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DENSITY ESTIMATION IN STRONGLY DEPENDENT
NON-LINEAR TIME SERIES
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Abstract: Smoothed nonparametric density estimates can be useful in analysing
nonlinear time series. Their asymptotic properties in weakly dependent series, in-
cluding limiting distributions and mean squared error, are known to be similar to
those in independent series. Robinson (1987) found evidence that these proper-
ties may not hold in strongly dependent, or “long-memory” Gaussian time series.
The present paper derives normal and non-normal limiting distributions in case of
long-memory nonlinear series, provides a numerical comparison of integrated mean
squared error, and reports estimates based on simulated series.
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1. Introduction

In recent years there has been increasing interest in approaches to time
series analysis that offer an alternative to linear autoregressive moving average
(ARMA) modelling. Two aspects of the latter approach might be questioned.

Let y;, t = 1,2,..., be a real-valued, strictly stationary time series, with
E(y?) < oo. Gaussian ARMA models assume that E(y:|ys,s < t) is linear in
(ys,8 < t). Such linearity is a consequence of Gaussian y;. But it need not be
a natural assumption in case of non-Gaussian y;. Moreover, the usual estimates
of ARMA coefficients are Gaussian, in the sense that while Gaussianity need
not be assumed in the asymptotic statistical theory, the estimates have the same
asymptotic distribution to first order as Gaussian maximum likelihood estimates.
When Gaussianity does not hold, more efficient estimates exist.

The second aspect of ARMA modelling that may be of concern is its short
memory property, at least, so far as second moments are concerned. By virtue
of stationarity, the autocovariance v; = E{(y1 — Ev1)(¥1+; — Ev14;)} decays
exponentially as |[j| — oo. A greater degree of persistence might be envisaged.
In particular 7; might follow a power law, 7; ~ |j|™%, @ > 0. Of particular
interest are cases when 0 < a < 1, so the 7; are not even summable. Then y; is
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sometimes said to be “strongly dependent” or “long memory”.

There has been considerable activity in developing usable parametric time
series models that allow explicitly either for nonlinear behaviour, or for long
memory behavior. There seems to have been much less progress in developing
usable, plausible models that are known to possess aspects of both properties
(though see e.g. Rosenblatt (1987) and Taqqu (1987)). Indeed, much nonlin-
ear parametric modelling has tended to emphasize processes with Markovian
behavior, while much work on long memory modelling has explicitly assumed
Gaussianity, and thus linearity. Evidently there exist many ways in which one
might construct nonlinear models whose autocovariance structure displays long
memory behavior. This very multiplicity of possibilities makes it difficult to de-
cide which models to study. One would like some evidence that the model makes
physical sense, or convincingly fits some data. Therefore an alternative approach
that has some appeal in very long time series is nonparametric.

It is well known that many features of the distribution of {y;,t > 1} can be
estimated nonparametrically; for example, the (possibly non-Gaussian) probabil-
ity density of ¥ or the joint density of y;, y2 when these exist, or the (possibly
non-linear) regression E(y;|y;). Nonparametric estimates converge more slowly
than estimates of correctly specified parametric models, but because of their
valuable robustness property they play a useful role in exploratory analysis, with
a view to possibly suggesting functional forms usable in subsequent parametric
analysis. While the bulk of research on the properties of smoothed nonparamet-
ric estimates has assumed independent observations, there is also a long-standing
literature which places them in dependent environments.

In particular, Rosenblatt (1970) and Roussas (1969) found that Parzen’s
(1962) central limit theorem for kernel probability density estimates continues to
hold for many Markovian y;. The two most interesting features are: (a) the vari-
ance in the limiting distribution is unaffected by serial dependence, in contrast
to the situation with parametric estimates; (b) the multivariate central limit
theorem, for density estimates at a number of fixed points, has a diagonal covari-
ance matrix, so that estimates are asymptotically independent. The same results
were subsequently shown to hold for more general schemes of serial dependence,
such as many a-mixing sequences (see e.g. Robinson (1983)). Such results are
practically welcome, because they justify interval estimates and test statistics of
a very simple form, even in the presence of very general nonparametric serial
dependence.

Analogous results are available for a popular global measure of goodness of
probability density estimates, integrated mean squared error (IMSE). In partic-
ular, results of Prakasa Rao (1978) and Ahmad (1982) indicate that the results
of Rosenblatt (1956) on asymptotic behavior of IMSE continue to hold for many
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Markovian and a-mixing sequences, respectively. An important practical im-
plication is that “optimal” bandwidths that minimize asymptotic IMSE in the
independent case are likewise optimal under weak dependence.

There is now a large literature on smoothed nonparametric estimates under
serial dependence. Given this evident interest in nonparametric treatment of non-
linear time series, and given also the interest in long-memory modelling of time
series, it seems worthwhile to enquire about statistical properties of nonpara-
metric estimates based on processes that exhibit characteristics of long-memory
behaviour. In fact, nearly all the nonparametric literature appears to assume
some mixing behaviour in deriving CLT and IMSE results, and often even in
consistency reults. In particular, at least strong mixing is often assumed. But a
Gaussian strong mixing process is not long-memory.

In Robinson (1987), some properties of kernel density estimates were in-
vestigated in long-memory environments. In case of a Gaussian process and a
Gaussian kernel, some numerical calculations of exact finite sample behaviour
indicated a lack of robustness of the previously described CLT to long-memory
behaviour. These results were explained by a limit theorem. The Gaussianity
assumption usually leads to a limiting Gaussian distribution, but the limiting
variances are affected by strong dependence; and the limiting covariance matrix
of estimates at several fixed points, far from being diagonal, has unit rank. A
theoretical study of the asymptotic IMSE of kernel density and derivative-of-
density estimates was also carried out by Robinson (1987) in the Gaussian case,
with v; ~ |§]~*. It was found that only for @ above a certain threshold in (0,1)
do the properties under independence/weak dependence continue to hold. How-
ever, this threshold diminishes as the order of derivative of interest increases (the
order of magnitude of IMSE increases with derivative order). It also emerged
that the IMSE-reducing benefits of using “higher-order” kernels can disappear in
the presence of sufficiently long-memory behaviour, although optimality results
in case of very unsmooth derivatives may remain intact. The indications are that
optimal bandwidths can often, but not always, be affected by a suitable degree of
long-memory dependence, as therefore can be the properties of automatic meth-
ods of bandwidth choice which approximate them, such as cross-validation. In
addition, Robinson (1987) explored the role of weighted kernel estimates in the
long-memory case, and a non-mixing condition that may suffice for consistency.

In this paper we substantially extend these results. The asymptotic distri-
butional result of Robinson (1987) is suggestive, but assuming Gaussianity of
the time series in nonparametric estimation is paradoxical, and one would like
to know what can happen in nonlinear series. We thus consider limiting dis-
tribution theory in case y; is a possibly non-linear, non-instantaneous function
of unknown form of an underlying long-memory Gaussian sequence. The IMSE
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results of Robinson (1987) are all asymptotic, and convergence to the asymptotic
regime, always slow in nonparametric estimates, is liable to be particularly slow
for long-memory series. We thus present some finite sample numerical calcula-
tions. In addition, we also report a small comparison of density estimates based
on artificial series.

Section 2 introduces the kernel estimates. Section 3 presents an asymptotic
normality theorem and includes some discussion of regularity conditions. Sec-
tion 4 presents a corresponding theorem to cover some cases where the limiting
distribution is non-normal. Section 5 contains the IMSE calculations. Section 6
considers density estimation from artificial series. Appendix 1 discusses an im-
portant condition in Theorem 1. Appendices 2 and 3 respectively contain the
proofs of our two theorems.

2. Kernel Density Estimate

In this section we introduce the kernel density estimate and summarize its
known asymptotic properties under weak dependence. We shall always assume y;
has a probability density, denoted by f(y), —o0 < ¥y < 0o. We wish to estimate f
at various values of y, on the basis of observations (y:;¢t = 1,... ,N). The kernel
estimate of f(y) is

Fo) = = S K(L2H) (2.1)
Na & a /° |

Here, a is a prescribed positive number. In asymptotic theory it is assumed, at
least, that a — 0 as N — o0o. The real function K, the kernel, satisfies, at least,

/°° K(u)du = 1. (2.2)

Under regularity conditions, we have a result of the form mentioned in the
previous section

(Na)H{F(¢) = F(C)s-- » F(Cs) — £(C)}
— (0, [ K*(w)dudiag{f(G1),- , F(C)}),

-0

(2.3)

as N — oo, for distinct (y,...,(s. This is known to be true in case of many

weakly dependent y; (see e.g. Roussas (1969), Rosenblatt (1970) and Robinson
(1983)).
Now consider the IMSE

() = [ B(R) - S d.
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The order of magnitude and leading term of this varies, in a way which depends
on the smoothness of f and the choice of K. If these features are fixed, then it
is known that the ratio

IMSE(f) : y; independent
IMSE(f) : y+ weakly dependent

converges to 1 as N — oo. This is known to be true in case of many weakly
dependent y; (see e.g. Prakasa Rao (1978) and Ahmad (1982)).

3. Asymptotic Normality under Strong Dependence

In this section we show that f(y) can sometimes still be asymptotically nor-
mal under long-memory dependence in y;, though the precise form of the limit-
ing distribution differs from that in (2.3). Our results extend those of Robinson
(1987), who assumed y; Gaussian. We consider the case where y; is a nonlinear
and possibly noninstantaneous function of an underlying unobservable stationary
Gaussian process {z,t > 1}. Let Ez; =0, Ez3 = 1 and

pi = Ezyz14j ~ H2H - 1)j2H2 a5 j - o (3.1)

where 1/2 < H < 1. Let F be a measurable function from R? to R!, and p, ¢
be positive integers. Consider

Yt = F(zp+t_1,zq+t_1), t= 1,2, cee e (32)

In Robinson (1987) we took F linear and p = ¢, i.e. y: = z;. The case of y;
Gaussian is a convenient and suggestive one to consider, but also a paradox-
ical one in view of the nonparametric density estimation. We allow F' to be
nonlinear, so that y; is non-Gaussian. To gain greater generality we allow for
a non-instantaneous function F’; it would be straightforward but tedious to ex-
tend to a larger finite number of arguments. Under additional conditions (see

Corollary in Appendix 2)
Eyiyiy; ~ H2H - 1)72H-D a5 j - co.
It is convenient to orthonormalize 2,441, T¢4¢-1. Let
Ut = CTpyt—1 + 0Tgyi—1, Ve =bTpii_1 + cTopi1

with ¢ = —sgn(pp—o){3(A%2 — A)}}, b = {3(A? + A)}},and A = (1 - p2_,) 74,
where |p,_4| < 1 is assumed. Now define v; = E(uiu14;) = E(viv14j), §; =
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E(u1v14;). Then

8 = 2bcp; + b*pjtp—g + pjrq—p } (3.3)

Yi = (b2 +c )P; + bepiyp—q + bepjrq—p

and in particular, § = 0, 79 = 1. Since [Pp—ql < 1, we have b+ ¢ # 0. So as
Jj—o00

8j ~ (b4 )’ H(2H - 1)7*H-D, 5, ~ (b+ ¢)?H(2H — 1)72H-D | (3.4)

We introduce the function F such that Y = F’(ut,vt) on substituting for z in
(3.2). Expand

dyfon,on) = K [LF O8] _ e[y = Pl o))

as
— Culy
o) = 30 e, ) (o)
ptv21

where C,(y) = E[dy(us, ve)H,u(ue)H,(v4)], and H,, is the pth Hermite polyno-
mial

Let y be a fixed point in R'. We introduce the following assumptions.
Al. The following limits exist:

lima™ Cro(y) = ¥1(y), lima™ Co1(y) = $2(v)-

A2. 1(y) + ¥2(y) # 0.
A3. f has mth order continuous derivative on R! for some m > 2.
A4. Let y1, y14; have a joint density function, g;. For every compact © C R?,
limsup sup |g;(%,?)|<C < o
lJI—-'OO (1.‘7{’)6
where C only depends on O.

A5. We assume in (2.2) that K is bounded, has compact support and, for the
same m > 2 as in A3,

o0

/ w! K(u)du = 0, ji=1...,m~-1; / u™ K (u)du # 0.

—00 -00

A6. As N — oo,

ale—H+a“1N1‘2H—>O, 1/2< H < 3/4,
NH LN L0, 84 < H <1,
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for the same m > 2 as in A3.

Condition Al is discussed in Appendix 1. Condition A2 is relaxed in Sec-
tion 4. We could describe A3 in terms of conditions on F in view of z:’s Gaus-
sianity. Condition A4 can be checked in some simple cases and seems mild. In
A5 we introduce, when m > 3, “higher order” kernels, which are sometimes neg-
ative, in order to exploit the smoothness on f in A3. This is necessary in some
cases to permit centering of F in the central limit Theorem 1. The compact
support assumption on K could be relaxed at cost of some complexity in proof.
Condition A6 requires at least aN3 — oo, a stronger upper bound on the a’s
rate of decay than that usually employed under weak dependence conditions.

Clearly m = 2 suffices in case 3/4 < H < 1, but for 1/2 < H < 3/4 we need
m>(1-H)/(2H - 1).

Theorem 1. If A1-A6 hold for 3/4 < H < 1, m > 2, while for 1/2 < H < 3/4,
m > (1-H)/(2H - 1), then

N'™-H(f(y) - f(v))
b7 OWa(y) ¥ aly)) & YO

The proof is in Appendix 2. The result extends the one of Robinson (1987)
which covers all y # 0 in case y; = z;. In this case Robinson (1987) observed that
after the norming necessary to produce a limiting N (0,1) distribution density
estimate, the density estimates are asymptotically perfectly correlated. The same

conclusion can be drawn from the proof in Appendix 2 in the present more general
case.

4. Asymptotic Non-Normality under Strong Dependence

The limiting distribution of f(y) is not in general normal in the presence of
long-memory dependence. We illustrate this fact by dropping assumption A2,
and assuming that 1;(y) + ¥2(y) = 0. This corresponds to the case of Taqqu
(1975) in which the Hermite rank of a nonlinear function is greater than unity.

For the stationary Gaussian process {z;}, there is a unique spectral measure
G on (—m,7) such that p; = [€'7*G(d)). Also z; = [ e*Zg(dz), where Zg is
a random spectral measure such that EZg(A)Zg(B) = G(AN B). Define

hy(z) = ce'=(p-1) + beix(q—l), hy(z) = be'z(p—1) + cet®(a-1)

Then €*®hy(z) and e**h,(z) are orthonormal in L% and

Uy = /e‘t”hl(z)ZG(dz), v = /e““hz(z)Zc;(dz).
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Define Gn(A) = N*A-H)G(N-1A), VA € B(R'). Then there exists a
locally finite measure G such that limy_o GN = Gy, in the sense of locally
weak convergence (see Dobrushin and Major (1979)). Now Gy has the self-similar
property

Go(A) = t721-MGy(tA), VA€ B(R'), te (0,+o0),

and is determined by the relation

oo _ 1
[ el ey = [ (- labe + 70 Mdz, vee R
- 00 -1

We now introduce the following assumptions.

A7. For an integer 7 > 2 and for all integers u, v such that gy + v < 7, we have
Cun(y) = 0.

A8. limg0a~1Cpu(y) = Yuu(y) exists for every p, v such that u+v =r.

A9 p(n)= ¥ 2l oy

ptv=r P!
A10. As N — oo,

1 1
mN‘r(l—-H) ~1 pr27(1-H)-1 _ H<] -
¢ tar N =0 - <Hslm sy

am NTA-H) 4 o~1N2H-1) o <H<1,

__1
2(r+1)
for the same m > 2 as in A3.

In order to illustrate A7-A9, we consider the simplest case y; = u; at y = 0.
We have

Co1(y) = C11(y) = Coz2(y) =0 for each y € R,
Cio(y) =0, li{%a—lczo(o) = —e!/V2m.
a
Thus 7 = 2, 4,(0) = —e~1/v/27.
Theorem 2. If A4, A5 and A7-A10 hold, then

NT-E{f(y) - f)} |
Vrib+e)en(y) 4

3

where

£= ‘/ei(zl+"‘+$')K0(zla cee ,ZT)ZG(dzl) te ZG(dm‘r)’
eizt-+zs) _ 1

Ko(z1,..- »2r) = (z1+ -+ 2,)
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For 7 > 1, £ is non-normal. The theorem is proved in Appendix 3.

t

5. Integrated Mean Squared Error Calculations

Although asymptotic distributional results can be useful in setting pointwise
interval estimates, a global measure of goodness of fit of density estimates is often
desired. The IMSE introduced in Section 2 has proved popular for this purpose,
and also as a basis for choice of bandwidth a. As indicated in Section 2, asymp-
totic results for the iid case are robust to weak dependence, but not necessarily
to strong dependence, as indicated by Robinson (1987).

In this section we report some calculations of IMSE in finite samples from a
long-memory process. There has been relatively little study of the finite-sample
performance of nonparametric density estimates. Some analytic finite-sample
properties of V{f(y)}, with implications for choice of a, were given by Robinson
(1986) in case of a weakly dependent, Gaussian first-order autoregressive y;. In a
similar situation, numerical results of Hart (1984) indicated that IMSE is liable
to be substantially affected in finite samples by autocorrelation.

Robinson (1987) studied IMSE under strong dependence. His theoretical
results concern both density estimates and derivative-of-density estimates. Con-
sider estimating, for integer r,

d"f(y)

f("‘)(y) = d—yr’

where fO(y) = f(y). Put fO(y) = f(y) and fI(y) = (d"/dy")f(w), 7 > 0,
where f(y) is given by (2.1), in which we use the Gaussian kernel

K(u) = e~ /(21)3. (5.1)

In the specified situation of Robinson (1987) our y: = z¢, with p; given by

1. . .
p;i = §{|J+1|2H-2|J|2H+|J ~1|*H}, (5.2)

for 1/2 < H < 1. Under (5.2) we may interpret y; as a fractional Brownian
motion, or the increment of a certain self-similar process. The property (3.1)
holds for (5.1). From formulae (6.2), (6.3) of Robinson (1987) we obtain

IMSE(N,r,a, H) 2 E /_ T 7 - £ )Py

(2r)!

—2r— R
= Fg sy ()T
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-1

N-1 . \-r-}
* 22"7-!\/%—((2}[)(1!2)""% N 2 (1"%) [(1' 1 fﬁ) ‘1]

i=1

! —-r—3

R

It was shown by Robinson (1987) that IMSE(N, r,a, H) possesses the following

asymptotic properties:

1. For H < (2r+3)/(2r+5), IMSE(N, r,a, H) exhibits the same asymptotic be-
haviour as IMSE(N, r,a,1/2), where IMSE(N,r,a,1/2) indicates the IMSE
under independent z;. Thus, modest amounts of long memory dependence
leave unchanged the usual IMSE results, thus the usual implications for
optimal bandwidth choice also. Moreover as the order of differentiation in-
creases, a greater degree of long memory dependence can be accommodated.

2. For H = (2r + 3)/(2r + 5), the leading term of IMSE(N,r,a, H) contains
an additional component, due to serial dependence, but this does not affect
the rate of the optimal bandwidth.

3. For H > (2r+3)/(2r+5), IMSE(N,r,a, H) is asymptotically dominated by
the serial dependence, and is insensitive to choice of a.

We emphasize that the above results are all asymptotic, so it would be inter-
esting to investigate what happens in finite samples, especially because conver-
gence can be particularly slow in case of long-memory series, and the asymptotic
results give no idea of actual numerical performance. Let

IMSE(N,r,a,H)
IMSE(N,r,a,1/2)"

R(N,r,a,H) =

In Tables 1-3 we report numerical values of R(N, r, a, H) and IMSE(N, r, a, H)
for r = 0,1,2, a = 1.06 N~1/5/Var(y;) and N = 50, 250, 1000. (In the previous
version of the paper, results for r = 3, 4, 5 were also reported, reinforcing the
conclusions below.) The values of H used varied somewhat across the tables
because of variability with r of the threshold value H = (2r + 3)/(2r 4+ 5). Each
cell in the tables contains R(N,r,a, H) and, in parentheses, IMSE(N,r,a, H).

We draw the following conclusions.

1. As the asymptotic theory predicts, for H < (2r + 3)/(2r + 5), R is quite
close to 1, but for H > (2r + 3)/(2r + 5) it deteriorates rapidly.

2. The asymptotic theory seems to hold reasonably well for H < (2r+3)/(2r+5),
as indicated by the approximate constancy of R against N. For H > (2r +
3)/(2r + 5), R tends to fall off quite rapidly as N increases. Thus the
nonparametric estimates seem less badly affected by high levels of long-
memory serial dependence in small samples than in long samples.
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Table 1. Value of R (IMSE) for r =0
H=05 H=06" H=07 H=08 H=09 H=095 a
N =50 1.000 0.775 0.507 0.275 0.118 0.066  0.457
(0.009)  (0.016)  (0.018) (0.033) (0.076)  (0.137)
N =250 1.000 0.743 0.414 0.168 0.052 0.023 0.332
(0.003)  (0.004)  (0.007) (0.017) (0.056)  (0.123)
N =1000 1.000 0.727 0.345 0.108 0.025 0.010 0.251
(0.001)  (0.002)  (0.003) (0.010) (0.041)  (0.106)

Table 2. Value of R (IMSE) for r = 1
H=05 H=06 H=071" H=08 H=09 H=095 a
N =50 1.000 0.892 0.677 0.458 0.211 0.111 0.572
(0.039) (0.043)  (0.057)  (0.084) (0.018)  (0.349)
N =250 1.000 0.896 0.635 0.365 0.123 0.051 0.454
(0.018)  (0.019)  (0.027)  (0.047) (0.014)  (0.334)

N =1000 1.000  0.908 0.613 0.303  0.078  0.027 0.373
(0.008) (0.009)  (0.013)  (0.027) (0.105)  (0.304)

Table 3. Value of R (IMSE) for r =2
H=05 H=06 H=07 H=078" H=09 H=09 a

N=50 1000 0.948  0.837 0.686 0.328 0.168  0.648
(0.043)  (0.045) (0.051)  (0.063)  (0.130)  (0.255)

N=250 1.000 0956  0.836 0.648 0.234  0.092  0.542
(0.024)  (0.025) (0.028)  (0.036)  (0.101)  (0.257)

N =1000 1.000 0966  0.845 0.628 0.178  0.058  0.464
(0.014)  (0.015) (0.016)  (0.022)  (0.078)  (0.240)

*H = (2r + 3)/(2r +5)

3. As the asymptotic theory suggests, for comparable values of H, R increases
with r.

4. We find that, not surprisingly, IMSE tends to decrease with N, to increase
with H, and to increase with r.

6. Density Estimate from Artificial Series

There is little evidence on the actual performance of density estimates with
long-memory series. We provide a small illustration using simulated series. Ex-
act simulation of long-memory series is not ea.sy The approach we employ (cf.
Granger (1980)) involved forming

13
= —Zyﬁ, t=12,...,N.
q '_l

The y;; are generated by the random-coefficient autoregressive model for panel
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data, analyzed by Robinson (1978):

Yit = o¥ie1 + €, J=1,...,4,
where the a; are independent variates drawn from a (1/2,2H — 1) beta distribu-
tion, with 1/2 < H < 1, and the ¢;; are iid across j and ¢, with zero mean and
finite variance. As shown by Granger (1980), after averaging with respect to the
a; as well as the ¢,

[HH-1) a5 |j] > oo.

pi~Clj
It seems that for a realization y; to convincingly exhibit long-memory properties
we should choose ¢ large.

We computed f(y) given by (2.1) using kernel (5.1). A variety of values
of a was tried. We display results only for N = 500, a = 1.06 N~1/5, the ap-
proximately IMSE-optimal bandwidth under independence (see §5). Prior to
computing (2.1) we standardized the y; so as to have sample mean zero and
sample variance unity. We computed (2.1) across a fine grid of y values via the
fast Fourier transform algorithm. All computations were carried out on LSE’s
VAX computer.

In Figure 1 we plot f(y) with ¢ = 250 and H = 0.95 for two different ¢;; dis-
tributions, N(0,1) and uniform (—1/2,1/2). The density estimate in the normal
€ case is not quite symmetric though we would expect the unconditional distri-
bution of y; to be approximately normal. Pronounced asymmetry is detected in
the uniform e case.

fly) f(¥)
0.16 0.16 —
0.14 0.14 —
012 4 012 —
0.10 0.10 —~
0.08 — 0.08 -
0.06 - 0.06 —
0.04 -| 004 -
0.02 0.02
O I e Ao o ob b 20 b 4o e do do o ob 1b 26 b b
Y y
Fig. 1(a) Fig. 1(b)

Figure 1. Density estimates: (a) Normal ¢, H = 0.75, ¢ = 250; (b) Uniform ¢, H = 0.95,
q = 250.
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Appendix 1: Discussion of Condition Al

In this section we attempt to justify and illustrate condition Al, used in
Theorem 1. We treat separately the special case where F(u,v) depends on u
only, and the more general case where it depends on both u and v.

1. First we assume
% 2 F(u,v) = F(u).
We assume also: (a) F has continuous first derivative; (b) {u : F'(u) = 0} is a
finite point set, where the prime denotes differentiation.
We denote {u : F'(u) = 0} by {r,... ,7}, with 3 <7 < -.- < 7. Let
B, = (-o0,71), B2 = (11,72)y... By = (Ty-1,7y) and B,y; = (75,00). For
brevity put C,, = Cp.(y). Under A5, (a) and (b),

Cor = E[K -y-:—ﬁ@]vt] =0,

cm=E[K[y__M ] ri/m % by,

where ¢ is the standard normal density and hi(%) = F;*(@)@(F~1(%))F; (@)
Since K has compact support, there is a positive number M such that
SUPP[K] C [-M,M]. Then

Cro = —GZ

=1 /w—%‘(B.-))/an[—M,m

K(u)hi(y — au)du.

However, if u € (y — f(B;))/a, then y — au € F’(B,-). For y € f’(B,-), by (a), (b),
convexity of F(B;), and the mean value theorem, we have

»/F(B,-) K[y ; E] hi(u)du = ahi(y) + o(a).
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For y ¢ FLB;) but either y = f(-r,-) ory= f‘(r.-_l), there is a difficulty, because
F'(1;) or F'(t;_1) are 0. The limit of

y—1u -
K h,' u)du
/1;(13.-) [ a ] ®
may not exist as a — 0. For y ¢ f‘(B,') and neither y = f(‘r,-) nor y = F’(T,-_l),

/ K[-" - "I]h,-(a)am =0,
F(B;)

a

because inf{|Z — y|;Vu € f’(B,)} > 0 and K has compact support, when a is
small enough. Overall, we conclude:

~ r+1 ~
(i) When y € F(R!) = 'Ul F(B;) and y # F(ri), i = 1,...,r, Cio(y) =

r41
a1(y) + o(a) where ¢1(y) = h.-(y)I;( B‘)(y), and I is the indicator func-
“~ ;
tion. _ _ '
(ii) When y ¢ F(R') and y # F(r;),i=0,...,r+1, Cyo = o(a).
(iii) When y = F(7;),4=0,...,7 + 1, the limit lim, )9 a~1C}o may not exist.

Example 1. F(u) = (u + 1), that is, yr = (Ti—ps1 + Ze—gs1 + 1)%. For
y € (0,00)

Cio = /oo K[y_—_(z;_+1_)":] up(u)du

—0o0

= /OOOK[y;u]hl(u)du+L)K[y;u]hg(u)du (A1)
where hy(u) = 3(1 - u=#)p(1 — u~%) and ho(u) = 1(1 + u~3)p(1 + u}). Thus
(A1) is

—oo y/a
- a/ K(u)hi(y — au)du — a j K(u)ha(y — au)du

a o0

~ alhy(y) — h2(y)] asa — 0.

Consequently Cyo ~ a for y € (0,00). For y € (—00,0) with y/a — —oo as
a — 0, we get C19 = o(a). For y =0, Cyo = [*° K(~(u+ 1)*/a)uep(u)du.

2. For general u = f’(u, v), the situation is much more complicated. But if we
assume there exists a function ¥ = G(u,v) such that

0udv Oudv

J(u,v) = ude " oo #0,
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then, by the inverse function theorem, u = f"'l(ﬁ,?f), v = 6"1(’5, v). The joint
density function of (%, ;) is -

h(u,v) = @(F~(u, v))o(G ! (u, v))[J(F (u,v), G~ (1,))].

Hence

Cro = / / K[y — E]f"l(i,ﬁ)h(ﬂ,mdﬁﬁ (A.2)

a
AxB

where A = {%;% = F(u,v),¥(u,v) € R?}, B = {3;% = G(u,v),V(u,v) € R?}.
Thus (A.2) is

/ k[2=2| / F=1 3, 5)h(3, 5)dv] di

A a B

As in the previous discussion, there are three cases:

~o [ Fru,mhu e ityea,
B

the limit may not exist ify € 0A,
0 ify¢ AUOA,

where 0A is the boundary of A. Similarly

Cro ~

-a / G'(@,y)h(i,y)di ifye B,
A
the limit may not exist ifye 0B,
0 ify¢ BUOB,

where 0B is the boundary of B.

COI ~

Example 2. F‘(u,v) = uv, i.e. yr = be(2fy 1+ qo1 )+ (0P +C)Te4p1Te4q-1.
By some calculations, for each y € R, we have C1o(y) = Co1(y) = 0, C11(y) ~
ayf(y) asa | 0, and

Czo(y) = COZ('.(I) ~ a,/ Iule"%(u’+y2u-2)du_

-0

Appendix 2: Proof of Theorem 1

The basic method of proof is similar to that of Robinson (1987), but the proof
is substantially complicated by the nonlinear and non-instantaneous character of
F. We first present three preliminary lemmas.
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Lemma 1. Let f;_,(z) be the probability density function of (u:,vt,us,vs),
where z = (z1,%3,23,24). Then

m+b6.1+k

(> ]
24 —s —ixs
ft—s($)=z Z Wﬂmj(zl)ﬂm(zz)Hmf-k(xS)HH(x4)e e
=0 m+j+k+L=r

Proof. E[exp{ztl U+ it v, + itz u, + it4v, )] = @(t)Y(t), where t = (1,12,13,24)
and p(t) = e -3t't » P(t) = exp{—[ye-stils + Ot—stits + 8:_stats + i—st2ts]}. Now

P(t) = Z (1 (‘Yt— ity + 6:—stits + 8e_stats + yi—state)”

r=0
Vi taﬂk +i gkt mikyite
— m
= § (17 Y Rttty
. mijlkle!
r=0 m+j+k+i=r

On the other hand,

fes®) = Gz [ o0t

Then apply

oo
/ etre= 3 gt = 2r(—4)" H, (z)e™ 3%

-0

Lemma 2. Let r be a non-negative integer. Then

E 1 _ ’I'!
S iRl plo ().

where E(L) sumsoverm+j=pu, k+l=v,m+k=p and j+L£ =1, and
where (p,v, ', V') satisfiesp+v=r, u' +v' =r.

Proof. For arbitrary real t,... ,14,

(t1ts + tity + tats + taty)" = [Z R 'kw]t“tzta &y .

u+v—r
»l =y

~ On the other hand,
(tatz + titg + tats + tats)” = (81 + t2) (83 + t4)”

1 ! l
= (r)? —— sl 1y
2 e

m +v'=r
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Then use the arbitrariness of tl, , 4.

Lemma 3. LetG bea measumble function from R? to R' such that E(G?) < o0,
where Gt = G(ut,vt), and G has Hermite ezpansion

G =Y ¥ 2t p (e en),

r=0 ptv=r
where f,, = E[G1H,(uv1)H,(v1)]. If there is a positive integer T such that

Buv = 0 for arbitrary p and v with p +v < 7, then there exists a positive integer
Ny such that, for |t — s| > No,

lE(GtGa)l S C‘rl'Yt—aITEG%,
where C, is a constant which only depends on 1.

Proof. By Lemma 1,

E(GG,) = /G(zl,xg)G(a:a,u)ft_,(z)Hda:;

6i—s/7t-s
=1 > [Z%‘ (T;!J!/k‘g!) ]ﬁuuﬂw,,:é‘vt’.,b.

r=7 ptv=r
sl 4vl=r (L)

From (3.1) and (3.3), as |t — 8| — o0,

Yt-s = (b + c)zpt—c + 0(1)’ bi_y = (b + C)zpt—s + 0(1), 6t—-a/7t—s =1+ 0(1)

For fixed € > 0, there exists an integer Nyo > 0 such that, for [t — s| > N,
|6:—s/vt-s| < 1+ €. For such Ny,

Lisey e ¥ (X orma | ol 1B

PO CD)
00 .
S !Buv| |Bu|
- C 4 r [ d |24
r=Tr1 p+v=r u!V!(ll:’)!(l/’)!
p! 4vl=r

seyen] ¥ )

ptv=r
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where the second equality uses Lemma 2 and C is a generic constant. By Holder’s
Inequality, 8%, < u'v!EG}. Hence

o0 1 00
|| < C er[ Y ;17] EG} =CY 2 "EG} < CEGL.
t=T1 ptv=r 7" r=T1
Corollary. For {y; = F(u,v,)}, if
Ey? <o and Ef[y(us+v1)] #0, (B.1)

then

E(y1 - Ey1)(W1+; — Eyr4s) ~ H2H ~1)7*77 a5 j — o0.

Proof. First expand F in Hermite polynomials

o0

F’(ml,xg) = Z[ Z Ly Hy(zl)HV(xZ)]’

M
r=0 ptv=r pev:

where a,, = E[@H“(ul)H,,(vl)]. By (B.1) 010 +ao1 = E[yi(u1+v1)] # 0. Now
let G(z1,23) = F(z1,23) — a10%1 — 00122 — EF(u1,v1). From Lemma 1,

" v
7t—a6t—v I tv= 1’
E[H H =
[ u(ut) u(”t)“-'] { 0, otherwise,

Vi-sbtes mtv=1,
E[H H =
(H (us)H,(ve),) { 0, otherwise,

(B.2)

and E(Giu,) = E(Gv:) = 0. Hence E(y: — Ey:)(ys — Ey,) is

E(aiout + ag1ve + Gi)(a10us + ag1vs + G,)
= E(aiout + ao1v:)(a10us + @01v5) + EG:G,.

However

E(aiou: + aoy1ve)(ar0us + a01v,) = a%o')'t—s + 200001615 + a?,m_..
~ (e10 + a01)? (b + ¢)®ps—s as |t — s — oo,

and by Lemma 3, when |t — s| is large enough, E(G;G,) ~ p?_,.

We can now proceed to the proof of Theorem 1. As in Robinson (1987), this
involves an expansion of the kernel estimate analogous to the Hermite expansion
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method of Taqqu (1975), but unlike in those references we are dealing here with
a two-dimensional function. Let

oo

C
ey(zl,zg)z Z ”":"H,‘(xl)H.,(zz),
#,v=0 b

ptv22

and e; = ey(us,v¢). Let dy = dy(ue,v;). Then
™ -~ 1 1 1
F(y)-Ef(y)= Na Et:dt = Na zt:(Cmut + Co1v:) + Na ;et-

We show first that the asymptotic distribution of the left-hand side is governed
by that of the first term, which is exactly Gaussian. We have

"N
2
E[E(Clout+001vt)] =N(C}Hh+Cé)+ Z (C307t=s+2C10Co016¢— s+ Ci1 ¥1—5)-
i t,s=1
t#s

From (3.4), the double sum is

N N
(Cr0 + Co1)*(b +¢)? E Pi-s + 0((010 + Co1)? E Ipt—al)

t,s=1 t,s=1
t#s t#s

=(¥1(y) + ¥2(¥))*(b + ¢)* N*Ha? + o(a® N2H).
Thus E[Ef;l(cmut + Co11:)}> ~ N*Ha?, We need now to show

a-zN—2HE(Ze,)2 —+0, as N — oo. (B.3)

i

By Lemma 3, there exists a fixed positive integer Ny such that, for |t — s| > Ny,
|E(eses)| < Ca2v2_,E(€?). However

2 — sz = C;;:u 2
e et

= EKz(y%‘yl-) - [EK(-y—-;—yl)]z ~af(y) as a— 0.

For3/4< H <1, E(¥,e:)? < I + I, where

N N
L = E |Eeses), I = Z | Eeze,|,
t,s=1 t,s=1

|t—s|<No [t—s]>No
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and where

N
L< Y E(e) < 2NNoE(e}) ~ Na,
t,s=1
jt—s]<No

N N N
L<C ), 7LE(d) < CE() ) 7, =2CNE(@) ) 7.
|t—2]<No t#s

For 3/4 < H < 1, (B.3) is true because of condition A6 and

N N
S0~ (b4 0 NS,
s=1 s=1

Now consider 1/2 < H < 3/4. For t # s, E(e:e,) is

Eldd,] — Edi[Crous + Co1v5] — Eds(Crous + Corv:)

+E(Crou: + Co1v:)(Crous + Co1v5)
=J1—Jy—J3+ Js.

First

— C,, = Cu
22=Co Y, u!‘;  E[Hu(ue) Hy(ve)us] + Con > “!:  E[Hu(ue) Hy (ve)s).

u,v=0 w,v=0
p4r21 stv21l

From (B.1) and |y:—s| < 1, |6:—s] < 1, we have |J3| < (C10 + Co1)? ~ a? by A2.
Similarly |J3| = O(a?). Now

5= g = [ (52) e (52)] - [ ()]

a a

The first term is

[ [HE D

L L .
=a® / / K(u)K(v)gi-s(y — au,y — av)dudv
-LJ-L

where L > 0 satisfies SUPP[K] C [-L, L). For (u,v) € [-L, L] x [-L, L],

ly—au| <|y|+ L, |ly—av|<|y|+L
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(without loss of generality assume a < 1). By A3 there exists a fixed positive
integer N such that, for any<¢t and s with |t — s| > Ny,

where C, 1, only depends on y and L. Hence for |t — s| > Ny,

o[ (4 52) K (152)]| < Cuse? [ [ 1can]

Because EK((y — yt)/a) ~ af(y), we have, for |t — s| > Ny, |Ji] = O(a?).
Obviously, |J4| < E(Crous + Co1v:)? = C}y + C% = O(a?). Altogether, for any
t and s with |t — s| > Ny, |Eese,| = O(a?). Now let N = max{Ny, N1}. Then

N
E(Zet)2 < 2NNEé? + Z |Eeses|.

t,s=1
|t—s8|>N

Put

A { |Eese,|, for|t—s| >N,
=t~ o, otherwise.

Then, for 1< M < N -2,

DoAe=2) > A, +2) Y Aa+2 Y A,
t,s=1 s=1 t=1 s=M t=1 t=N-M+1 s=1
N-1 N-1
< C'(NMa,2 + 2NEé? Z 73) = O(NMa2 +N Z pia).
s=M s=M

For 1/2 < H < 3/4, YN p2 = O(M*H-3). Thus

2
E( ) =O0(Na+ NMa? + NM*H-30),
t
Then from the above, for any t, s, A,_; = O(a?), and by Lemma 3, A,_; <

O(|7t-s|*E(€})). For any € > 0, take M ~ eN?¥~1, Hence (B.3) is true for
1/2 < H < 3/4. Therefore by Gaussianity,

N*-H(fly) - Ef(y))
(0 + )(¥(y) + ¥2(w))
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Finally, we must show
N'-H[Ef(y) - f(3)] - . (B.4)
By standard arguments
Ef(y) - f(y) ~ (—1)mgm—!/umK(u)du

and (B.4) follows from A6.

Appendix 3: Proof of Theorem 2

We first introduce a lemma.

1
Lemma 4. For1 - 2— < H < 1 and integer v > 2,

Va,r[ E ( u(ut)H,,(vt))] ~ 7l(b+ ¢)?"yp?(y)a® N2-27(1-H)

=1 ;t+u-'r

Proof. E{ i ( Z P 'C,,,,H,‘(ut)H,,(vt))} = I1 + I, where

t=1 jutv=r

iE[ > H )]
#+u—‘r
Z[ 2 #,';",3‘;;,,5}1 (ue) Hy (00) o (w5 Hor ()]

t#, w yvi=r
By Lemma 1

m+l&j+k

N
) tsE—I ug; ((L) %)Cuucy'u'.
t#s s tv'=r

By Lemma 2 this is

M+ 3 e ,] 3 P,

putv=r t,a=1
t#s

t#s
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61—.

('V‘—')‘H-’c -1 T
(Z _W) Cquu'V'] Yt-s-

NP>

t,8=1 vtv=r
t#s w! pyl=r

Since 7¢—,/((b+ ¢)?pi~,) and 8, /74—, — 1 as |t — s| = o0,

I :‘r!(b+c)2r[ > v,,t] > P +0( ’ ﬁr: p‘T“)

ptrv=r1 t,8=1 t,s=1
t#a

~ (b + €)Y (y)a? NI,
and I; ~ a?N. But for 1 — 1/27 < H, we have 1 < 2-2r(1- H).
We now prove Theorem 2. As in Robinson (1987)
E( Zet)z = o(a? N2-27(1-H)),
Here we must divide H into the intervals
—5(r;+1-)_<H<1’ 1_5117<H<1_2(_1-14?1—)'

For the first,

E(Eet) (Nazp'r+1) = O(aN?-2r+D0-1),

For the second,

!
—~
\g
o
~
Q
~—~

Na+ NMa? + NM'“2r+00-H)g),

Thus

N
(Z et) a 2 p2-27(1- H))

t=1
On the other hand,

E fj.,/. H,(uw)H,(v) = Z Cuu / hl(z)Zg(dz) / hg(z)ZG(dx))

utv=r utv=r

By the formula expressing multiple Wiener-Ito-Dobrushin integrals in terms of
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Hermite polynomials (e.g. Ito (1951)), this is

#'V' ) 1‘[ ha(z:) Hqu(z.)

#+V“ pt+l

_ %/.../ao(z)I:[ZG(dzi),

where

a(z)= ) mCuw | th(-’v-) H ha(z:).-

y!u!
ptv=T utl
Thus use Lemma 4 and Dobrushin and Major s (1979) Theorem 3 to show that

NTO-E{f(y) - Ef(y)}
V(b + ) y-(y) 4

— &

and for N"O-HMEf(y) — f(y)} — 0, we straightforwardly employ A3, A5 and
A10.
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