −3.971
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Example 3. We use the housing starts data considered in Examples 1 and 2 to
illustrate how approximate 90% confidence intervals can be constructed. The t-
statistic sgn(β̂· − 1)

√
S1 equals −1.486. Values of γ consistent with the observed

data are those for which −1.486 lies between the 5th and 95th percentiles of
(4.7). Table 3 indicates that a rough range of γ values consistent with the data is
−1 ≤ γ ≤ 9. Since n = 120, an interval for the autoregressive root near 1 is given
by (1−γ/n)−1 or [0.99, 1.08]. Similarly, the signed root of l1 is −√

1.819 = −1.349
and this leads to the interval −2 ≤ γ ≤ 8, which corresponds to [0.98, 1.07] for
the largest autoregressive root.

5. Conclusion

This paper shows that empirical likelihood is an effective method for an-
alyzing unstable autoregressive time series. It offers a promising direction to
study general unstable autoregressive models such as those generated by the long-
memory processs studied in Chan and Terrin (1995), or by the heteroskedastic
processes studied in Ling and Li (1998).
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Appendix (Proofs)

Proof of Lemma 1. Part (i) is a special case of Theorem 3 of Lai and Wei
(1982) since n−1 ∑

yt−1y′
t−1 converges a.s. to a nonsingular limit. This can be

shown by applying a strong law for martingales due to Chow (1965, Theorem 2)
and modifying arguments for Theorem 6.6 in Hall and Heyde (1980).

Part (ii) follows by first showing that l(β) is asymptotically equivalent to∑
m′
t(

∑
mtm

′
t)
−1mt, where mt = yt−1εt. This asymptotic equivalence uses fa-

miliar arguments in the literature; see for example, the proof of Theorem 1 below
for the unstable case. The assertion then follows from part (i) and n−1(

∑
mtm

′
t−

σ2 ∑
yt−1y′

t−1) → 0 a.s., which can be established using arguments similar to
those used to prove part (iii) of Lemma 5 below.

Proof of Lemma 2. The assertion follows from Lemma 3 of Lai and Wei (1982)
and Corollary 1 of Lai and Wei (1985).

We now turn our attention to establishing the limiting distribution of l(β)
in the unstable case. First, follow Chan and Wei (1988) and factorize (3.1) using
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its roots, so that φ(z) = (1 − z)a(1 + z)b
∏l
k=1(1 − 2 cos θkz + z2)dkψ(z), where

a+b+2d1 + · · ·+2dl = p. Let (1−B)jut(j) = εt, j = 1, . . . , a, (1+B)jvt(j) = εt,

j = 1, . . . , b, (1− 2 cos θkB+B2)dky(dk)t(j) = εt, j = 1, . . . , dk, and ψ(B)zt = εt.

Let

y(dk)t = (n−1y(dk)t(1), n−1y(dk)t−1(1), . . . , n−dky(dk)t(dk), n−dky(dk)t−1(dk))′

for k = 1, . . . , l. Define the matrices Gn andQ, as in Chan and Wei (1988), so that
(GnQ)yt = Yt, where Yt=(n−aut(a), . . . , n−1ut(1), n−bvt(b), . . . , n−1vt(1),y(d1)′t,
. . . ,y(dl)′t, n−1/2zt, . . . , n

−1/2zt−q+1)′. Multiplying yt by the matrix GnQ trans-
forms the AR(p) model into its individual components and simplifies the analysis.

Now, let λ̃ = (Q′G′
n)−1λ, and rewrite (2.10) as

n∑
t=p+1

nt/(1 + λ̃′nt) = 0, (A.1)

where nt = (GnQ)mt = Yt−1εt. In Theorem 1 below, we modify Owen’s (1990) ar-
gument to derive the distribution of l(β); see also Mykland (1995). This analysis
is preceded by three lemmas.

Lemma 3. Let 0 < α′ < α.

(i) maxp+1≤t≤n |εt| = o(n1/(2+α′)) a.s.
(ii) n−1 ∑

ε2t → σ2 a.s.
(iii)

∑ |εt|3 = o(n1+1/(2+α′)) a.s.

Proof. Part (i) is proved in Theorem 1 of Lai and Wei (1982). Part (ii) follows
from Chow’s strong law for martingales. Part (iii) then follows from parts (i)
and (ii), and the fact that

∑ |εt|3 ≤ maxp+1≤t≤n |εt|∑ |εt|2.
Lemma 4.
(i) Let Mtn, t = 1, . . . , kn, be a p × 1 martingale difference array adapted to a

sequence of filtrations Gtn for each n. Let Unn =
∑kn
t=1MtnM

′
tn and Vnn =∑kn

t=1E(MtnM
′
tn|Gt−1,n). Suppose that supn P (||Vnn|| > a) → 0 when a→ ∞

and for all δ > 0,
∑kn
t=1E(||Mtn||21(||Mtn|| > δ)|Gt−1,n) → 0 in probability.

Then Vnn − Unn → 0 in probability.
(ii) Let Xt be random variables and Ft be a filtration. Suppose suptE(|Xt|p|Ft−1)

< ∞ a.s. for p > 1. If max1≤t≤n P (At|Ft−1) → 0 a.s., then max1≤t≤n
E(|Xt|1{At}|Ft−1) → 0 a.s.

Proof. Part (i) can be proved by adapting the proof of Theorem 2.23 of Hall and
Heyde (1980) for scalar Mtn to vector-valued Mtn. The proof of (ii) is similar to
proofs for uniform integrability of random variables; see Billingsley (1995, pp.217-
218).
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Lemma 5.
(i) maxp≤t≤n ||Yt|| = O(n−1/2(log log n)1/2) a.s.
(ii) maxp+1≤t≤n ||nt|| = o(1) a.s.
(iii)

∑
Yt−1Y

′
t−1 converges in distribution to a nonsingular limit and

∑ ||Yt−1||2 =
Op(1).

(iv)
∑
ntn

′
t −

∑
Yt−1Y

′
t−1σ

2 converges in probability to 0.
(v) Let σn be the smallest eigenvalue of

∑
ntn

′
t. Then σn converges in distribution

to a strictly positive random variable.

Proof. Consider the case when ψ(z) ≡ 1 first, that is, when all the roots of (3.1)
lie on the unit circle. The first component of Yt involves n−aut(a), where ut(a)
satisfies (1 − B)aut(a) = εt, so that maxp≤t≤n ||ut(a)|| = O(na−1/2(log log n)1/2)
a.s. by Theorem 1 of Lai and Wei (1982). A similar analysis can be carried out for
the other components. Part (ii) holds since maxp+1≤t≤n ||nt|| ≤ maxp≤t≤n−1 ||Yt||
maxp+1≤t≤n |εt|.

Part (iii) follows from Chan and Wei (1988), who show that n1/2Yt converges
in distribution to a random process and that

∑
Yt−1Y

′
t−1 converges in distribution

to a nonsingular limit. Thus n−1 ∑ ||n1/2Yt−1||2 converges in distribution by the
Continuous Mapping Theorem.

To prove part (iv), we apply part (i) of Lemma 4, with Mtn = nt = Yt−1εt.

Thus Unn =
∑
MtnM

′
tn =

∑
Yt−1Y

′
t−1ε

2
t and Vnn =

∑
E(Yt−1Y

′
t−1ε

2
t |Ft−1) =

σ2 ∑
Yt−1Y

′
t−1. Since Vnn converges in distribution by part (iii), supn P (||Vnn|| >

a) → 0 when a → ∞. Then
∑
E(||Mtn||21(||Mtn|| > δ)|Ft−1) ≤ ∑ ||Yt−1||2

maxp+1≤t≤nE(ε2t 1(||Mtn|| > δ)). Since
∑ ||Yt−1||2 = Op(1), it suffices to show

that maxp+1≤t≤n E(ε2t 1(||Mtn|| > δ)) → 0 a.s. This follows from part (ii) of
Lemma 4 and P (ε2t >δ

2/||Yt−1||2|Ft−1)≤E(ε2t |Ft−1)||Yt−1||2/δ2 =σ2||Yt−1||2/δ2,
and then maxp≤t≤n ||Yt||2 → 0 a.s. by part (i).

Part (iv) follows from parts (iii) and (iv) and the Continuous Mapping The-
orem.

If (3.1) has roots outside of the unit circle as well, the results still hold by
noting that for zt = (zt, . . . , zt−q+1)′, ||zt|| = o(n1/(2+α′)) a.s. for 0 < α′ < α, as
proved in Lai and Wei (1985, Theorem 1), and that n−1 ∑

ztz′t converges a.s. to
a nonsingular limit, as indicated in the proof of Lemma 1.

Proof of Theorem 1. First we establish that λ̃ = Op(1). Let λ̃ = ρψ, where
ρ = ||λ̃|| and ψ = λ/||λ̃||, so that ||ψ|| = 1. From (A.1), we obtain that
ψ′(

∑
nt − ρ

∑ ntψ′nt

1+ρψ′nt
= 0. Solving for ρ yields ρ = (ψ′ ∑ ntn′

t
1+ρψ′nt

ψ)−1ψ′ ∑nt.

Since ||ψ|| = 1, ψ′ ∑ntn
′
tψ ≥ σn, where σn is the smallest eigenvalue of

∑
ntn

′
t.

The argument in Owen (1990, p.101) shows that 1 + ρψ′nt > 0, so that ρ ≤
(ψ′ ∑ntn

′
tψ)−1(ψ′ ∑nt)(1+ρmaxp+1≤t≤n ||nt||)≤σ−1

n (ψ′ ∑nt)(1+ρmaxp+1≤t≤n
||nt||). By part (v) of Lemma 5, σ−1

n converges in distribution to an a.s. finite
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random variable. Also,
∑
nt = (

∑
Yt−1Y

′
t−1)(Q

′G′
n)

−1(β̂−β) = Op(1); see Chan
and Wei (1988, p.379), and maxp+1≤t≤n ||nt|| = o(1) a.s. Thus λ̃ = Op(1).

By using the identity (1 + x)−1 = 1 − x + x2(1 + x)−1 to expand (A.1), we
obtain an expression involving λ̃:

∑
nt(1− λ̃′nt+ 1

2(λ̃′nt)2(1+ λ̃′nt)−1) = 0. This
implies that λ̃ = (

∑
ntn

′
t)
−1 ∑

nt + δ, where δ = (
∑
ntn

′
t)
−1 ∑ 1

2nt(λ
′nt)2(1 +

λ̃nt)−1. Now we show that δ = op(1). Note that
∑ ||nt(λ̃′nt)2(1 + λ̃′nt)−1|| ≤

||λ̃||2 ∑ ||nt||3 maxp+1≤t≤n(1+ λ̃′nt)−1. Since λ̃=Op(1), nt=o(1) a.s., (
∑
ntn

′
t)
−1

= Op(1), and
∑ ||nt||3 ≤ maxp≤t≤n ||Yt||3 ∑ |εt|3 = o(1) a.s. by part (iii) of

Lemma 3 and part (i) of Lemma 5, δ = op(1).
Next, noting that λ̃′nt = op(1), we expand (2.9) as

2
∑

log(1 + λ̃′nt) = 2
∑

(λ̃′nt − (λ̃′nt)2/2 + rt)

=
∑

n′t(
∑

ntn
′
t)
−1

∑
nt − δ′(

∑
ntn

′
t)
−1δ + 2

∑
rt,

using the relation λ̃ = (
∑
ntn

′
t)
−1 ∑

nt + δ. Taylor’s Theorem with remainder
implies that 6

∑ ||rt|| ≤ ||λ̃||3 ∑ ||nt||3 = op(1), as we have shown before. The
term δ′(

∑
ntn

′
t)−1δ is of smaller order. Thus, l(β) and

∑
n′t(

∑
ntn

′
t)−1 ∑

nt =∑
m′
t(

∑
mtm

′
t)−1 ∑

mt = Q(β) have the same limiting distribution. By part (iv)
of Lemma 5, Q(β) and S(β) are asymptotically equivalent.

The proof of Theorem 2 relies on the following Lemma.

Lemma 6.
(i) Let at,n, t = 1, . . . , n and n = 1, 2, . . . be a double array of constants sat-

isfying an,n → a, finite, and supn
∑n
t=2 |at,n − at−1,n| < ∞. Then for any

δ > 1/2, n−δ
∑n
t=1 at,nεt → 0 a.s.

(ii) Let yt = βyt−1 + εt, where β = 1 − γ/n and γ is a fixed constant. Then
max2≤t≤n |yt|/nδ = o(1) a.s. for any δ > 1/2.

Proof. Let S0 = 0 and Sk =
∑k
t=1 εt. By Chow’s strong law for martin-

gales, Sn/nδ → 0 a.s. and max1≤k≤n |Sk|/nδ → 0 a.s. Summing by parts
yields

∑n
t=1 at,nεt = an,nSn − ∑n

t=1 St−1(at,n − at−1,n). Part (i) follows from∑n
t=1 |St−1||at,n − at−1,n| ≤ max1≤t≤n |St|∑n

t=1 |at,n − at−1,n|.
To prove part (ii), note that yt =

∑n
t=1(1− γ/n)n−tεt. Apply part (i) to the

double array of constants at,n = (1 − γ/n)n−t.

Proof of Theorem 2. Let yt = βyt−1 + εt, where β = 1 − γ/n. The proof of
Theorem 1 shows that as long as

∑n
t=2 n

2
t converges in distribution to an a.s.

positive random variable and max2≤t≤n |nt| = o(1) a.s., l(β) = Q(β) + op(1),
where Q(β) = (

∑n
t=2 nt)

2/
∑n
t=2 n

2
t and nt = n−1yt−1εt. Note that

∑n
t=2 n

2
t con-

verges to σ2
∫ 1
0 X(t)2 in distribution by applying part (i) of Lemma 4 and results

in Chan and Wei (1987). Also, by part (i) of Lemma 3 and part (ii) of Lemma
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6, max2≤t≤n |nt| = o(1) a.s., since max2≤t≤n |nt| ≤ max1≤t≤n |yt|max1≤t≤n |εt|.
Thus, l(β) and Q(β) have limiting distribution given by L2(γ).

Under the sequence of local alternatives β = 1− γ/n, S
1/2
1 = (

∑n
t=2 y

2
t−1)

1/2

(β̂− 1)/σ̂ = (
∑n
t=2 y

2
t−1)

1/2(β̂−β)/σ̂− γ(σ̂−2n−2 ∑n
t=2 y

2
t−1)

1/2, which converges
in distribution to L(γ) − γ

∫ 1
0 X

2(t)dt, since σ̂ is still consistent for σ. Thus S1

converges in distribution to {L(γ) − γ
∫ 1
0 X

2(t)dt}2.

To derive the distribution of l1 under the same sequence of local alternatives,
note that the argument in Theorem 1 shows that l1 = S1+op(1) provided

∑n
t=2 n

2
t

converges in distribution to a positive random variable and max2≤t≤n |nt| = o(1)
a.s., where nt = n−1yt−1(yt−yt−1) = n−1yt−1εt−n−2γy2

t−1. By part (ii) of Lemma
6, max2≤t≤n |nt| = o(1) a.s. One can also show that

∑n
t=2 n

2
t still converges in

distribution to
∫ 1
0 X

2(t)dt.
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