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Abstract: In this article, we consider the design of unbalanced ranked-set sampling

in order to achieve certain optimality for inference on quantiles. We first derive

the asymptotic properties of the unbalanced ranked-set sample quantiles for any

unbalanced ranked-set sampling scheme. Then these properties are employed to

develop a methodology for determining optimal ranked-set sampling schemes. In

the case of inference on a single quantile, the optimal scheme results in an estimator

of the quantile which is asymptotically unbiased and with minimum variance among

all ranked-set sample (balanced or unbalanced) quantiles. The striking feature of

the methodology is that it is distribution-free. The optimal schemes for inference

on certain quantiles are computed. Some simulation studies are reported.
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1. Introduction

In areas such as agriculture, environment, ecology, sociology and others, one
often encounter problems where measurement of the variable of interest for an
observed item is costly or time-consuming, but the ranking of a set of items
according to the variable can be easily done by judgment without actual mea-
surement. The notion of ranked-set sampling (RSS) introduced by McIntyre
(1952) provides, in such circumstances, an applicable scheme which incorporates
judgment ranking into sampling so as to gain more information than simple ran-
dom sampling (SRS) without additional expense. The original form of an RSS
scheme can be described as follows. A set of k items is drawn from the popu-
lation, the items of the set are ranked by judgment, and only the item ranked
the smallest is quantified. Then another set of size k is drawn and ranked, and
only the item ranked the second smallest is quantified. The procedure continues
until the item ranked the largest in the kth set is quantified. This completes a
cycle of the sampling. The cycle is then repeated for as many times as desired.
This original form of RSS is referred to as balanced in the sense that each order
statistic in the ranked sets is quantified the same number of times. A ranked-set
sample consists of the measurements on the quantified items.
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Since a ranked-set sample contains not only the measurements but also the
ranks of the quantified items in the ranked-sets, it usually carries more informa-
tion than a simple random sample of the same size. The research in the literature
has been focusing on the comparison between procedures based on RSS and their
counterparts based on SRS. The earliest such research is on the relative precision
of ranked-set sample means to simple random sample means as estimators of the
population mean. This is found in, e.g., McIntyre (1952), Takahasi and Waki-
moto (1968), Dell and Clutter (1972). The estimation of variance is considered
in Stokes (1980). The ranked-set empirical distribution as an estimator of the
population distribution and the related RSS version of Kolmogorov-Smirnov test
are studied in Stokes and Sager (1988). The RSS version of the Mann-Whitney-
Wilcoxon test is dealt with in Bohn and Wolfe (1992). The RSS version of the
sign test is treated in Hettmansperger (1995) and Koti and Babu (1996). The
procedures based on ranked-set sample quantiles are tackled in Chen (2000).
Density estimation using RSS data is considered in Chen (1999a).

In this article, we focus on the issue of how unbalanced RSS schemes can re-
sult in optimal schemes for certain statistical problems. Unbalanced RSS schemes
were mentioned in McIntyre (1952) and Takahasi and Wakimoto (1968). It was
observed that the Neyman allocation is optimal for estimating the population
mean. However, the Neyman allocation is not a practical scheme since the allo-
cation proportions depend on unknown parameters. The first serious work that
touches on this issue is, to our knowledge, Stokes (1995). Stokes (1995) con-
sidered the following sampling scheme: a cycle of k sets of size k is drawn and
ranked, and the order statistics with orders r1, . . . , rk are quantified in these k

ranked sets, where the rj’s can be any integer from 1 to k and are not necessarily
different. The cycle is then repeated m times to produce the data

X(r1)1, X(r1)2, . . . , X(r1)m;
X(r2)1, X(r2)2, . . . , X(r2)m;
. . . , . . . , . . . , . . .

X(rk)1, X(rk)2, . . . , X(rk)m.

Under the framework of location-scale families, Stokes (1995) tackled the choice
of the rj ’s in order to obtain the most efficient best linear unbiased estimates for
the parameters of location-scale families. However, the method given by Stokes
(1995) has some limitations. The most serious limitation is that the method
is based on asymptotic properties when k (in our notation) is large, which is
impractical. A more reasonable and practical approach is proposed by Chen and
Bai (1998) in parametric settings. They considered unbalanced RSS schemes
described as follows. Let n sets of size k items be drawn from the population and
each of them be ranked by judgment. Then, for r = 1, . . . , k, nr sets are randomly
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chosen and the rth order statistic is quantified in each. Here 0 ≤ nr ≤ n and∑
nr = n. An unbalanced ranked-set sample is represented by

X(1)1, X(1)2, . . . , X(1)n1
;

X(2)1, X(2)2, . . . , X(2)n2
;

. . . , . . . , . . . , . . . ;
X(k)1, X(k)2, . . . , X(k)nk

.

(1)

Chen and Bai (1998) considered both maximum likelihood estimates and best lin-
ear unbiased estimates for the parameters of the underlying parametric family.
They developed methodology for determining optimal unbalanced schemes ac-
cording to certain optimality criteria based on the asymptotic variance-covariance
matrix of the estimates when n (not k) is large. Other inferences on unbalanced
RSS schemes include Kaur, Patil and Taillie (1997, 1998a,b), and Muttlak (1998).

In this article, we develop a method for the design of optimal unbalanced
RSS schemes for inference on quantiles. The attracting feature of our method
is that it is distribution-free. The article is arranged as follows. In Section 2,
we give the definition of ranked-set sample quantiles and describe the notation.
The asymptotic properties of the ranked-set sample quantiles when n is large are
presented in Section 3. Section 4 is devoted to the development of the method
for the design of optimal RSS schemes. The asymptotic relative efficiencies of
optimal RSS schemes are discussed in Section 5. A simulation study is reported
in Section 6. Some discussion on imperfect ranking and other issues is given in
Section 7.

2. Notation and Definitions

The cumulative distribution function (CDF) and probability density function
(PDF) of the underlying distribution are denoted by F and f . Although in
most part we assume the judgment ranking in RSS is perfect, we also allow the
possibility of imperfect ranking in some of the results discussed in this article. To
distinguish perfect ranking from imperfect ranking, we denote by X(r) the ranked
order statistic when ranking is perfect and by X[r] when there is a possibility of
imperfect ranking. The CDF and PDF of the rth judgment-ranked order statistic
in a set of size k are denoted by F(r) and f(r) if ranking is perfect, and by F[r]

and f[r] if ranking might be imperfect. By a probability vector is meant a vector
whose components are non-negative and sum to 1. Let q = (q1, . . . , qk)

′
denote

a probability vector. Define fq =
∑k

r=1 qrf[r] and Fq =
∑k

r=1 qrF[r]. Note that
fq is a PDF and Fq is the corresponding CDF. The distribution with CDF Fq

can be regarded as the sampling distribution of the unbalanced RSS scheme with
nr = [[nqr]], [[x]] denoting the integer nearest to x. Denote by ξp the pth quantile
of F and by ξq,p the pth quantile of Fq.
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Define the unbalanced ranked-set empirical distribution function by F̂qn(x)=∑k
r=1

nr
n F̂[r]nr

(x), where F̂[r]nr
(x) = 1

nr

∑nr
i=1 I{X[r]i ≤ x}, and n =

∑
nr. The

pth quantile of F̂qn is ξ̂qn,p = inf{x : F̂qn(x) ≥ p}. The quantile ξ̂qn,p is referred
to as the pth unbalanced ranked-set sample quantile.

Let the X[r]i’s be ordered from smallest to largest and denote the ordered
quantities by Y(1:n) ≤ · · · ≤ Y(j:n) ≤ · · · ≤ Y(n:n). The Y(j:n)’s are then referred to
as the unbalanced ranked-set order statistics.

3. The Asymptotic Properties of the Unbalanced Ranked-set Sample
Quantiles

We state the asymptotic properties of the unbalanced ranked-set sample
quantiles in this section. The properties include strong consistency, Bahadur
representation and asymptotic normality. These results apply whether ranking
is perfect or not.

Theorem 1. Suppose nr/n = qr + O(n−1) for r = 1, . . . , k. If 0 < p < 1 and
fq(ξq,p) > 0, then, with probability 1,

|ξ̂qn,p − ξq,p| ≤ 2(log n)2

fq(ξq,p)n1/2

for all sufficiently large n.

The next result is the Bahadur representation of the unbalanced ranked-set
sample quantile.

Theorem 2. Suppose nr/n = qr + O(n−1). If fq is positive in a neighborhood
of ξq,p and is continuous at ξq,p, then

ξ̂qn,p = ξq,p +
p − F̂qn(ξq,p)

fq(ξq,p)
+ Rn,

where, with probability one, Rn = O(n−3/4(log n)3/4) as n → ∞.

The asymptotic normality of the unbalanced ranked-set sample quantiles
follows as an immediate consequence of the Bahadur representation.

Corollary 1. Under the same assumptions as in Theorem 2,

√
n(ξ̂qn,p − ξq,p) → N

(
0,

σ2
k,p(q)

f2
q(ξq,p)

)
,

in distribution, where σ2
k,p(q) =

∑k
r=1 qrF[r](ξq,p)[1 − F[r](ξq,p)].

A more general result is the joint asymptotic normality of several unbalanced
ranked-set sample quantiles, as given below.
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Corollary 2. Let 0 < p1 < · · · < pl < 1 be l probabilities. Let ξ̂ = (ξ̂qn,p1, . . .,
ξ̂qn,pl

)
′
and ξ = (ξq,p1, . . . , ξq,pl

)
′
. Then

√
n(ξ̂ − ξ ) → N(0,Σ), where Σ is a

positive definite matrix and, for i < j, the (i, j)th entry of Σ is

σij =
∑k

r=1 qrF[r](ξq,pi)[1 − F[r](ξq,pj)]
fq(ξq,pi)fq(ξq,pj)

.

The results in this section are just extensions of the results for balanced RSS
found in Chen (2000). What is important is the implication of these results in
the design of optimal RSS schemes for inference on quantiles, as is seen in the
next section.

4. Method for the Determination of Optimal RSS Schemes for Infer-
ence on Quantiles When Ranking Is Perfect

In this section, we assume that ranking in RSS is perfect. Then

f(r)(x) =
k!

(r − 1)!(k − r)!
F r−1(x)[1 − F (x)]k−rf(x),

and hence F(r)(x) = B(r, k − r + 1, F (x)), where B(r, s, t) denotes the CDF of
the beta distribution with parameters r and s.

(i) The optimal RSS scheme for inference on a single quantile when ranking
is perfect. First we consider inference on a single quantile, say the pth. We have

Fq(ξp) =
k∑

r=1

qrF(r)(ξp) =
k∑

r=1

qrB(r, k − r + 1, p), (2)

which is completely determined by p and the probability vector q. Let the
rightmost sum in (2) be denoted by s(q, p), that is, s(q, p) = Fq(ξp). When
no confusion is caused, s(q, p) is abbreviated as s. Equality (2) indicates that
the pth quantile of F is the sth quantile of Fq. This is a crucial fact for our
development of optimal schemes. Note that

fq(ξp) =
k∑

r=1

qr
k!

(r − 1)!(k − r)!
pr−1(1 − p)k−rf(ξp).

Then Corollary 1 implies that
√

n(ξ̂qn,s − ξp) → N
(
0, V (q,p)

f2(ξp)

)
in distribution,

where

V (q, p) =
∑k

r=1 qrB(r, k − r + 1, p)[1 − B(r, k − r + 1, p)]
[
∑k

r=1 qr
k!

(r−1)!(k−r)!p
r−1(1 − p)k−r]2

. (3)

The argument above implies that the sth unbalanced ranked-set sample
quantile with sampling distribution Fq provides an asymptotically unbiased esti-
mator of ξp with asymptotic variance V (q, p)/(nf2(ξp)). Hence, we can find, by



28 ZEHUA CHEN

minimizing V (q, p) with respect to q, a sampling distribution which results in an
asymptotically unbiased minimum variance estimator among all ranked-set sam-
ple quantiles. The algorithm for determining the optimal sampling distribution
and the corresponding s is as follows.

Algorithm 1. The following steps determine an optimal RSS scheme for the
inference on ξp when ranking is perfect.
Step 1. Determination of the optimal sampling distribution. Minimize V (q, p)

with respect to q and derive the minimizer q∗ = (q∗1, . . . , q∗k)
′
. Then the

optimal sampling distribution is determined as Fq∗ .
Step 2. Determination of rank s∗. The rank s∗ is determined as s∗ = Fq∗(ξp) =∑

q∗rB(r, k − r + 1, p).

The implementation of the algorithm does not pose any computational dif-
ficulty. The main computation is the minimization of V (q, p). According to a
result of Chen and Bai (1998), the minimum of V (q, p) can be attained at a q
that has at most two non-zero elements. Therefore, the minimum of V (q, p) can
be searched on k!/[(k − 2)!2!] unit line segments. We wrote a trivial program
in Splus to carry out this search. There are many other ways to implement the
minimization as well. As a referee pointed out, even elementary optimization
software such as the Solver add-in in Excel can settle the problem.

In the following, we consider some properties of V (q, p) and s(q, p) that give
rise to some desirable properties of the optimal schemes.

Lemma 1. Let q be any probability vector and let q̃ be the probability vector
whose rth element, q̃r, equals the (k − r + 1)st element, qk−r+1, of q. Then we
have, for p = 0.5, V (q, p) = V (q̃, p) = V (1

2 (q + q̃), p).

The lemma relies on the following observation. Let cr(p) = B(r, k − r +
1, p) and dr(p) = k!

(r−1)!(k−r)!p
r−1(1 − p)k−r. If p = 0.5 then we have cr(p) =

ck−r+1(p), dr(p) = dk−r+1(p) for all r.
Thus for any probability vector q there is a probability vector given by

q∗ = 1
2(q + q̃) such that V (q, p) = V (q∗, p). Hence the optimal probability

vector q∗ can be made symmetric, i.e, the elements of q∗ satisfy q∗r = q∗k−r+1.

Lemma 2. If p = 0.5 and q is symmetric, then s(q, 0.5) =
∑k

r=1 qrF(r)(ξ0.5) =
0.5, where ξ0.5 is the median of F .

To verify the lemma, first consider the case that F is symmetric. If F is
symmetric about µ then, for any symmetric q, Fq is also symmetric about µ.
Note that, in this case, µ = ξ0.5. Hence we have s(q, 0.5) = 0.5. But, since the
quantities F(r)(ξ0.5) do not depend on F , the lemma follows.
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Lemma 3. Let q be any probability vector. Let q̃ be the probability vector
obtained by reversing the components of q. Then, for any 0 < p < 1, V (q, p) =
V (q̃, 1 − p), s(q, p) = 1 − s(q̃, 1 − p).

This lemma follows from the equalities: cr(p) = 1 − ck−r+1(1 − p),dr(p) =
dk−r+1(1 − p). These can be easily verified by the definition of cr(p)and dr(p).

Lemma 3 implies that if q∗ is an optimal probability vector and s(q∗, p) is the
corresponding rank for the inference on the pth quantile, then q̃∗ is an optimal
probability vector and 1− s(q∗, p) is the corresponding rank for the inference on
the (1 − p)th quantile. In other words, the optimal schemes have a symmetric
structure. Hence, we only need to compute the optimal schemes for 0 < p ≤ 0.5.

We now report computed optimal schemes for p = 0.05 to 0.5 in steps of
0.05, k = 2, . . . , 10. It turned out that in all cases except for p = 0.5, optimal
probability vectors have only one non-zero component. In the case of p = 0.5,
optimal probabilities are equal on the medians of the sets of size k. That is, if
k is odd then q∗(k+1)/2 = 1, and if k is even then q∗k/2 = q∗k/2+1 = 0.5. The index
r(q∗) of the non-zero component of the probability vector and the corresponding
s(q∗, p) of the optimal designs for p = 0.05 to 0.45 in steps of 0.05, k = 2, . . . , 10,
are given in Table 1.

Table 1. Optimal unbalanced RSS designs for estimating a single quantile ξp,
for selected p and set size k, based on minimizing asymptotic variance and
assuming perfect ranking.

p\k 2 3 4 5 6 7 8 9 10
0.05 r(q∗) 1 1 1 1 1 1 1 1 1

s(q∗, p) 0.10 0.14 0.19 0.23 0.26 0.30 0.34 0.37 0.40
0.10 r(q∗) 1 1 1 1 1 1 1 2 2

s(q∗, p) 0.19 0.27 0.34 0.41 0.47 0.52 0.57 0.23 0.26
0.15 r(q∗) 1 1 1 1 2 2 2 2 2

s(q∗, p) 0.28 0.39 0.48 0.56 0.22 0.28 0.34 0.40 0.46
0.20 r(q∗) 1 1 1 2 2 2 2 2 3

s(q∗, p) 0.36 0.49 0.59 0.26 0.34 0.42 0.50 0.56 0.32
0.25 r(q∗) 1 1 2 2 2 2 3 3 3

s(q∗, p) 0.44 0.58 0.26 0.37 0.47 0.56 0.32 0.40 0.47
0.30 r(q∗) 1 1 2 2 2 3 3 3 4

s(q∗, p) 0.51 0.66 0.35 0.47 0.58 0.35 0.45 0.54 0.35
0.35 r(q∗) 1 2 2 2 3 3 3 4 4

s(q∗, p) 0.58 0.28 0.44 0.57 0.35 0.47 0.57 0.39 0.49
0.40 r(q∗) 1 2 2 3 3 3 4 4 5

s(q∗, p) 0.64 0.35 0.52 0.32 0.46 0.58 0.41 0.52 0.37
0.45 r(q∗) 1 2 2 3 3 4 4 5 5

s(q∗, p) 0.70 0.43 0.61 0.41 0.56 0.39 0.52 0.38 0.50
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(ii) The optimal RSS schemes for simultaneous inference on several quantiles
when ranking is perfect. Corollary 2 can be applied to determine optimal RSS
schemes for simultaneous inference on several quantiles, as Corollary 1 is applied
in the single quantile case. Without loss of generality, we discuss how this can
be done for inference involving two quantiles.

Let s1 = s(q, p1) = Fq(ξp1) and s2 = s(q, p2) = Fq(ξp2). Then the p1th and
p2th quantiles, ξp1 and ξp2, of F are the s1th and s2th quantiles of Fq respectively.
Note that fq(ξp1) =

∑k
r=1 qrdr(p1)f(ξp1), fq(ξp2) =

∑k
r=1 qrdr(p2)f(ξp2). Then it

follows from Corollary 2 that

√
n

[(
ξ̂qn,s1

ξ̂qn,s2

)
−
(

ξp1

ξp2

)]
→ N (0,Σ(q)) ,

in distribution, where Σ(q) = C−1B−1(q)A(q)B−1(q)C−1, and

C =

(
f(ξp1) 0

0 f(ξp2)

)
,

B(q) =

(∑k
r=1 qrdr(p1) 0

0
∑k

r=1 qrdr(p2)

)
,

A(q) =

(∑k
r=1 qrcr(p1)[1 − cr(p1)]

∑k
r=1 qrcr(p1)[1 − cr(p2)]∑k

r=1 qrcr(p1)[1 − cr(p2)]
∑k

r=1 qrcr(p2)[1 − cr(p2)]

)
.

Let V (q) = B−1(q)A(q)B−1(q). Optimal RSS schemes can be determined based
on V (q). However, unlike the case of a single quantile, we are faced with the
choice of optimality criteria. Various criteria can be considered, such as D-
optimality, A-optimality, E-optimality, etc. Suppose that the choice of criteria
has been made and that the optimality criterion entails the minimization of a
function of V (q), say, G(V (q)). Then the algorithm for determining optimal
RSS schemes for simultaneous inference on several quantiles can be described as
follows.

Algorithm 2. The following steps determine the optimal scheme for the simul-
taneous inference on ξp1, . . . , ξpl

when ranking is perfect.
Step 1. Minimize G(V (q)) with respect to q to determine the optimal probability

vector q∗ = (q∗1 , . . . , q∗k)
′
.

Step 2. Compute s∗j =
∑

q∗rB(r, k − r + 1, pj) for j = 1, . . . , l.

For illustration, consider the criterion of D-optimality in what follows. This
entails the minimization of |V (q)|, the determinant of V (q). As important exam-
ples, we computed the D-optimal RSS schemes for inference on the pairs (ξp, ξ1−p)
for p = 0.01, 0.05, 0.1, 0.15, 0.2 and 0.25. The optimal probability vectors and the
corresponding vector s(q∗,p ) = (s(q∗, p), s(q∗, 1 − p)) are given in Table 2.
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Table 2. Optimal unbalanced RSS designs for estimating a pair of quantiles
(ξp, ξ1−p), for selected p and set size k, based on minimizing asymptotic
generalized variance and assuming perfect ranking.

p\k 3 4 5
0.01 q∗ (0.5, 0, 0.5) (0.5,0,0,0.5) (0.5,0,0,0,0.5)

s(q∗, p ) (0.015,0.985) (0.020,0.980) (0.025, 0.975)
0.05 q∗ (0.5, 0, 0.5) (0.5,0,0,0.5) (0.5,0,0,0,0.5)

s(q∗, p ) (0.071,0.929) (0.093,0.907) (0.113, 0.887)
0.10 q∗ (0.5, 0, 0.5) (0.5,0,0,0.5) (0.5,0,0,0,0.5)

s(q∗, p ) (0.136,0.864) (0.172,0.828) (0.205, 0.795)
0.15 q∗ (0.5, 0, 0.5) (0.5,0,0,0.5) (0.5,0,0,0,0.5)

s(q∗, p ) (0.195,0.805) (0.239,0.761) (0.278, 0.722)
0.20 q∗ (0, 1, 0) (0,0.5,0.5,0) (0,0.5,0,0.5,0)

s(q∗, p ) (0.104,0.896) (0.104,0.896) (0.135, 0.865)
0.25 q∗ (0, 1, 0) (0,0.5,0.5,0) (0, 0, 1, 0, 0)

s(q∗, p ) (0.156,0.844) (0.156,0.844) (0.104, 0.896)

5. Asymptotic Relative Efficiency of Optimal RSS Schemes When
Ranking Is Perfect

In this section, we discuss the asymptotic relative efficiency (ARE) of optimal
RSS schemes with respect to SRS schemes and also compare them with balanced
RSS schemes. The SRS counterpart of the estimator of ξp is the pth sample quan-
tile ξ̂p, asymptotically normal with mean ξp and variance p(1−p)/[nf2(ξp)]. (See,
e.g., Serfling (1980, Chapter 2)). The balanced RSS counterpart of the estimator
of ξp is given by the pth balanced ranked-set sample quantile ξ̃mk,p, asymptotically
normal with mean ξp and variance (1/k)

∑
cr(p)[1− cr(p)]/[mkf2(ξp)], see Chen

(2000). Hence the relative efficiencies of the optimal unbalanced RSS scheme and
the balanced RSS scheme with respect to the SRS scheme for estimating ξp are
given, respectively, by

ARE(ξ̃mk,p, ξ̂p) =
p(1 − p)

(1/k)
∑k

r=1 cr(p)[1 − cr(p)]
,

ARE(ξ̂q∗,s(p), ξ̂p) =
p(1 − p)∑k

r=1 q∗rcr(p)[1 − cr(p)]/[
∑k

r=1 q∗rdr(p)]2
.

The ARE of the optimal unbalanced RSS schemes with respect to the SRS
schemes, for k = 2, . . . , 10 and p = 0.05 to 0.5 in steps of 0.05, are given in Table
3. It can be seen that the gain in efficiency by using the optimal unbalanced RSS
schemes is large, the n quantified order statistics do almost as well as a simple
random sample of size kn. It is also interesting to compare the ARE of the
optimal unbalanced RSS schemes with the ARE of the balanced RSS schemes.
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As a function of p, the ARE of the balanced RSS schemes is a bow shaped curve
with its maximum at p = 0.5 and reduces to 1 at both ends, see Chen (2000).
Though the efficiency gain by using balanced RSS for the inference on medians
is quite significant, the efficiency gain for the inference on extreme quantiles is
almost negligible. However, the optimal unbalanced RSS schemes achieve about
the same efficiency gain for all quantiles. This is due to the fact that every
quantile of the underlying distribution is made a central quantile of the sampling
distribution of the optimal unbalanced RSS scheme. This draws a similarity
to other statistical procedures, such as importance sampling and saddlepoint
approximation. They share the idea that if data values are sampled in a way
which makes it more likely for a statistic to assume a value in the vicinity of a
given point of interest, then that point may be estimated or approximated with
greater accuracy.

Table 3. The ARE of optimal unbalanced RSS schemes with respect to SRS
schemes, for selected p and set size k, assuming perfect ranking.

p \ k 2 3 4 5 6 7 8 9 10
0.05 1.949 2.848 3.698 4.501 5.258 5.970 6.639 7.267 7.853
0.10 1.895 2.690 3.392 4.005 4.537 4.991 5.375 6.118 6.954
0.15 1.838 2.528 3.084 3.519 4.054 4.906 5.680 6.365 6.956
0.20 1.778 2.361 2.775 3.365 4.279 4.966 5.517 5.933 6.682
0.25 1.714 2.189 2.763 3.590 4.243 4.714 5.337 6.142 6.783
0.30 1.647 2.014 2.879 3.569 4.025 4.734 5.483 6.014 6.569
0.35 1.576 2.095 2.912 3.433 4.059 4.817 5.299 6.005 6.719
0.40 1.500 2.182 2.874 3.307 4.161 4.671 5.368 6.047 6.500
0.45 1.419 2.233 2.773 3.463 4.102 4.680 5.408 5.879 6.695
0.50 1.333 2.250 2.618 3.516 3.896 4.785 5.172 6.056 6.447

6. Result of Simulation Studies

In this section, we report some simulation results that are part of a larger
study. For a given distribution and a give sample size n, we generate 1000 simple
random samples and then, for each k, we generate 1000 unbalanced ranked-
set samples with set size k and sample size n according to the optimal RSS
schemes. For each simple random sample, the pth sample quantile is computed.
For each ranked-set sample, the corresponding s∗(p)th quantile is computed. The
computed sample quantiles are used to compute an approximation to the MSE,

ˆMSE = 1
N

∑N
i=1(ξ̂j − ξp)2, where ξ̂j is the quantile of the jth sample, ξp is the

theoretical pth quantile of the underlying distribution and N is the simulation size
(N = 1000). The ratio of the approximated MSEs of the simple random sample
quantiles and the unbalanced ranked-set sample quantiles is then computed. In
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Tables 4 and 5, we report these ratios for two underlying distributions: the
Extreme Value distribution with location parameter 0 and scale parameter 1
and the log-normal distribution with µ = 0 and σ = 1. Only the results for
n = 20, 40, 120, 240 and k = 3, 5 are reported.

Table 4. Simulated ratios of MSEs of the quantile estimates based, respec-
tively, on optimal RSS schemes and SRS schemes for the Extreme Value
distribution.

Ratio of Estimated MSE’s
n k\p 0.05 0.25 0.5 0.75 0.95
20 3 6.095 2.465 2.564 2.389 2.977

5 8.293 4.121 3.875 3.539 5.009
40 3 4.132 2.587 2.373 2.355 3.157

5 6.271 3.528 3.550 3.823 4.803
120 3 3.059 2.125 2.067 2.255 2.979

5 4.811 3.731 3.241 3.495 4.490
240 3 3.212 2.310 2.066 2.234 2.976

5 4.767 3.438 3.217 3.689 4.727

Table 5. Simulated ratios of MSEs of the quantile estimates based, respec-
tively, on optimal RSS schemes and SRS schemes for the Log-normal distri-
bution.

Ratio of Estimated MSE’s
n k\p 0.05 0.25 0.5 0.75 0.95
20 3 1.988 1.305 2.866 2.080 1.199

5 2.795 3.135 4.372 2.685 2.649
40 3 2.229 1.954 2.299 1.914 2.162

5 4.181 2.959 3.662 3.395 2.900
120 3 2.474 2.382 2.178 2.141 2.408

5 4.164 3.743 3.870 3.082 4.061
240 3 2.815 2.124 2.208 2.156 2.897

5 4.537 3.330 3.756 3.363 4.128

For a large sample size, say, n = 240, the simulation results are much in line
with the theoretical results given in Table 3. For small sample sizes, it seems
that, for the estimation of quantiles in the tails, the optimal RSS is even more
efficient when the tails are heavy. This can be seen from the simulation results
for the Extreme Value distribution and also in the simulation studies for other
heavy tail distributions. On the other hand, it appears that for the log-normal
distribution the efficiency for small samples is less than anticipated from the
asymptotic results.
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7. Imperfect Ranking and Other Issues

In this section, we discuss the case of imperfect ranking and some other
issues.

(i) Imperfect ranking. Except for Sections 2 and 3, we have assumed that
judgment ranking in RSS is perfect. But in most practical cases, there are er-
rors in judgment ranking. When judgment ranking is imperfect, the unbalanced
schemes derived in Section 4 are not necessarily optimal. Here we consider im-
perfect ranking under the following model. Suppose that in judgment ranking,
each (numerical) order statistic is ranked as an other order statistic with a certain
probability. Let psr denote the probability with which the sth (numerical) order
statistic is wrongly ranked as the rth order statistic. Let F[r] denote the distri-
bution function of the rth judgment-ranked order statistic and F(s) denote the
cumulative distribution function of the sth (numerical) order statistic. We have
F[r](t) =

∑k
s=1 psrF(s)(t). The component V (q, p) in the asymptotic variance of

the unbalanced RSS with allocation probability vector q is of the form

V (q, p) =
∑k

r=1 qrF[r](ξp)[1 − F[r](ξp)]

[
∑k

r=1 qrf[r](ξp)/f(ξp)]2
.

Since

F[r](ξp) =
k∑

s=1

psrB(s, k − s + 1, p),

f[r](ξp)
f(ξp)

=
k∑

s=1

psr
k!

(s − 1)!(k − s)!
ps−1(1 − p)k−s,

The component V (q, p) still depends only on q if the probabilities of ranking
errors are known. Hence an optimal scheme can be obtained in the same way
as in the perfect ranking case. In practice, the probabilities of ranking errors
cannot be exactly known, there might be only certain estimates available.

In general, the derived optimal schemes are sensitive to the assumed prob-
abilities of ranking errors. However, in the important special case of p = 0.5,
optimal schemes are insensitive to ranking errors, as will be shown in the fol-
lowing. It is reasonable to assume that ps,k−r+1 = pr,k−s+1 and psr = prs, the
assumption of a symmetric ranking mechanism. Under this assumption, Lemmas
1 and 2 in Section 4 still hold. To see this, let

Cr(p) =
k∑

s=1

psrB(s, k − s + 1, p),

Dr(p) =
k∑

s=1

psr
k!

(s − 1)!(k − s)!
ps−1(1 − p)k−s.
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If p = 0.5, we have

Cr(p) =
k∑

s=1

psrcs(p) =
k∑

s=1

psrck−s+1(p)

=
k∑

s=1

pk−s+1,rcs(p) =
k∑

s=1

pk−r+1,scs(p) = Ck−r+1(p).

Similarly, we can verify that Dr(p) = Dk−r+1(p). Thus Lemma 1 follows. Write

Fq(ξ0.5) =
k∑

r=1

qr

k∑
s=1

psrF(s)(ξ0.5) =
k∑

s=1

(
k∑

r=1

qrpsr)F(s)(ξ0.5).

Denote Qs =
∑

qrpsr. It is easy to verify that if qr = qk−r+1 then Qs = Qk−s+1.
Hence, Lemma 2 is valid.

The implication of the above results is that (a) for whatever error probabil-
ities, as long as they satisfy the assumption given above, the optimal allocation
probability vector can be taken symmetric, and (b) it is always the median of
the resulting unbalanced ranked set sample that is to be used as the estimator
of the population median. We have computed optimal schemes for a variety of
error probabilities satisfying the given assumption. It turns out that if prr > 0.5
then the optimal scheme puts all the mass on the medians of the ranked sets,
which is the same as for the perfect ranking case.

More research needs to be carried out on optimal design in general cases
when ranking is imperfect.

(ii) Inference procedures based on optimal unbalanced RSS schemes. The pro-
cedures for confidence interval and hypothesis testing discussed in Chen (2000)
can be adapted to the optimal unbalanced RSS schemes.

Suppose that for given p and k, the pth quantile ξp of the underlying distribu-
tion is the sth quantile of the sampling distribution of the optimal RSS scheme.
Let Y(1:n) ≤ · · · ≤ Y(n:n) be the order statistics of the unbalanced ranked-set
sample from the optimal RSS scheme. Then a confidence interval of confidence
coefficient 1 − 2α for ξp can be constructed as [Y(l1:n), Y(l2:n)], where

l1 = ns − zα

√√√√n
k∑

r=1

q∗rcr(p)[1 − cr(p)],

l2 = ns + zα

√√√√n
k∑

r=1

q∗rcr(p)[1 − cr(p)],

zα denoting the (1 − α)th quantile of the standard normal distribution.
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To test H0 : ξp = ξ0, the test statistic can be constructed as

Zn =
√

nf̂q∗(ξ0)[ξ̂q∗,s − ξ0]√∑k
r=1 q∗rcr(p)[1 − cr(p)]

,

where f̂q∗ is taken as a kernel estimate based on the unbalanced ranked-set
sample. For the kernel estimate using balanced RSS data, see Chen (1999a).
The results of Chen (1999a) can be extended to unbalanced RSS data by using
the methodology developed in Chen (1999b). Under the null hypothesis, the test
statistic has approximately a standard normal distribution.

(iii) Feasible computation programs. Some further research needs to be
done to develop feasible computation programs for the minimization of general
G(V (q)) other than |V (q)| when other optimality criteria are considered.
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