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Abstract: Factor analysis has been one of the most powerful and flexible tools for

assessment of multivariate dependence and codependence. Loosely speaking, it

could be argued that the origin of its success rests in its very exploratory nature,

where various kinds of data-relationships amongst the variables at study can be

iteratively verified and/or refuted. Bayesian inference in factor analytic models has

received renewed attention in recent years, partly due to computational advances

but also partly to applied focuses generating factor structures as exemplified by

recent work in financial time series modeling. The focus of our current work is on

exploring questions of uncertainty about the number of latent factors in a multi-

variate factor model, combined with methodological and computational issues of

model specification and model fitting. We explore reversible jump MCMC methods

that build on sets of parallel Gibbs sampling-based analyses to generate suitable

empirical proposal distributions and that address the challenging problem of finding

efficient proposals in high-dimensional models. Alternative MCMC methods based

on bridge sampling are discussed, and these fully Bayesian MCMC approaches are

compared with a collection of popular model selection methods in empirical stud-

ies. Various additional computational issues are discussed, including situations

where prior information is scarce, and the methods are explored in studies of some

simulated data sets and an econometric time series example.
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pected posterior prior, latent factor models, model selection criteria, model uncer-
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1. Introduction

Methodological innovations and real-world applications of factor analysis,
and latent structure models more generally, have developed rapidly in recent
years, partly due to increased access to appropriate computational tools. In
particular, iterative MCMC simulation methods have very naturally opened up
access to fully Bayesian treatments of factor analytic models, as developed and
applied in, for example, Geweke and Zhou (1996), Polasek (1997), Arminger and
Muthén (1998) and, with extensions to dynamic factor components in financial
time series modelling (Aguilar and West (2000), Pitt and Shephard (1999)). The
growing range of developments and creative applications in increasingly com-
plex models, and with larger data sets in higher dimensions, justifies the view
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that computational advances have been critically enabling; the near future will
very likely see much broader use of factor analysis in routine applied statistical
work. The above studies, and others, explore fully Bayesian inference in latent
factor models in which the number of factors is a modelling choice; applied work
typically studies sensitivity of predictions and variations/ambiguities of interpre-
tations as the number of factors is varied as a control parameter. Formal inference
on the number of factors itself has been relatively ignored in the Bayesian lit-
erature, though there are ranges of standard likelihood and frequentist methods
available. Some key additional references, Bayesian and non-Bayesian, include
(in order of appearance) Lawley and Maxwell (1963), Joreskog (1967), Martin
and McDonald (1981), Bartholomew (1981), Press (1982, Chap.10), Lee (1981),
Akaike (1987), Bartholomew (1987), Press and Shigemasu (1989) and Press and
Shigemasu (1994). The book by Bartholomew (1987) is an excellent overview of
the field up to about ten years ago.

The key issue of inference on, and selection of, the number of factors is the
focus of this paper. Most recently, Polasek (1997) explored approaches to com-
puting approximate posterior probabilities on the number of factors based on
using MCMC methods for separate models differing only in the number of fac-
tors. Such an approach requires the computation of the observed values of the
marginal data densities (prior predictive densities) under each of these separate
models, for it is just these values that define the (marginal) likelihood function for
inference on the number of factors, and the resulting Bayes’ factors for pairwise
model comparisons. This computation lies at the heart of the model selection
and comparison problem. There are serious practical questions about choice
and specification of prior distributions within the individual models, but that is
not our primary focus here. A variety of methods are available for computing
these marginal data density values – often referred to as the normalising constant
problem. Some are specific to analyses based on MCMC methods within each
individual model, and some are generic and based on analytic and asymptotic
arguments. A wide ranging review of some standard methods appears in Kass
and Raftery (1995), where the connections between various methods of approxi-
mating Bayes’ factors using combinations of analytic and asymptotic arguments
are well explored. These standard methods are closely related to non-Bayesian
model selection criteria, including the well-known AIC, BIC/Schwartz criteria,
and extensions of them using information-theoretic ideas, such as the ICOMP
methods of Bozdogan and Ramirez (1987) and Bozdogan and Shigemasu (1998).
Methods of approximating the marginal data densities that utilise outputs from
MCMC analyses of separate models are of more interest here. Some of the meth-
ods we consider below are: the so-called candidate estimator (Chib (1995)), the
harmonic mean estimator (Newton and Raftery (1994)), Gelfand and Dey’s es-
timator (Gelfand and Dey (1994)), the Laplace-Metropolis estimator of Lewis
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and Raftery (1997), and various novel approaches based on the recent inno-
vative developments in bridge sampling (Meng and Wong (1996)). Additional
useful references in this general area include, for example, Gilks, Richardson and
Spiegelhalter (1996), DiCiccio, Kass, Raftery and Wasserman (1997) and Godsill
(2001), which study comparisons and connections between some of the various
methods just referenced.

Our paper has two main goals. First, we introduce, develop and explore
MCMC methods for factor models that treat the number of factors as unknown.
Building on prior work on MCMC methods for a given number of factors, we
introduce a customised reversible jump Markov chain Monte Carlo (hereafter
RJMCMC, see Green (1995)) algorithm for moving between models with different
numbers of factors. RJMCMC approaches avoid the need for computing marginal
data densities by treating the number of factors as a parameter, but require
ingenuity in designing appropriate jumping rules to produce computationally
efficient and theoretically effective methods. To compare with this, we introduce
alternative methods based on bridge sampling ideas (Meng and Wong (1996))
that are specifically designed for computing the required marginal data densities
in MCMC contexts, and represent the current frontiers of the field. Our second
main goal is to explore these approaches and compare them with a range of
standard model selection criteria and alternative methods of computing marginal
data densities and Bayes’ factors, as discussed above.

Section 2 defines the basic factor model framework, notation and structure,
and discusses issues of model specification. Section 3 describes Bayesian analysis
of the factor model when the number of factors is specified, based on standard
Gibbs sampling. Section 4 describes the RJMCMC we introduce to address
uncertainty about the number of factors. Section 5 briefly details some of the
standard model selection criteria and alternative methods of marginal data den-
sity computation. Section 6 presents some comparative studies with simulated
and real data sets. Section 7 concludes the paper with summary comments.

2. Factor Model Structure and Specification

2.1. Basic model form

Data on m related variables are considered to arise through random sampling
from a zero-mean multivariate normal distribution denoted by N(0,Ω), where
Ω denotes an m × m non-singular variance matrix. A random sample of size T

is denoted by {yt, t = 1, . . . , T}. For any specified positive integer k ≤ m, the
standard k−factor model relates each yt to an underlying k−vector of random
variables f t, the common factors, via

yt = βf t + εt, (1)
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where (i) the factors f t are independent with f t ∼ N(0, Ik), (ii) the εt are
independent normal m−vectors with εt ∼ N(0,Σ), and Σ = diag(σ2

1 , · · · , σ2
m),

(iii) εt and f s are independent for all t and s, and (iv) β is the m × k factor
loadings matrix.

Under this model, the variance-covariance structure of the data distribution
is constrained; we have Ω = V (yt|Ω) = V (yt|β,Σ) given by Ω = ββ′ + Σ.
The model implies that, conditional on the common factors, the observable vari-
ables are uncorrelated: hence the common factors explain all the dependence
structure among the m variables. For any elements yit and yjt of yt and condi-
tionally on β and Σ, we have the characterising moments, (i) var(yit|f) = σ2

i ,
(ii) cov(yit, yjt|f) = 0, (iii) var(yit) =

∑k
l=1 β2

il + σ2
i , and (iv) cov(yit, yjt) =∑k

l=1 βilβjl.
In practical problems, especially with larger values of m, the number of

factors k will often be small relative to m, so that much of the variance-covariance
structure is explained by the common factors. The uniquenesses, or idiosyncratic
variances, σ2

i measure the residual variability in each of the data variables once
that contributed by the factors is accounted for. The model (1) can be written
as

y = Fβ′ + ε, (2)

where y = (y1, · · · ,yT )′, F = (f1, · · · ,fT )′ and ε = (ε1, · · · , εT )′ are matrices of
dimension (T × m), (T × k) and (T × m), respectively. The elements ε and F

are mutually independent matrix normal random variables, as in Dawid (1981),
Press (1982) and West and Harrison (1997, Chap. 16). The notation, as in Dawid
(1981), is simply ε ∼ N(0, IT ,Σ). We then have densities

p(y|F ,β,Σ) ∝ |Σ|−T/2etr(−0.5Σ−1εε′) (3)

and, marginalising over F ,

p(y|β,Σ) ∝ |Ω|−T/2etr(−0.5Ω−1y′y), (4)

where etr(A) = exp(trace(A)) for any matrix A. The likelihood function (3) will
be subsequently used in Gibbs sampling for the parameters of a factor model with
k fixed, whereas the likelihood form (4) will be extensively used in RJMCMC
algorithms that also treat uncertainty about k.

2.2. Model structure and identification issues

As is well-known, the k−factor model must be further constrained to define
a unique model free from identification problems. First we address the standard
issue that the model is invariant under transformations of the form β∗ = βP ′

and f∗
t = Pf t, where P is any orthogonal k × k matrix. There are many ways
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of identifying the model by imposing constraints on β, including constraints to
orthogonal β matrices, and constraints such that β′Σ−1β is diagonal (see Seber
(1984)), for example). The alternative preferred here is to constrain so that β

is a block lower triangular matrix, assumed to be of full rank, with diagonal
elements strictly positive. This form is used, for example, in Geweke and Zhou
(1996) and Aguilar and West (2000), and provides both identification and, often,
useful interpretation of the factor model. In this form, the loadings matrix has
r = mk − k(k − 1)/2 free parameters. With m non-zero σi parameters, the
resulting factor form of Ω has m(k + 1)− k(k − 1)/2 parameters, compared with
the total m(m + 1)/2 in an unconstrained (or k = m) model; leading to the
constraint that m(m + 1)/2 − m(k + 1) + k(k − 1)/2 ≥ 0, which provides an
upper bound on k. For example, m = 6 implies k ≤ 3, m = 12 implies k ≤ 7,
m = 20 implies k ≤ 14, m = 50 implies k ≤ 40, and so on. Even for small
m, the bound will often not matter as relevant k values will not be so large.
In realistic problems, with m in double digits or more, the resulting bound will
rarely matter. Finally, note that the number of factors can be increased beyond
such bounds by setting one or more of the residual variances σi to zero.

A question arises about the full-rank assumption for β. This was addressed
in Geweke and Singleton (1980) who show that, if β is rank deficient, then the
model is unidentified. Specifically, if β has rank r < k there exists a matrix Q

such that βQ = 0, Q′Q = I and, for any orthogonal matrix M ,

Ω = ββ′ + Σ = (β + MQ′)′(β + MQ′) + (Σ − MM ′). (5)

This translation invariance of Ω under the factor model implies lack of identi-
fication and, in application, induces symmetries and potential multimodalities
in resulting likelihood functions. This issue relates intimately to the question of
uncertainty of the number of factors, discussed further below.

A final question concerns the ordering of the yit variables and the connec-
tion between a chosen ordering and the specific form of the factor loading matrix
above. The order of variables is a modelling decision that has no effect on the
resulting theoretical model nor on predictive inferences under the model. Given
the k-factor model (1) specified and appropriate for the y with variables in a spe-
cific order, alternative orderings are trivially produced via Ayt for some rotation
matrix A. Model (1) then transforms to a similar factor model for the reordered
data Ayt with the same latent factors but transformed loadings matrix Aβ. This
new loadings matrix does not have the lower triangular structure. However, we
can always find an orthonormal matrix P such that AβP ′ is lower triangular,
and so simply recover the factor model in precisely the form (1) with the same
probability structure for the underlying latent factors Pf t. This result confirms
that the order of the variables in yt is theoretically irrelevant assuming that k
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is properly chosen. However, when it comes to model estimation, the order of
variables has a determining effect on the choice of k, and the interaction between
variable order and model fitting can be quite subtle, as we illustrate in examples
below.

2.3. Elements of prior specification

To complete the model specification we require classes of priors for the model
parameters β and Σ. Our reported analyses are based on very diffuse but proper
priors with the following ingredients. For the factor loadings, we take independent
priors such that βij ∼ N(0, C0) when i �= j, and βii ∼ N(0, C0)1(βii > 0) for
the upper-diagonal elements of positive loadings i = 1, · · · , k. The latter simply
truncates the basic normal prior to restrict the diagonal elements to positive
values. Analysis now requires only that we specify the variance parameter C0,

which we take to be rather large in the studies below.
For each of the idiosyncratic variances σ2

i we assume a common inverse
gamma prior, and take the variances to be independent. Specifically, the σ2

i

are independently modelled as σ2
i ∼ IG(ν/2, νs2/2) with specified hyperparam-

eters ν and s2. Here s2 is the prior mode of each σ2
i and ν the prior degrees of

freedom hyperparameter. Our examples below assume low values of ν to produce
diffuse though proper priors. Note that we eschew the use of standard improper
reference priors p(σ2

i ) ∝ 1/σ2
i . Such priors lead to the Bayesian analogue of the so-

called Heywood problem (Martin and McDonald (1981), Ihara and Kano (1995)).
In terms of these variance parameters, likelihood functions in factor models are
bounded below away from zero as σ2

i tends to zero, so inducing singularities in
the posterior at zero. Proper priors that decay to zero at the origin obviate this
problem and induce proper posteriors.

3. MCMC Methods in a k−factor Model

With a specified k−factor model, Bayesian analyses using MCMC methods
are straightforward. We simply summarise the main ingredients here, referring to
Geweke and Zhou (1996), Polasek (1997) and Aguilar and West (2000) for further
details. MCMC analysis involves iteratively simulating from sets of conditional
posterior distributions which, in this model, are standard forms. A basic method
simulates from the conditional posteriors for each of F , β and Σ in turn, utilising
the following sets of full conditional posteriors arising from our model as specified.
These are as follows.

First, the factor model in (2) can be seen as a standard multivariate re-
gression model with “parameters” F when β, Σ and k are fixed (e.g., Press
(1982), Box and Tiao (1973), Broemeling (1985) and Zellner (1971)). It easily
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follows that the full conditional posterior for F factors into independent normal
distributions for the f t, namely

f t ∼ N((Ik + β′Σ−1β)−1β′Σ−1yt, (Ik + β′Σ−1β)−1)

independently for t = 1, . . . .T.

Second, the full conditional posterior for β also factors into independent
margins for the non-zero elements of the rows of β, as follows. For rows i =
1, . . . , k, write βi = (βi1, . . . , βii)′ for just these non-zero elements. For the
remaining rows i = k + 1, . . . ,m, write βi = (βi1, . . . , βik). Similarly, for i =
1, . . . , k denote by F i the T × i matrix containing the first i columns of F , and
for all i let yi be the column i of y.

Finally, it is trivially deduced that full conditional posterior for the elements
of Σ reduces to a set of m independent inverse gammas, with σ2

i ∼ IG((ν +
T )/2, (νs2 + di)/2) where di = (yi − Fβ′

i)′(yi − Fβ′
i).

Then we have full conditionals as follows:
• for i = 1, . . . , k, βi ∼ N(mi,Ci)1(βii > 0) where mi = Ci(C−1

0 µ01i +
σ−2

i F ′
iyi) and C−1

i = C−1
0 Ii + σ−2

i F ′
iF i;

• for i = k + 1, . . . ,m, βi ∼ N(mi,Ci) where mi = Ci(C−1
0 µ01k + σ−2

i F ′yi)
and C−1

i = C−1
0 Ik + σ−2

i F ′F .
These distributions are easily simulated.

4. Fully Bayesian Inference on the Number of Factors

4.1. Preliminary parallel MCMC analyses

The above section provides the basis for posterior simulations in a model with
k specified. Reversible jump MCMC (RJMCMC) methods are useful for explor-
ing posterior distributions for model parameters in the context of uncertainty
about k, and with k included as a parameter. As we move between models with
different numbers of factors, the dimension and meaning of the model parameters
change, and RJMCMC methods are designed for just such problems.

For this and the following sections, we make explicit the dependence of the
factor loading matrix on k by refining the notation, replacing β by βk and F

by F k. Further, we write θk for the parameters (βk,Σ) of a k−factor model.
The number k now appears explicitly in the conditioning of all model density
functions. Our RJMCMC methods involve Metropolis-Hastings type algorithms
that move a simulation analysis between models defined by (k,θk) to (k′,θk′)
with different defining dimensions k and k′. The resulting Markov chain simula-
tions jump between such distinct models, and the algorithms are designed to be
reversible so as to maintain detailed balance of the chain. Futher details of the
general methodology and ideas can be found in Green (1995).
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Our method builds on a preliminary set of parallel MCMC analyses that are
run over a set of prespecified values k ∈ K of the number of factors. These chains
produce a set of K within-model posterior samples for (θk,F k) that approximate
the posterior distributions p(θk,F k|k,y). From these samples we compute pos-
terior means and other summaries, and use these to guide choice of analytically
specified distributions to be used to generate candidate parameter values in the
RJMCMC algorithm. This component of the analysis operates only with the
samples for the parameters θk, the simulated values of the actual factors F k

being relevant but incidental to the moving between models with different values
of k. Write bk and Bk for the approximate posterior mean and variance matrix
of βk from the MCMC analysis and, for each i = 1, . . . ,m, write v2

ki for the ap-
proximate posterior mode of σ2

i from the analysis. In our current implementation
we introduce the following analytic forms as components of a proposal distribu-
tion. For each model order k ∈ K, qk(βk) = N(bk, bBk) and for i = 1, . . . ,m,

qk(σ2
i ) = IG(a, av2

ki), where a and b are positive scale parameters to be specified.
These density functions are combined to produce the distributions

qk(θk) ≡ qk(βk,Σ) = qk(βk)
m∏

i=1

qk(σ2
i ), k ∈ K (6)

for use as now described.

4.2. A reversible jump algorithm

Following the set of preliminary MCMC analyses for models in parallel, we
explore the space of models as k varies using the following version of RJMCMC.
In addition to the k−factor models and within model priors specified above,
we need to specify the marginal prior probabilities p(k) over k ∈ K. Then the
RJMCMC analysis proceeds as follows.

0. Choose a starting value of k. Set the current values of θk to a draw from the
posterior p(θk|k,y) by using one (or more) steps of the MCMC algorithm
as described above and based on past sampled values from this k−factor
model. Note that this step produces both new sampled values of θk and the
factors F k, though only the former are used in exploring moves to models
with other k values.

1. Between model move step:

1.a Draw a candidate value of the number of factors k′ from a proposal
distribution defined by prespecified transition probabilities Pr(k′|k) =
J(k → k′).
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1.b Given k′, draw the parameters θk′ from the distribution qk′(θk′) of
equation (6).

1.c Compute the accept/reject ratio

α = min
{

1,
p(y|k′,θk′)p(θk′ |k′)p(k′)
p(y|k,θk)p(θk|k)p(k)

qk(θk)J(k′ → k)
qk′(θk′)J(k → k′)

}
. (7)

Here, for each value j ∈ (k, k′), p(y|j,θj) = p(y|j,βj,Σ) is the like-
lihood function in equation (4), p(θj|j) is the prior density function
for the parameters within the j−factor model, and p(j) is the prior
probability on k factors. With probability α, accept the jump to the
k′−factor model and the new parameter values θk′ just sampled as
candidates.

2. Within model move step:

If the jump to model k′ is accepted, run one step of the MCMC analysis
in this k′−factor model, producing new sample values of the full set of
quantities (θk′ ,F k′). Otherwise, remain in model k and use the MCMC to
produce new values of (θk,F k).

3. Repeat [1] and [2] until practical convergence is judged to have been achieved.

The chosen proposal distributions qk(θk) are not generally expected to pro-
vide globally accurate approximations to the conditional posteriors p(θk|k,y).
However, if that happened to be the case then the resulting accept/reject prob-
abilities above reduce directly to Metropolis-type probabilities on the parameter
k alone. Our algorithm is a particular case of what Dellaportas, Forster and
Ntzoufras (2002) called the Metropolised Carlin and Chib method, where the
proposal distributions generating both new model dimension and new parame-
ters depend on the current state of the chain only through k. This is true here
as we use proposals based on the initial, auxilliary MCMC analyses. A more
descriptive name is independence RJMCMC, analogous to the standard termi-
nology for independence Metropolis-Hastings methods.

5. Other Methods of Addressing Model Uncertainty

5.1. Introductory comments

The RJMCMC technology is becoming standard in Bayesian work with com-
peting models with differing numbers of parameters. By comparison with tra-
ditional approaches based on nesting models in a “super-model”, RJMCMC is
often more efficient computationally and, in terms of practical computing time
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to convergence of the Markov chains, it has an established theory that guaran-
tees convergence of the chains in very general frameworks. Thus, in addition
to having a very natural and direct specification in our factor model context,
convergence of the chain to sampling from the full posterior across models, as
well as for parameters and factors within models, is ensured. There are, however,
ranges of existing methods for approximate inference on the number of factors,
and we aim to compare these methods in examples below. This section provides
a brief catalogue description of methods and model selection criteria, as well as
introducing a novel approach based on recent work in bridge sampling.

5.2. Computing normalizing constants

In our Bayesian framework the within-model analysis provides, in theory,
the marginal data density functions

p(y|k) =
∫

p(y|k,θk)p(θk|k)dθk (8)

for each value of k ∈ K. If these could be computed, then inference on k follows
from Bayes’ theorem via p(k|y) ∝ p(k)p(y|k). The problem is computational:
the marginal data densities are generally not easily computed and so must be
approximated numerically. The following standard methods are of interest.

5.2.1. Candidate’s estimator

The so-called candidate’s estimator, first referred in Besag (1989) and fully
analysed by Chib (1995), is of interest when the k−factor models are each anal-
ysed using MCMC. The approach observes that, for any value of θk, Bayes’
theorem implies that

p(y|k) =
p(y|k,θk)p(θk|k)

p(θk|k,y)
. (9)

The idea is then to estimate the components of this equation that are not available
analytically, then plug-in a chosen value of θk to provide an estimate of p(y|k).
Our analysis uses the posterior means from the MCMC analyses as these plug-in
values.

Now, the numerator in (9) factors as p(y|k,βk,Σ)p(βk|k)p(Σ|k) each com-
ponent of which can be directly and easily evaluated. The posterior density
function in the denominator requires approximation, and with some creativity.
Theoretically, this is given by

p(βk,Σ|k,y) = p(βk|k,y)p(Σ|k,βk,y), (10)

where the two terms in the right hand side are approximated, respectively by:

p(βk|k,y) ≈ 1
M

M∑
m=1

p(βk|k,Σ(m),F
(m)
k ,y), (11)
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p(Σ|k,βk,y) ≈ 1
M

M∑
m=1

p(Σ|k,βk,F
(m)
k1 ,y), (12)

where the sum, in the first approximation, is over draws (F (m)
k ,Σ(m)) from the

MCMC analysis and can be easily performed, since it is a sum of multivariate
normal distributions (truncated).

The second approximation, however, is a sum (of products of inverse gam-
mas) over draws F

(m)
k1 from an MCMC analysis conditional on βk. To do this we

need to run additional MCMC chains in each k−factor model with the βk fixed at
its chosen value. This naturally introduces a significant additional computational
burden, especially in larger models.

In studies below we denote by p̂C the resulting approximation to p(y|k).

5.2.2. Harmonic mean estimator

In a similar spirit to the candidate’s estimator, the harmonic mean estimator
makes use of the identity

p(y|k)−1 =
∫

p(y|k,θk)−1p(θk|k,y)dθk. (13)

As discussed in Newton and Raftery (1994), the resulting estimator is based on
the importance sampling approximation to the integral using the exact posterior
as importance sampling distribution. This results in the approximation p(y|k) ≈
p̂H where

p̂−1
H = M−1

M∑
m=1

p(y|k,θ
(m)
k )−1, (14)

where the θ
(m)
k are posterior samples from the MCMC analysis and the density

evaluations are made using equation (4). Note that p̂H is an harmonic mean
of the likelihood values, hence the name. Newton and Raftery (1994) discuss
the accuracy of p̂H among other issues. Though it has been quite widely used,
it can be unstable in some applications since small likelihood values can overly
influence the resulting harmonic mean value.

5.2.3. Newton and Raftery’s estimator

Partly motivated by the stability issues associated with p̂H , Newton and
Raftery (1994) suggested estimators defined as follows. Let g(θk) = δp(θk|k) +
(1 − δ)p(θk|k,y) be a mixture of the prior and posterior for θk for some small
mixing probability δ. Sampling from g(·) is easy – simply randomly replace values
in the available posterior sample by independent draws from the prior. Do this
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iteratively, repeatedly computing the sequence of γ values defined by γnew =
A(γold)/B(γold), where

A(γ) =
M∑

m=1

fm{δγ + (1 − δ)fm}−1 and B(γ) =
M∑

m=1

{δγ + (1 − δ)fm}−1

and the quantities fm are the likelihood values fm = p(y|k,θ
(m)
k ) evaluated at the

current sample of M points θ
(m)
k from the mixture g(·). Iterations of this proce-

dure lead to a stable limiting value γ = p̂NR that provides the proposed estimator
of p(y|k). Notice that the case δ = 0 implies that p̂NR = p̂H . Implementation of
this method depends on the choice of δ.

The main problem with this estimator is that is depends on draws from
both the posterior and the prior. Newton and Raftery (1994) have suggested
combining the M draws from the posterior with δM/(1 − δ) draws from the
the prior, all of them with the same likelihood equal to their expected value,
p(y|K), the predictive density. Once again, the solution is found iteratively as,
γnew = A(γold)/B(γold), where

A(γ) = εM+
M∑

m=1

fm{δγ+(1−δ)fm}−1 and B(γ) = εMγ−1+
M∑

m=1

{δγ+(1−δ)fm}−1

with ε = δ/(1 − δ).

5.2.4. Gelfand and Dey’s estimator

Related estimators introduced by Gelfand and Dey (1994) are inspired by
the identities

p(y|k)−1 =
∫

g(θk)p(θk|k,y){p(θk|k)p(y|k,θk)}−1dθk (15)

that hold for all arbitrary densities g(·). These authors study approximations
p̂GD given by

p̂−1
GD = M−1

M∑
m=1

g(θ(m)
k ){p(y|k,θ

(m)
k )p(θ(m)

k |k)}−1, (16)

where, again, the θ
(m)
k are posterior samples. The p̂GD is unstable if g has thicker

tails than p(y|k,θ)p(θk|k).

5.2.5 Laplace-Metropolis estimator

The Laplace-Metropolis estimator combines analytic posterior approxima-
tions with MCMC output to modify traditional Laplace asymptotics (Tierney
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and Kadane (1986)). Discussed in Lewis and Raftery (1997), the resulting esti-
mator has the form

p̂LM = (2π)d/2|Ψ|1/2p(y|k, θ̃k)p(θ̃k|k), (17)

where θ̃k maximises p(y|k,θk)p(θk|k) among the M posterior draws, Ψ is the
MCMC approximation to the posterior variance of θk, and d is the dimension of
θk. Variations on this method replace θ̃k by the MCMC approximation to the
posterior mean.

5.2.6. Bridge sampling

Innovative methods based on bridge sampling have recently been studied
by Meng and Wong (1996). In our context this applies as follows. If g(θk) is
any chosen proposal density function with the same support as the posterior
p(θk|k,y), note the identity p(y|k) = N/D, where

N =
∫

α(θk)g(θk)p(θk|k)p(y|k,θk)dθk,

D =
∫

α(θk)g(θk)p(θk|k,y)dθk.

Based on the MCMC sample values θ
(m)
k from the posterior distribution and on

L values θ
∗(l)
k from g(·) (an importance function) we now have an easy approxi-

mation p(y|k) ≈ N̂/D̂, where

N̂ = L−1
L∑

l=1

α(θ∗(l)
k )p(θ∗(l)

k |k)p(y|k,θ
∗(l)
k ) and D̂ = M−1

M∑
m=1

α(θ(m)
k )g(θ(m)

k ).

Generally, we aim to choose g(·) to be as accurate an approximation to the
posterior as possible, while remaining easy to compute and simulate.

Different choices of the “arbitrary” function α(·) define different bridge sam-
pling estimators. Some discussed by Meng and Wong (1996) are as follows.
• If α(θk) = (p(θk|k)p(y|k,θk)g(θk))−1 the corresponding estimator resembles

the harmonic mean estimator. We label this p̂GH and note that it is obtained
by letting

N̂ = L−1
L∑

l=1

g(θ∗(l)
k )−1 and D̂ = M−1

M∑
l=1

{p(θ(m)
k |k)p(y|k,θ

(m)
k )}−1.

• If α = (p(θk|k)p(y|k,θk)g(θk))−1/2 we have what is called the geometric es-
timator p̂G. This is given by

N̂ = L−1
L∑

l=1

{p(θ∗(l)
k |k)p(y|k,θ

∗(l)
k )/g(θ∗(l)

k )}1/2,
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D̂ = M−1
M∑
l=1

{g(θ(m)
k )/(p(θ(m)

k |k)p(y|k,θ
(m)
k ))}1/2.

• The optimal estimator of Meng and Wong (1996), denoted by p̂opt, is obtained
by an iterative procedure. Specify the initial value r· = p̂G and, defining
s1 = 1−s2 = M/(M +L), iterate the equation rnew = A(rold)/B(rold), where

A(r) =
L∑

l=1

W2i/(s1W2l + s2r) and B(r) =
M∑

m=1

1/(s1W1m + s2r),

W2l =p(y|k,θ
∗(l)
k )p(θ∗(l)

k |k)/g(θ∗(l)
k ) and W1m =p(y|k,θ

(m)
k )p(θ(m)

k |k)/g(θ(m)
k ),

for l = 1, . . . , L, and m = 1, . . . ,M , respectively.

5.3. Likelihood and information criteria

Traditional model selection criteria based on the likelihood include variants of
AIC, Akaike (1987), the Schwartz or Bayesian criteria, or BIC, and related infor-
mation criteria such as the ICOMP methods of Bozdogan and Ramirez (1987) and
Bozdogan and Shigemasu (1998). Explicit equations for some of these criteria,
that we use below in comparative studies, are provided here. For each k−factor
model, write lk = −2 log(p(y|k, θ̂k)) where θ̂k is MLE of θk = (βk,Σ) and the
likelihood function is the standard form in equation (4). Write Ω̂k = β̂kβ̂

′
k + Σ̂

for the corresponding MLE of Ωk. It is easily deduced that

lk = T
{
m log(2π) + log |Ω̂k| + trace(Ω̂

−1
k S)

}
,

where S = y′y/T. The various model selection criteria are defined as follows:
(i) AIC = lk + 2pk, (ii) BIC = lk + log(T )pk, (iii) BIC ∗ = lk + log(T̃ )pk, and
(iv) ICOMP = lk + C1(Σ̂k), where pk = m(k + 1) − k(k − 1)/2, T̃ = T − (2m +
11)/6 − 2k/3 and C1(Σk) = 2(k + 1) ((m/2) log(traceΣk/m) − 0.5 log |Σk|). See
Bozdogan and Shigemasu (1998) for further details.

6. Empirical Exploration and Comparison

6.1. A first simulation study

An initial simulation study considers a one-factor model for a seven-dimen-
sional problem generating one hundred observations; thus m = 7, k = 1 and
T = 100. In each of a series of simulations, T observations were drawn from a
one-factor models defined by parameters

β′ = (0.995, 0.975, 0.949, 0.922, 0.894, 0.866, 0.837),

diag(Σ) = (0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30).
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In this first simulation study, and in the following ones, we have decided to
model correlation matrices as opposed to covariance matrices. As extensively
discussed in Section 2.2, the results are invariant to standardization of the vari-
ables. Besides, prior elicitation should be, at least in principle, more direct when
dealing with correlations than with covariances.

Each such simulated data set was analysed using the MCMC and reversible
jump methodologies, and also subject to study using the range of model selected
criteria and methods described above. This study explored k−factor models for
each data set, with up to three possible factors in each case.

MCMC analyses utilised the prior distributions based on the following hy-
perparameter values: for β, hyperparameters µ0 = 0 and C0 = 1 define very
vague priors; for the variances σ2

k, ν0i = 2.2 and ν0is
2
0i = 0.1 define similarly

vague priors with prior means of 0.5 for each σ2
k. The MCMC and reversible

jump samplers were based on M0 = 10, 000 iterations as burn-in, followed by
a further 10,000 iterates that were sampled every ten steps to produce a final
MCMC sample of size 1,000. In generating proposals in the RJMCMC methods,
we adopted a = 18, b = 2 and

J =


0.0 1.0 0.0

0.5 0.0 0.5
0.0 1.0 0.0


 .

Both a and b are also used to define the proposals, g(θ), for the other methods
of addressing model uncertainty (see Section 5). Among the candidate methods
for model selected, the “Newton and Raftery” technique requires the specification
of a control parameter, δ; this was set at δ = 0.05, and the number of iterations
at 1,000. Table 1 displays results from this simulation analysis. We repeated the
model fitting exercises for 1,000 different data sets generated independently from
the one-factor model.

The table provides simple counts of the number of times that each k-factor
model achieved the highest posterior probability. For example, the harmonic
estimator method selected the one-factor model 428 times out of 1,000, and the
three-factor model 314 times out of 1,000. Evidently, most of the approximation
methods are very reliable in favouring the one-factor model, as is the RJMCMC
(the “gold standard”) approach. Bridge sampling methods agree with our RJM-
CMC approach. Relatively poor results are achieved by the harmonic mean
method, Newton-Raftery estimator, AIC, ICOMP, and to some extent by the
candidate’s estimator, which all tend to prefer higher numbers of factors a sig-
nificant proportion of the time. In terms of model selection per se, as opposed
to exploring model uncertainty more formally, the BIC methods are relatively
accurate and, of course, rather easier to compute.
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Table 1. Comparison of model uncertainty assessment methods on simulated
data set 1.

k

Method k = 1 k = 2 k = 3
RJMCMC 1000 0 0
p̂C 954 46 0
p̂H 428 258 314
p̂NR 467 234 299
p̂GD 1000 0 0
p̂LM 1000 0 0
p̂G 1000 0 0
p̂opt 1000 0 0

Criterion k = 1 k = 2 k = 3
AIC 854 135 11
BIC 1000 0 0
BIC∗ 1000 0 0
ICOMP 607 296 97

In analysis of real data, we run into multi-modalities in posterior distribu-
tions that require some thought and explanation. In anticipation of this, we here
explore some summaries of a three-factor model fitted to one of the simulated
data sets arising from this true one-factor model.

Figure 1 displays marginal posterior densities of some of the idiosyncratic
variances from such an analysis. Note the multi-modality; marginal posteriors for
elements of the β matrix exhibit corresponding multiple modes. This arises due
to the mis-match between the model assumption of k = 3 and the data structure
based on k = 1, and is driven by the identification issues arising in such cases, as
Discussed in Section 2.2 around equation (5). Encountering such multi-modality
in posteriors from a specified model can therefore be taken as a suggestion that
the chosen value of k is too large.
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Figure 1. Marginal posteriors of the σ2
i (i = 4, . . . , 7) from analysis of the

simulated data set from a one-factor structure but analysed using a model
with k = 3 factors (based on the first simulated study at Section 6.1).
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6.2. A second simulation study

A second study follows the pattern of the above example, but now using data
sets simulated from a model with m = 9 variables, k = 3 factors, and with a
sample size of just T = 50. The true model in this case has parameters

β′ =


0.99 0.00 0.00 0.99 0.99 0.00 0.00 0.00 0.00

0.00 0.95 0.00 0.00 0.00 0.95 0.95 0.00 0.00
0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.90 0.90


 ,

diag(Σ) = (0.02, 0.19, 0.36, 0.02, 0.02, 0.19, 0.19, 0.36, 0.36).

The analyses used the same hyper-parameters and MC sample size choices
as in the first simulation study. As there, we summarise one aspect of perfor-
mance of model selection methods by simply counting the number of times, out
of a total of 1,000 analyses of simulated data sets, that each possible k-factor
model received the highest posterior probability using each of the methods of
computation. These summaries appear in Table 2. Again, it is clear that several
of the approximation methods reliably identify the true model structure, which
gives some indication of their likely utility in real data analyses. Among the
approximate Bayesian methods, those based on the candidate’s estimator, the
harmonic mean estimator and the Newton-Raftery technique are the only fail-
ures, their performances being quite poor in comparison to the other Bayesian
approaches and to the information criteria. Once again, AIC and ICOMP choose
the wrong model in at least 12 percent of the simulations. AIC is often known
to overestimate the size of the model, as empirically observed here.

Table 2. Comparison of model uncertainty assessment methods on simulated
data set 2.

k

Method k = 1 k = 2 k = 3 k = 4 k = 5
RJMCMC 7 0 993 0 0
p̂C 0 12 848 138 2
p̂H 0 0 650 228 122
p̂NR 0 0 615 258 127
p̂GD 0 0 998 2 0
p̂LM 0 1 999 0 0
p̂G 0 11 985 4 0
p̂opt 0 11 985 4 0

Criterion k = 1 k = 2 k = 3 k = 4 k = 5
AIC 0 0 857 125 18
BIC 0 0 995 5 0
BIC∗ 0 0 993 7 0
ICOMP 0 0 886 97 17
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6.3. Factor structure in international exchange rates

We now explore the factor structure underlying the changes in monthly in-
ternational exchanges rates using the data studied in West and Harrison (1997,
pp.610-618). These time series are the exchange rates in British pounds of the
following m = 6 currencies: US dollar (US), Canadian dollar (CAN), Japanese
yen (JAP), French franc (FRA), Italian lira (ITA) and the (West) German
(Deutsch)mark (GER). The data span the period from 1/1975 to 12/1986 in-
clusive, and the monthly changes in exchange rates appear in Figure 2. Each
series has been standardised with respect to its sample mean and standard devi-
ation over the period for comparability (this does not affect the modeling process
and factor structure analysis). Earlier studies in West and Harrison (1997) used
various principal component analyses that indicated up to three meaningful la-
tent components, suggesting up to three factors may be relevant in our analyses.

Our illustrative analysis first explores uncertainty about the number of fac-
tors as in the foregoing simulated data analyses, and then investigates questions
about the dependence of conclusions from such analyses on the chosen order of
the series. This latter point is of interest as the particular factor model structure
adopted − with the upper triangle of zero elements in the factor loading matrix
− introduces an apparent order dependence.
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Figure 2. Standardized first differences of monthly observed exchange rates.
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Prior distributions are specified exactly as in the simulated examples, the
general scales for all parameters now being comparable with those of the simu-
lation examples as the data are modelled after standardisation. Specifically, we
have µ0 = 0, C0 = 1, ν0i = 2.2 and ν0is

2
0i = 0.1. For the Gibbs sampling and

RJMCMC analyses we burn-in the algorithms for 10, 000 iterations, and then
save equally spaced samples of 5, 000 draws from a longer run of 100, 000. New-
ton and Raftery (1994) suggest using δ small, so we decided to use δ = 0.05.
Alternative values were used and little or no variation was observed. Proposal
distributions in the RJMCMC analysis are based on defining parameters a = 18
and b = 2, and the transition matrix, J , is such that Jii = 0 for i = 1, 2, 3 and
Jij = 0.5 for i �= j.

The analyses were run on the data with currencies ordered by country as:
US, CAN, JAP, FRA, ITA and GER. Table 3 provides summaries of the various
approximate Bayesian and information criteria for assessment of the number of
factors. The overall suggestion is that k = 2 is strongly favoured.

From the MCMC analysis of the k = 2 factor model, we have the following
posterior summaries.
• The posterior means of β and Σ parameters are, to two decimal places,

E(β′|y) =

(
0.99 0.95 0.46 0.39 0.41 0.40
0.00 0.05 0.42 0.91 0.77 0.77

)

and E(diag(Σ)|y) = (0.05, 0.13, 0.62, 0.04, 0.25, 0.28).

Table 3. Comparison of model uncertainty assessment methods from analy-
ses of the international exchange rate time series.

log p(y|k) p(k|y)
Method k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
RJMCMC — — — 0.00 0.88 0.12
p̂C -1013.5 -935.3 -925.5 0.00 0.00 1.00
p̂H -988.0 -871.0 -871.8 0.00 0.71 0.29
p̂NR -991.9 -880.1 -881.4 0.00 0.78 0.22
p̂GD -1017.7 -907.1 -906.4 0.00 0.34 0.66
p̂LM -1014.8 -904.5 -897.3 0.00 0.00 1.00
p̂G -1014.5 -903.7 -Inf 0.00 1.00 0.00
p̂opt -1014.5 -903.7 -Inf 0.00 1.00 0.00

Criterion k = 1 k = 2 k = 3
AIC 1978.4 1745.0 1751.0
BIC 2013.9 1795.4 1813.2
BIC∗ 2013.6 1794.8 1812.3
ICOMP 1957.9 1776.1 1724.0
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• The marginal posterior densities of the elements of β are displayed – in terms
of histograms of the posterior samples – in Figure 3.

• The marginal posterior densities of the σ2
k parameters are displayed – also in

terms of histograms of the posterior samples – in Figure 4.
• The time trajectories of the posterior means of the two factor time series

are displayed in Figure 5. The first factor is plotted together with the US
and CAN series, and the second factor is plotted together with the JAP and
European currencies.

Table 4. Percentage of the variance of each series explained by each factor
in analysis of the international exchange rate time series.

Country Factor 1 Factor 2
US 95.1 0

CAN 87.6 0.2
JAP 20.5 17.6
FRA 14.7 81.8
ITA 16.4 58.6
GER 16.1 58.5

• For each currency series i = 1, . . . , 6, the percentage of the conditional variance
explained by each factor j = 1, 2 is simply 100(1 + β2

kk′/σ2
k). Table 4 below

provides estimated values of these quantities with the β· and σ· parameters
estimated at their posterior means.

These summaries indicate the following broad conclusions. The first factor
represents the value of sterling relative to a basket of currencies in which the
North American currencies are dominant. US and CAN are roughly equally
weighted, which is expected as CAN rates are heavily determined in international
markets by US rates. This first factor may be termed the North American factor.
The second factor may be similarly termed the European Union (EU) factor. It
represents a restricted basket of currencies dominated by the EU currencies, with
a relatively reduced weighting on JAP. US is absent from this factor, by design
of the factor loading matrix, and CAN is practically absent, with the posterior
for β2,2 indicating very small values. Inferences about the idiosyncratic variances
strengthen and extend these conclusions. Those for US and GER are very small,
indicating that these two currencies play determining roles in defining their sector
factor. CAN, FRA and ITA have larger idiosyncratic variances, indicative of their
departures from their sector factors. JAP has a large idiosyncratic variance,
contributing about two-thirds of the overall conditional variance. A k = 3 factor
model would move most of this variability over to the third, JAP factor, as further
studies verify.
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Notice that the marginal posteriors graphed are all unimodal. This is of
interest in view of the earlier discussion about multiple posterior modes induced
by multiple local maxima in the likelihood functions when the specified value of
k is larger that is consistent with the data. Multiple modes appear in analysis
of a 3-factor model very much in the same way as seen in Figure 1. The margins
from the 2-factor model analysis are consistent with the view that k = 2 is not
too large, and therefore provide additional support for the 2-factor model.
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Figure 3. Marginal posteriors of the factor loadings when fitting a two-factor
structure to the international exchange rates.
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Figure 4. Marginal posteriors of the idiosyncratic variances when fitting a
two-factor structure to the international exchange rates.
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Figure 5. Posterior mean for the factor and actual exchange rates. First
factor plus US and CAN (upper frame) and second factor plus FRA,ITA
and GER (lower frame)

It is of interest to explore possible dependence on the order of the series
in this analysis. This is especially indicated here due to the high dependence



BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS 63

between US and CAN and the resulting very small values of β2,2, the diagonal
factor loading element that is constrained to be positive. The above analysis was
therefore re-run with the orders of CAN and JAP interchanged. The resulting
posterior means of the factor loadings and idiosyncratic variances are

E(β|y) =

(
0.98 0.45 0.95 0.39 0.41 0.41
0.00 0.42 0.03 0.91 0.77 0.77

)

and E(diag(Σ)|y) = (0.06,0.62,0.12, 0.04, 0.25, 0.26), where the figures in bold
font simply indicate JAP and CAN in the new order. Comparing with the original
analysis we see that these numbers are in extremely close agreement, suggesting
the order has essentially no effect on the estimation. To further explore this,
Table 5 provides the summaries of model assessment methods based on this
ordering of variables. The overall conclusion that k = 2 is the “true” number of
factors stands.

It is significant that in Table 4, nearly all of the methods pick k = 2, as
opposed to Table 5. This gives us a hint of how instable some methods are. It
might also show that for the less stable methods, the ordering is more important.

Table 5. Comparison of model uncertainty assessment methods from the
reanalyses of the international exchange rate time series under a different
order of the currencies.

log p(y|k) p(k|y)
Method k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
RJMCMC — — — 0.00 0.98 0.02
p̂C -1013.5 -934.5 -985.8 0.00 1.00 0.00
p̂H -988.3 -874.6 -873.0 0.00 0.16 0.84
p̂NR -985.5 -867.3 -867.9 0.00 0.65 0.35
p̂GD -1017.8 -907.0 -909.6 0.00 0.93 0.07
p̂LM -1015.5 -904.4 -910.3 0.00 1.00 0.00
p̂G -1014.5 -903.5 -Inf 0.00 1.00 0.00
p̂opt -1014.5 -903.5 -Inf 0.00 1.00 0.00
p̂EP -993.5 -878.4 -884.2 0.00 1.00 0.00

7. Concluding Comments

As discussed in the introduction, our interest has been to study MCMC
methods for factor models and novel RJMCMC and other methods for assessing
the issue of model uncertainty induced by an unknown number of factors. In
doing so, we have explored empirical studies with two simulated and one real
data example, highlighting ranges of methodological and modelling issues. A few
additional comments are of interest in conclusion.



64 HEDIBERT FREITAS LOPES AND MIKE WEST

• Our customised RJMCMC method, using empirical proposal distributions
based on parallel MCMC analyses for a range of models with specified num-
bers of factors, is effective and efficient, as tested in a range of synthetic and
real studies (Lopes, Müller and Rosner (2002)). Development of effective pro-
posal distributions and jumping rules in models with even moderate dimen-
sional parameters is usually very challenging, and the approach used here will
be useful in other such models. We note that the computation of approximate
posterior probabilities on k using bridge sampling approaches, though also
requiring some tuning, is similarly accurate in a range of studies, providing
answers close to those from RJMCMC; these methods deserve further study
too. By contrast, we have found that none of the other “standard” methods
of approximation reviewed in Section 5.1 is consistently accurate in identi-
fying correct models in ranges of simulation studies, and none consistently
superior to the formal RJMCMC, Newton and Raftery and bridge sampling
approaches. On purely empirical grounds, we find the BIC methods generally
provide more stable and reliable initial guides to the choice of k than the other
standard methods. Traditionally, BIC is an approximation to the log of the
Bayes factor for comparing a model to the null model.

• The selected order of data variables influences the likelihood function and
hence posterior inferences about the number of factors. The effect can be
marked, although inferences about the factor loadings and other parameters
are generally relatively stable by comparison. Thus, very naturally, the order
of variables is relevant in connection with interpretation of the factors and
their number. However, a simple permutation of the variables followed by
factors’ rotation leads to alternative, and generally more convenient, inter-
pretation of the latent factors, a strategy commonly used by factor analysts.
Of course, the conditional variance-covariance matrix of the variables is un-
affected by the ordering, and hence so are the predictive inferences resulting
from the model.

• In further empirical studies (Lopes (2000)) we have explored a range of predic-
tive exercises. For example, in studies of simulated data and of the industrial
stock indices analysed in Geweke and Zhou (1996), we have explored out-
of-sample predictions based on sequential data analysis and one-step ahead
predictions, as are standard in time series work. These studies have indicated
a general point: rather often, posterior uncertainty about the number of fac-
tors based on a set of historical data may understate the practically relevant
uncertainties when forecasting ahead. For example, sequential forecasting per-
formance using a four-factor model can often out-perform a three-factor model
even when analysis of past data has given almost no posterior probability to
the four-factor model. Predictive comparisons and model mixing are worthy
of further study.
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Beyond these issues, we note that related developments in dynamic factor
modelling (Aguilar and West (2000), and more recently in Lopes (2000)) in finan-
cial time series and portfolio studies are focussed almost exclusively on short-term
forecasting and the potential improvements available in forecasting moderate to
high-dimensional time series using factor structures. Here the assessment of the
number of factors is also a live issue, and one that is complicated by the time-
varying nature of such models that leads to the notion of time-variation in the
number of (practically relevant) factors.
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