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Abstract: Efforts to develop more efficient multiple hypothesis testing procedures

for false discovery rate (FDR) control have focused on incorporating an estimate of

the proportion of true null hypotheses (such procedures are called adaptive) or ex-

ploiting heterogeneity across tests via some optimal weighting scheme. This paper

combines these approaches using a weighted adaptive multiple decision function

(WAMDF) framework. Optimal weights for a flexible random effects model are de-

rived and a WAMDF that controls the FDR for arbitrary weighting schemes when

test statistics are independent under the null hypotheses is given. Asymptotic and

numerical assessment reveals that, under weak dependence, the proposed WAMDFs

provide more efficient FDR control even if optimal weights are misspecified. The

robustness and flexibility of the proposed methodology facilitates the development

of more efficient, yet practical, FDR procedures for heterogeneous data. To illus-

trate, two different weighted adaptive FDR methods for heterogeneous sample sizes

are developed and applied to data.

Key words and phrases: Decision function, multiple testing, p-value, weighted p-

value.

1. Introduction

High throughput technology routinely generates data sets that call for hun-

dreds or thousands of null hypotheses to be tested simultaneously. For exam-

ple, in Anderson and Habiger (2012), RNA sequencing technology was used to

measure the abundance of bacteria living near the roots of wheat plants across

i = 1, 2, . . . , 5 treatment groups for each of m = 1, 2, . . . ,M = 778 bacteria,

thereby facilitating the simultaneous testing of 778 null hypotheses. See Table

1 for a depiction of the data, or see Section 8 for more details. See also Efron

(2008); Dudoit and van der Laan (2008); Efron (2010) for other, sometimes called,

high-dimensional (HD) data sets.

In general, multiple null hypotheses are simultaneously tested with a multiple

testing procedure which, ideally, rejects as many null hypotheses as possible

subject to the constraint that some global type 1 error rate is controlled at
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a prespecified level α. The false discovery rate (FDR) is the most frequently

considered error rate in the HD setting. It is loosely defined as the expected

value of the false discovery proportion (FDP), where the FDP is the proportion of

erroneously rejected null hypotheses, also called false discoveries, among rejected

null hypotheses, or discoveries. See Sarkar (2007) for other related error rates.

In their seminal paper, Benjamini and Hochberg (1995) showed that a step-

up procedure based on the Simes (1986) line, henceforth referred to as the BH

procedure, has FDR = αa0 ≤ α under a certain dependence structure, where a0

is the proportion of true null hypotheses. Since then, much research has focused

on developing more efficient procedures for FDR control.

One approach seeks to control the FDR at a level nearer α, as opposed

to αa0. For example, adaptive procedures in Benjamini and Hochberg (2000);

Storey, Taylor and Siegmund (2004); Benjamini, Krieger and Yekutieli (2006);

Gavrilov, Benjamini and Sarkar (2009); Liang and Nettleton (2012) utilize an

estimate of a0 and typically have FDR that is greater than αa0 yet still less than

or equal to α. Finner, Dickhaus and Roters (2009) proposed nonlinear procedures

that “exhaust the α” in that, loosely speaking, their FDR converges to α under

some least favorable configuration as M tends to infinity.

Another approach aims to exploit heterogeneity across hypothesis tests. Gen-

ovese, Roeder and Wasserman (2006); Blanachar and Roquain (2008); Roquain

and van de Wiel (2009); Peña, Habiger and Wu (2011) proposed a weighted BH-

type procedure, where weights are allowed to depend on the power functions of

the individual tests or prior probabilities for the states of the null hypotheses.

Storey (2007) considered a “single thresholding procedure” which allowed for

heterogeneous data generating distributions. Cai and Sun (2009) and Hu, Zhao

and Zhou (2010) provided methods for clustered data, where test statistics are

heterogeneous across clusters but homogeneous within clusters, while Sun and

McLain (2012) considered heteroscedastic standard errors. Data in Table 1 are

heterogeneous because sample sizes n1, n2, . . . , nM vary from test to test, with

nm being as small as 6 and as large as 911.

Whatever the nature of the heterogeneity may be, recent literature sug-

gests that it should not be ignored. Roeder and Wasserman (2009) showed that

weighted multiple testing procedures generally perform favorably over their un-

weighted counterparts, especially when the employed weights efficiently exploit

heterogeneity. Further, Sun and McLain (2012) showed that procedures which

ignore heterogeneity can produce lists of discoveries that are of little scientific

interest.
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Table 1. Depiction of the data in Anderson and Habiger (2012). Shoot biomass xi in
grams for groups i = 1, 2, . . . , 5 was 0.86, 1.34, 1.81, 2.37, and 3.00, respectively. Row
totals are in the last column.

Bacteria (m) Y1m Y2m Y3m Y4m Y5m Total (nm)
1 0 1 1 0 5 7
2 9 2 0 0 3 14
...

...
...

...
...

...
...

778 16 10 29 18 13 81

The objective of this paper is to provide a general approach for exploiting

heterogeneity without sacrificing efficient FDR control. The idea is to combine

adaptive FDR methods for exhausting the α with weighted procedures for ex-

ploiting heterogeneity using a decision theoretic framework. Sections 2 - 5 provide

the general framework. Section 2 introduces multiple decision functions (MDFs)

and a random effects model that can accommodate many types of heterogene-

ity including, but not limited to, those mentioned above. Tools which facilitate

easy implementation of MDFs, such as weighted p-values, are also developed.

Section 3 derives optimal weights for the random effects model and Section 4 in-

troduces an asymptotically optimal weighted adaptive multiple decision function

(WAMDF) for asymptotic FDP control. Section 5 provides a WAMDF for exact

(nonasymptotic) FDR control.

Assessment in Sections 6 and 7 reveals that, under a weak dependence

structure, WAMDFs dominate other MDFs even when weights are misspeci-

fied. Specifically, Section 6 shows that the asymptotic FDP of a WAMDF is

larger than the FDP of its unadaptive counterpart, yet less than or equal to

the nominal level α. Sufficient conditions for “α-exhaustion” are provided and

shown to be satisfied in a variety of settings. For example, unweighted adap-

tive MDFs in Storey, Taylor and Siegmund (2004) and certain asymptotically

optimal WAMDFs are α-exhaustive. In fact, α-exhaustion is achieved even in a

worst-case-scenario setting, where employed weights are generated independently

of optimal weights. Simulation studies in Section 7 demonstrate that WAMDFs

are more powerful than competing MDFs as long as the employed weights are

positively correlated with optimal weights, and only slightly less powerful in the

worse-case-scenario weighting scheme.

Section 8 provides two different routes for implementing WAMDFs in prac-

tice and compares them to one another. They are applied to the data in Table

1 and shown analytically and with simulation to perform better than compet-
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ing unweighted procedures. Concluding remarks are in Section 9 and technical

details are in the Supplemental Article.

2. Background

2.1. Data

Let Z = (Zm,m ∈ M) for M = {1, 2, . . . ,M} be a random vector of test

statistics with joint distribution function F and let F be a model for F . The basic

goal is to test null hypotheses H = (Hm,m ∈ M) of the form Hm : F ∈ Fm,

where Fm ⊆ F is a submodel for F . For short, we often denote the state of Hm

by θm = 1− I(F ∈ Fm), where I(·) is the indicator function, so that θm = 0(1)

means that Hm is true(false), and denote the state of H by θ = (θm,m ∈ M).

Let M0 = {m ∈ M : θm = 0} and M1 = M \M0 index the set of true and

false null hypotheses, respectively, and denote the number of true and false null

hypotheses by M0 = |M0| and M1 = |M1|, respectively.

To make matters concrete, we often consider a random effects model for Z.

For related models see Efron et al. (2001); Genovese and Wasserman (2002);

Storey (2003); Genovese, Roeder and Wasserman (2006); Sun and Cai (2007);

Cai and Sun (2009); Roquain and van de Wiel (2009). In Model 1, heterogeneity

across the Zm’s is attributable to prior probabilities p = (pm,m ∈ M) for the

states of the Hm’s and parameters γ = (γm,m ∈M), which we refer to as effect

sizes for ease of exposition, although each γm could merely index a distribution

for Zm when Hm is false. See, for example, Section 8.

Model 1. Let (Zm, θm, pm, γm),m ∈ M, be independent and identically dis-

tributed random vectors with support in <×{0, 1}× [0, 1]×<+ and with condi-

tional distribution functions F (zm|θm, pm, γm) = (1− θm)F0(zm) + θmF1(zm|γm)

and F (zm|pm, γm) = (1 − pm)F0(zm) + pmF1(zm|γm). Assume F (γm, pm) =

F (γm)F (pm), V ar(γm) <∞ and that pm has mean 1− a0 ∈ (0, 1).

Observe that Zm has distribution function F0(·) given Hm : θm = 0 and

has distribution function F1(·|γm) otherwise. Here, parameters θ, p, and γ are

assumed to be random variables to facilitate asymptotic analysis, as in Gen-

ovese, Roeder and Wasserman (2006); Blanachar and Roquain (2008); Blanchard

and Roquain (2009); Roquain and van de Wiel (2009); Roquain and Villers

(2011). Analysis under Model 1 focuses on conditional distribution functions

F (z|θ,p,γ) =
∏
m∈M F (zm|θm, pm, γm) and F (z|p,γ) =

∏
m∈M F (zm|pm, γm),

and an expectation taken over Z with respect to these distributions is denoted

by E[·|θ,p,γ] and E[·|p,γ], respectively.
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2.2. Multiple decision functions

A multiple decision function (MDF) framework is used to formally define a

multiple testing procedure. For similar frameworks see Genovese and Wasserman

(2004); Storey, Taylor and Siegmund (2004); Sun and Cai (2007); Peña, Habiger

and Wu (2011). Let δm(Zm; tm) denote a decision function taking values in

{0, 1}, where δm = 1(0) means that Hm is rejected(retained). A decision function

depends functionally on data Zm and (possibly random) “size threshold” tm ∈
[0, 1]. To illustrate, suppose that large values of Zm are evidence against Hm :

θm = 0 under Model 1. Then we may define

δm(Zm; tm) = I(Zm ≥ F−1
0 (1− tm)). (2.1)

Observe that E[δm(Zm; tm)|θm = 0] = 1 − F0(F−1
0 (1 − tm)) = tm so that tm

indeed represents the size of δm, hence the terminology “size threshold”. An

MDF is denoted δ(Z; t) = [δm(Zm; tm),m ∈ M], where t = (tm,m ∈ M) is

called a threshold vector. If tm = α/M for each m then δ(Z; t) represents the

well-known Bonferroni procedure.

Assume that, for each m, tm 7→ δm(Zm; tm) is nondecreasing and right con-

tinuous with δm = 0(1) whenever tm = 0(1), almost surely, and that tm 7→
E[δm(Zm; tm)] is continuous and strictly increasing for tm ∈ (0, 1), with E[δm(Zm;

tm)] = tm whenever m ∈ M0. These assumptions are referred to as the nonde-

creasing-in-size (NS) assumptions and are satisfied, for example, under Model 1

for decision functions defined as in (2.1). For additional details and examples see

Habiger and Peña (2011); Peña, Habiger and Wu (2011); Habiger (2012).

2.3. Tools for implementation

We break t down into the product of a positive valued weight vector w =

(wm,m ∈ M) satisfying w̄ = M−1
∑

m∈Mwm = 1 and an overall or average

threshold t, t = tw. First, weights are specified and then data Z = z are

collected, the overall threshold t is computed, and the MDF δ(z; tw) is computed.

If weights are based on Model 1, for example, then they are allowed to depend

functionally on p and γ. The overall threshold is allowed to depend functionally

on z and w.

It is useful to exploit the link between weighted p-values and decision func-

tions. Define the (unweighted) p-value statistic corresponding to δm by

Pm = inf{tm ∈ [0, 1] : δm(Zm; tm) = 1}.

This definition, see Habiger and Peña (2011); Peña, Habiger and Wu (2011),
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has the usual interpretation that Pm is the smallest size tm allowing for Hm to

be rejected, and ensures that δm(Zm; tm) = I(Pm ≤ tm) almost surely under

the NS assumptions. For example, it can be verified that the p-value statistic

corresponding to (2.1) is Pm = 1 − F0(Zm) and that I(Zm ≤ F−1
0 (1 − tm)) =

I(Pm ≤ tm) almost surely. See Habiger (2012); Habiger and Peña (2014) for more

details or for derivations of more complex p-values, such as the p-value for the

local FDR statistic in Efron et al. (2001); Sun and Cai (2007) or for the optimal

discovery procedure in Storey (2007). Define the weighted p-value statistic by

Qm = inf{t : δm(Zm; twm) = 1}.

For wm fixed, and writing tm = twm,

Pm = inf{twm : δm(Zm; twm) = 1} = wm inf{t : δm(Zm; twm) = 1} = wmQm

almost surely. Thus, a weighted p-value can be computed by Qm = Pm/wm.

Hence, we have established the almost surely equivalent expressions for a decision

function under the NS assumptions:

δm(Zm; tm) = δm(Zm; twm) = I(Pm ≤ twm) = I(Qm ≤ t). (2.2)

3. Optimal Weights

Though results regarding exact FDR control in Section 5 or asymptotic FDP

control in Section 6.1 apply more generally (see assumptions (A3) and (A4) -

(A6), respectively), optimal weights in this paper are developed for Model 1. We

first derive optimal weights assuming that t is fixed/known.

3.1. Optimal fixed-t weights

We consider δ(Z; t) and the constraint that w̄ = 1 is replaced with the

constraint that t̄ = t, where t̄ = M−1
∑

m∈M tm. As weights are allowed to

depend on p and γ under Model 1, the focus is on the conditional expectation of

δm(Zm; tm) denoted by Gm(tm) ≡ E[δm(Zm; tm)|p,γ] = (1−pm)tm+pmπγm(tm),

where πγm(tm) = E[δm(Zm; tm)|θm = 1, γm] is the power function for δm. As

in Genovese, Roeder and Wasserman (2006); Roquain and van de Wiel (2009);

Peña, Habiger and Wu (2011), assume power functions (as a function of tm) are

concave.

(A1) For each m ∈ M, tm 7→ πγm(tm) is concave and twice differentiable for

tm ∈ (0, 1), with limtm↑1 π
′
γm(tm) = 0 and limtm↓0 π

′
γm(tm) = ∞ almost

surely, where π′γm(tm) is the derivative of πγm(tm) with respect to tm.

This concavity condition is satisfied, for example, under monotone likelihood
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ratio considerations (Peña, Habiger and Wu (2011)) and under the generalized

monotone likelihood ratio (GMLR) condition in Cao, Sun and Kosorok (2013).

Given p, γ, and t, the goal is to maximize the expected number of correctly

rejected null hypotheses

π(t,p,γ) ≡ E
[∑

m∈M θmδm(Zm; tm)
∣∣∣γ,p] =

∑
m∈M pmπγm(tm) subject to

the constraint that t̄ = t.

Theorem 1. Suppose that (A1) is satisfied, and fix t ∈ (0, 1). Then under Model

1 the maximum of π(t,p,γ) with respect to t subject to constraint t̄ = t exists, is

unique, and satisfies

π′γm(tm) = k/pm (3.1)

for every m ∈M and some k > 0.

Spjøtvoll (1972) and Storey (2007) also derived expressions for optimal fixed-

t thresholds, but did not allow for the states of the Hm’s to be random. Specif-

ically, Spjøtvoll (1972) proposed maximizing
∑

m∈M πγm(tm) (see Roeder and

Wasserman (2009) for an illustration in the normal distribution setting) while

Storey (2007) proposed maximizing
∑

m∈M θmπγm(tm).

The important quantity in (3.1) is the constant k. In particular it suffices

to find the unique value of k, say k∗, that satisfies t̄ = t. For any value of k

denote the (unique) solution to (3.1) in terms of tm as tm(k/pm, γm), and take

t(k,p,γ) = [tm(k/pm, γm),m ∈M]. Then to compute weights

1. find the k∗ satisfying t̄M (k∗,p,γ) = t, where t̄M (k,p,γ) = M−1
∑

m∈M tm
(k/pm, γm),

2. compute each optimal fixed-t weight

wm(k∗,p,γ) =
tm(k∗/pm, γm)

t̄M (k∗,p,γ)
. (3.2)

We sometimes denote wm(k∗,p,γ) by w∗m and the vector of optimal fixed-t

weights w(k∗,p,γ) = [wm(k∗,p,γ),m ∈M] by w∗ = (w∗m,m ∈M).

To better understand how the solution is found and related to the values of

pm, γm and t consider an example.

Example 1. Suppose Zm|γm, θm ∼ N(θmγm, 1) for γm > 0 and consider testing

Hm : θm = 0. Denote the standard normal cumulative distribution function and

density function by Φ(·) and φ(·), respectively, and let Φ̄(·) = 1 − Φ(·). Take

δm(Zm; tm) = I(Zm ≥ Φ̄−1(tm)). The power function is πγm(tm) = Φ̄(Φ̄−1(tm)−
γm) and has derivative π′γm(tm) = (φ(Φ̄−1(tm)− γm))/(φ(Φ̄−1(tm))). Setting the
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Figure 1. A depiction of the optimal thresholds for M = 2 hypotheses tests when power
functions vary under constraint 0.5(t1 + t2) = 0.01 (left) and 0.5(t1 + t2) = 0.05 (right).

derivative equal to k/pm and solving yields

tm

(
k

pm
, γm

)
= Φ̄

(
0.5γm +

log(k/pm)

γm

)
. (3.3)

The optimal fixed-t threshold vector is computed as t(k∗,p,γ), where k∗ satisfies

t̄M (k∗,p,γ) = t, and the optimal fixed-t weights are computed as in (3.2).

Observe in (3.3) that ti(k/pi, γi) = tj(k/pj , γj) if γi = γj and pi = pj re-

gardless of k and, consequently, the optimal fixed-t weight vector is 1 for any t

when data are homogeneous. On the other hand, we see that tm(k/pm, γm) is

increasing in pm and hence

wm(k∗,p,γ) = M
tm(k∗/pm, γm)

tm(k∗/pm, γm) +
∑

j 6=m tj(k
∗/pj , γj)

is increasing in pm, as we might expect.

The relationship between wm(k∗,p,γ) and γm is more complex. To illustrate,

consider testing M = 2 null hypotheses and suppose γ1 = 1.5, γ2 = 2.5, and

p1 = p2 = 0.5. In Figure 1, observe that for t = 0.01, t̄M (k∗,p,γ) = 0.01

when k∗ = 6.1, which gives t1(k∗/p1, γ1) = 0.003, t2(k∗/p2, γ2) = 0.017, w∗1 =

0.003/0.01 = 0.3 and w∗2 = 0.017/0.01 = 1.7. Because p1 = p2, the slopes of

the power functions evaluated at 0.003 and 0.017, respectively, are equal; see

equation (3.1). Now consider the fixed threshold t = 0.05. Here k∗ = 1.7, which

leads to weights w∗1 = 0.059/0.05 = 1.18 and w∗2 = 0.041/0.05 = 0.82. Thus,

when t = 0.01, the hypothesis with the larger effect size is given more weight,

but when t = 0.05 it is given less weight. For a more detailed discussion on this
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phenomenon see Peña, Habiger and Wu (2011). The important point is that the

optimal fixed-t weights are only implementable if t is fixed or specified before

data collection.

3.2. Asymptotically optimal weights

The overall threshold t in Section 4 depends on data Z because it depends

on the FDP estimator, which depends functionally on Z; see (4.1) and (4.2).

The idea in this subsection is to approximate the FDP estimator using p and

γ. This allows t to be approximated before data collection so that the optimal

fixed-t weights can be utilized.

The FDP “approximator” plugs Gm(tm(k/pm, γm)) = E[δm(Zm; tm(k/pm,

γm))|p,γ] in for each δm in (4.1) and (4.2). Formally, write ḠM (t(k,p,γ)) =

M−1
∑

m∈MGm(tm(k/pm, γm)) and define the FDP approximator by

F̃DPM (t(k,p,γ)) =
1− ḠM (t(k,p,γ))

1− t̄M (k,p,γ)

t̄M (k,p,γ)

ḠM (t(k,p,γ))
.

Now, the asymptotically optimal weights are computed as follows.

Weight selection procedure: For 0 < α ≤ 1− p(M), where p(M) = max{p},

a. get k∗M = inf
{
k : F̃DPM (t(k,p,γ)) = α

}
, and

b. for each m ∈M, compute w∗m = wm(k∗M ,p,γ) as in (3.2).

In Theorem 2 we find that the restriction 0 < α ≤ 1 − p(M) ensures that a

solution to F̃DPM (t(k,p,γ)) = α exists. In practice, this restriction amounts to

choosing α and p so that 0 < α ≤ 1−pm for each m. That is, the prior probability

that the null hypothesis is true should be at least α, which is reasonable in

practice.

Theorem 2. Under (A1) and Model 1, k∗M exists for 0 < α ≤ 1− p(M).

Observe that t̄M (k∗M ,p,γ) = t for some t ∈ (0, 1) so that indeed these weights

could be viewed as optimal fixed-t weights. However, here weight computation is

based on the constraint F̃DPM (t(k∗M ,p,γ)) = α. These weights are henceforth

referred to as asymptotically optimal for reasons that will be formalized later.

4. The Procedure

Now we are now in position to formally define the proposed adaptive thresh-

old which, when used in conjunction with asymptotically optimal weights in

δ(Z; tw), yields the asymptotically optimal WAMDF.
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4.1. Threshold selection

For the moment, let w be any fixed vector of positive weights satisfying

w̄ = 1. For brevity, we sometimes suppress the Zm in each δm and write δm(twm)

and denote δ(Z; tw) by δ(tw). Further, denote the number of discoveries at tw

by R(tw) =
∑

m∈M δm(twm).

We make use of an “adaptive” estimator of the FDP that utilizes an estimator

of M0 defined by

M̂0(λw) =
M −R(λw) + 1

1− λ
(4.1)

for some fixed tuning parameter λ ∈ (0, 1). This estimator is essentially the

weighted version of the estimator in Storey (2002) defined by M̂0(λ1) = [M −
R(λ1)]/[1 − λ]. For earlier work on the estimation of M0, see Schweder and

Spjotvoll (1982). As outlined in Storey, Taylor and Siegmund (2004) in the

unweighted setting, the idea is that for m ∈M1, E[δm(λ)] ≤ 1, but the inequality

is relatively sharp if all tests have reasonable power, which should be the case for

large enough λ. Hence

E[M −R(λ1)] =
∑
m∈M

E[1− δm(λ)] ≥
∑

m∈M0

E[1− δm(λ)] = (1− λ)M0

and E[M̂0(λ1)] ≥ M0. That is, M̂0 is positively biased but the bias is minor.

Similar intuition applies for M̂0(λw). As in Storey, Taylor and Siegmund (2004),

we add 1 to the numerator in (4.1) to ensure that M̂0(λw) > 0 for finite sample

results.

The adaptive FDP estimator is defined by

F̂DP
λ
(tw) =

M̂0(λw)t

max{R(tw), 1}
. (4.2)

The adaptive threshold, which essentially chooses t as large as possible subject to

the constraint that the estimate of the FDP is less than or equal to α, is defined

by

t̂λα = sup{0 ≤ t ≤ u : F̂DP
λ
(tw) ≤ α}. (4.3)

We assume that u, the upper bound for t̂λα, and the tuning parameter λ satisfy

(A2) λ ≤ u ≤ 1/w(M),

where w(M) ≡ max{w}. This ensures that t̂λαwm ≤ 1 and λwm ≤ 1 for every

m. For w = 1 and u = λ (which implies t̂λα ≤ λ), we recover the unweighted

adaptive MDF for finite FDR control in Storey, Taylor and Siegmund (2004).

In practice t̂λα can be difficult to compute. Alternatively, we can apply the
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original BH procedure to the weighted p-values at level αM/M̂0(λw). Due

to (2.2), we can also use weighted p-values to estimate M0 via M̂0(λw) =

[M −
∑

m∈M I(Qm ≤ λ) + 1]/[1 − λ]. This threshold selection procedure can

be implemented as follows.

Threshold selection procedure: Fix λ and u satisfying (A2). Then

a. compute Qm = Pm/wm and ordered weighted p-values via Q(1) ≤ Q(2) ≤
. . . ≤ Q(M).

b. If Q(m) > αm/M̂0(λw) for each m, set j = 0, otherwise take

j = max

{
m ∈M : Q(m) ≤

αm

M̂0(λw)

}
.

c. Get t̂λ∗α = min{jα/M̂0(λw), u} and reject Hm if Qm ≤ t̂λ∗α .

The WAMDF implemented above is equivalent to δ(Z; t̂λαw) in that

δm(Zm; t̂λαwm) = I(Qm ≤ t̂λα) = I(Qm ≤ t̂λ∗α ) (4.4)

almost surely for each m, so both procedures reject the same set of null hypothe-

ses. The first equality in (4.4) follows from (2.2) and the last equality in (4.4) is

a consequence of Lemma 2 in Storey, Taylor and Siegmund (2004).

4.2. The asymptotically optimal WAMDF

The asymptotically optimal WAMDF is formally defined as δ(Z; t̂λαw
∗) for

0 < α ≤ 1 − p(M) and λ = t̄M (k∗M ,p,γ), where k∗M and w∗ are defined as

in the Weight Selection Procedure. This particular choice of λ ensures that

the employed weights are indeed “asymptotically optimal” (see Theorem 8) and

additionally that (A2) is satisfied if we take u = 1/w(M). Other values of λ could

be considered, as in Section 8. To implement the the asymptotically optimal

WAMDF, we computew∗ using the Weight Selection Procedure, then choose λ =

t̄M (k∗M ,p,γ) and u satisfying (A2), collect data Z = z, and compute δ(z; t̂λαw
∗)

using the Threshold Selection Procedure.

To illustrate, consider testing M = 10 null hypotheses under the setting out-

lined in Example 1, with pm = 0.5 form = 1, 2, . . . , 10, γm = 2 form = 1, 2, . . . , 5,

γm = 3 for m = 6, 7, . . . , 10, and α = 0.05. The goal is to test Hm : θm = 0

with decision functions δm(Zm; tm) = I(Zm ≥ Φ̄−1(tm)) or their correspond-

ing p-values Pm = Φ̄(Zm) and weighted p-values Qm = Pm/wm. See Table 2

for summaries of parameters, weights, simulated data, p-values and weighted p-

values. The Weight Selection Procedure is broken down into 2 sub-steps and the

Threshold Selection Procedure is split into three sub-steps. To test these null
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Table 2. A portion of the parameters, data, weights, p-values, and weighted p-values
in columns 1 - 5, respectively. Each row is sorted in ascending order according to
Q1, Q2, . . . , QM .

θm γm w∗
m Zm Pm Qm 0.05m/M̂0

1 3 0.74 3.14 0.001 0.001 0.006
1 2 1.26 2.55 0.005 0.005 0.012
1 3 0.74 2.56 0.005 0.006 0.018
1 2 1.26 1.47 0.070 0.062 0.024
0 2 1.74 1.17 0.121 0.106 0.030
...

...
...

...
...

...
0 3 0.74 −0.60 0.724 0.844 0.061

hypotheses we

1a. specify γ (see column 2 of Table 2), p and α and find k∗M = 2.52.

1b. Compute asymptotically optimal weights w∗m = wm(k∗M ,p,γ) as in (3.2).

See column 3 in Table 2.

2a. Take λ = t̄M (k∗M ,p,γ) = 0.028 and u = 1/1.26 = 0.79. Collect data Z = z

and compute and order weighted p-values (see columns 4 - 6 in Table 2).

2b. Observe that Q(m) ≤ αm/M̂0(λw∗) for m = 3 but not for m = 4, 5, . . . , 10

and hence αj/M̂0(λw∗) = 0.05(3/8.23) = 0.013.

2c. Compute t̂λ∗α = min{0.013, 0.79} = 0.013 and reject null hypotheses with

weighted p-values 0.001, 0.005 and 0.006 because they are less than 0.013.

5. Finite FDR Control

An upper bound for the FDR is given for arbitrary weights satisfying wm > 0

for each m and w̄ = 1. The bound is computed under a dependence structure

for Z:

(A3) (Zm,m ∈ M0) are mutually independent and independent of (Zm,m ∈
M1).

This structure has been utilized in Benjamini and Hochberg (1995); Genovese,

Roeder and Wasserman (2006); Peña, Habiger and Wu (2011); Storey, Taylor

and Siegmund (2004) to prove FDR control for unweighted unadaptive, weighted

unadaptive, and unweighted adaptive procedures. It is satisfied under Model 1

conditionally upon (θ,p,γ), but it is not limited to this setting.
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To define the FDR, let V (tw) =
∑

m∈M0
δm(twm) denote the number of

erroneously rejected null hypotheses (false discoveries) at tw, with R(tw) =∑
m∈M δm(tw) the number of rejected null hypotheses. Define the FDP at tw

by

FDP (tw) =
V (tw)

max{R(tw), 1}
. (5.1)

The FDR at tw is defined by FDR(tw) = E[FDP (tw)], where the expectation

is taken over Z with respect to an arbitrary F ∈ F .

The bound is presented in Lemma 1. The focus is on the setting when

M0 ≥ 1 because the FDR is trivially 0 if M0 = 0. As in Storey, Taylor and

Siegmund (2004), we force t̂λα ≤ λ by taking u = λ in (4.3). This facilitates the

use of the Optional Stopping Theorem in the proof.

Lemma 1. Suppose M0 ≥ 1 and that (A2) and (A3) are satisfied. Then for

u = λ,

FDR(t̂λαw) ≤ αw̄0
1− λ

1− λw̄0
[1− (λw̄0)M0 ] ≤ αw̄0

1− λ
1− λw̄0

, (5.2)

where w̄0 = M−1
0

∑
m∈M0

wm is the mean of the weights from true null hypothe-

ses.

Observe that 1 − (λw̄0)M0 ≤ 1 due to (A2). Further, if w = 1 then w̄0 = 1 and

we recover Theorem 3 in Storey, Taylor and Siegmund (2004) as a corollary.

If w 6= 1, the bound in Lemma 1 is not immediately applicable becauseM0,

and consequently w̄0, is unobservable. One solution is to use an upper bound

for w̄0 and adjust the “α” at which the procedure is applied. This adjustment is

described below.

Theorem 3. If

α∗ = α
1

w(M)

1− λw(M)

1− λ
,

then under the conditions of Lemma 1, FDR(t̂λα∗w) ≤ α.

As w̄0 is typically less than or equal to 1, asymptotically, this α adjustment

is not needed for large M .

6. Asymptotic Results

We show that WAMDFs always reject more null hypotheses than their un-

adaptive counterparts, and provide sufficient conditions for asymptotic FDP con-

trol and α-exhaustion. These results are then used in the asymptotic analysis of
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the asymptotically optimal WAMDF.

To facilitate asymptotic analysis, denote weight vectors of length M by wM

and the mth element of wM by wm,M . Write the mean of the weights from

true null hypotheses as w̄0,M . Denote the adaptive FDP estimator in (4.2) by

F̂DP
λ

M (twM ) and the FDP in (5.1) by FDPM (twM ). We also consider an

unadaptive FDP estimator that uses M in the place of an estimate of M0, defined

by

F̂DP
0

M (twM ) =
Mt

max{R(twM ), 1}
.

When necessary, we denote the tuning parameter in (4.1) by λM because, as in

the asymptotically optimal WAMDF where λM = t̄M (k∗M ,p,γ), it may depend

on M .

For asymptotic analysis, (A2) is redefined:

(A2) λM → λ ≤ u = 1/k almost surely, where k satisfies limM→∞w(M) ≤ k

almost surely.

The adaptive threshold in (4.3) is denoted t̂λα,M . We find that (A2) is satisfied,

for example, under Model 1 and (A1) for the asymptotically optimal WAMDF.

The unadaptive threshold is defined by

t̂0α,M = sup{0 ≤ t ≤ u : F̂DP
0

M (twM ) ≤ α}.

6.1. Arbitrary weights

Convergence criteria considered here are similar to criteria in Storey, Taylor

and Siegmund (2004); Genovese, Roeder and Wasserman (2006) and allow for

weak dependence structures. See Billingsley (1999), Storey (2003), or see The-

orem 7 for examples. For u defined as in (A2) and t ∈ (0, u], we assume the

following.

(A4) R(twM )/M → G(t) almost surely.

(A5) V (twM )/M → a0µ0t almost surely, for 0 < µ0 <∞ and 0 < a0 < 1, where

w̄0,M → µ0 and M0/M → a0.

(A6) t/G(t) is strictly increasing and continuous over (0,u) with limt↓0 t/G(t) = 0

and limt↑u u/G(u) ≤ 1.

Here µ0 is the asymptotic mean of the weights corresponding to true null hy-

potheses and a0 is the asymptotic proportion of true null hypotheses. The last
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condition is natural as it ensures that, asymptotically, the FDP is continuous and

increasing in t and takes on value 0, thereby ensuring that it can be controlled.

Writing R(twM )/M =
∑

m∈M I(Qm ≤ t)/M via (2.2), we see that (A4) cor-

responds to the assumption that the empirical process of the weighted p-values

converges pointwise to G(t) almost surely.

Asymptotic analysis for arbitrary weights focuses on comparing random

thresholds t̂λα,M and t̂0α,M to their corresponding asymptotic (nonrandom) thresh-

olds, which are based on the limits of the unadaptive and adaptive FDP estima-

tors. Denote the pointwise limits of the unadaptive FDP estimator, the adaptive

FDP estimator, and the FDP by

FDP 0
∞(t) =

t

G(t)
, FDP λ∞(t) =

1−G(λ)

1− λ
t

G(t)
, and FDP∞(t) =

a0µ0t

G(t)
,

respectively (see Lemma S1 in the Supplemental Article for verification and de-

tails). Define asymptotic unadaptive and asymptotic adaptive thresholds by,

respectively,

t0α,∞ = sup{0 ≤ t ≤ u : FDP 0
∞(t) ≤ α},

and tλα,∞ = sup{0 ≤ t ≤ u : FDP λ∞(t) ≤ α}.

The unadaptive and adaptive thresholds converge to their asymptotic (non-

random) counterparts, with the asymptotic adaptive threshold larger than the

asymptotic unadaptive threshold. As E[δm(twm)] is strictly increasing in t for

each m, it follows that the adaptive procedure leads to a higher proportion of

rejected null hypotheses, asymptotically. Our result generalizes Corollary 2 in

Storey, Taylor and Siegmund (2004), which focused on the unweighted setting.

Theorem 4. Fix α ∈ (0, 1). Then under (A2) and (A4) - (A6), almost surely,

lim
M→∞

t̂0α,M = t0α,∞ ≤ lim
M→∞

t̂λα,M = tλα,∞. (6.1)

It is useful to formally describe the notion of an α-exhaustive MDF. Loosely

speaking, Finner, Dickhaus and Roters (2009) referred to an unweighted multiple

decision function, say δ(t̂∗α,M1M ), as “asymptotically optimal” (we will use the

terminology α-exhaustive) if FDR(t̂∗α,M1M ) → α under some least favorable

distribution. A Dirac Uniform (DU) distribution was shown to often be least

favorable for the FDR in that, among all F s that satisfy E[δm(t)] = t for every

t ∈ [0, 1] when m ∈ M0 and dependency structure (A3), FDR(t̂∗α,M1M ) is

the largest under a DU distribution. In our notation, a DU distribution is any

distribution satisfying E[δm(t)] = t if m ∈ M0 and E[δm(t)] = 1 otherwise. If

(A4) - (A5) are satisfied, then G(t) = a0µ0t+ (1− a0) under a DU distribution
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for t ≤ u. Write this G(t) as GDU (t).

To study the FDP of WAMDFs consider

lim
M→∞

FDPM (t̂0α,MwM ) ≤ lim
M→∞

FDPM (t̂λα,MwM ) ≤ α (6.2)

and three claims regarding these inequalities.

(C1) The first inequality in (6.2) is satisfied almost surely.

(C2) The second inequality in (6.2) is satisfied almost surely.

(C3) The second inequality in (6.2) is an equality almost surely under a DU

distribution.

Informally, Claim (C1) states that the FDP of the WAMDF is asymptotically

always larger than the FDP of its unadaptive counterpart and is referred to as

the asymptotically less conservative claim. Claim (C2) states that the WAMDF

has asymptotic FDP that is less than or equal to α and is referred to as the

asymptotic FDP control claim. Claim (C3) is the α-exhaustive claim and states

that the asymptotic FDP of the WAMDF is equal to α under a DU distribution.

Theorem 5 provides sufficient conditions for each claim.

Theorem 5. Fix α ∈ (0, 1) and suppose that (A2) and (A4) - (A6) are satisfied.

Then Claim (C1) holds. Claim (C2) holds if, additionally, µ0 ≤ 1. Claim (C3)

holds for 0 < α ≤ FDP∞(u) if, additionally, µ0 = 1.

Asymptotic FDP control (C2) and α-exhaustion (C3) depend on the unob-

servable value of µ0, which necessarily depends on the weighting scheme at hand.

The next theorem is useful for verifying (C2) and/or (C3).

Theorem 6. Suppose that (Wm,M , θm,M ),m ∈ M, are identically distributed

random vectors with support <+×{0, 1}, and with E[Wm,M ] = 1 and E[θm,M ] ∈
(0, 1). Take

W̄0,M =

∑
m∈M(1− θm,M )Wm,M∑

m∈M(1− θm,M )

whenever θM 6= 1M and W̄0,M = 1 otherwise. If W̄0,M → µ0 almost surely, then

µ0 ≤ 1 if Cov(Wm,M , θm,M ) ≥ 0 and µ0 = 1 if Cov(Wm,M , θm,M ) = 0.

Corollary 1. Suppose that (A4) - (A6) are satisfied and take wM = 1M . Then

for any fixed λ ∈ (0, 1) and 0 < α ≤ a0, Claims (C1) - (C3) hold.

This corollary suggests that the procedure in Storey, Taylor and Siegmund

(2004) is competitive with the α-exhaustive nonlinear procedures in Finner, Dick-

haus and Roters (2009). That a DU distribution is the least favorable among
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such (unweighted) adaptive linear step-up procedures under our weak depen-

dence structure is interesting; the search for least favorable distributions remains

a challenging problem. See Finner, Dickhaus and Roters (2007); Roquain and

Villers (2011); Finner, Gontscharuk and Dickhaus (2012).

6.2. Asymptotically optimal weights

We verify that the conditions allowing for the WAMDF to provide less con-

servative asymptotic FDP control are satisfied under Model 1, even if the asymp-

totically optimal weights are perturbed or “noisy”. Weight vectors and elements

of weight vectors are indexed by M to facilitate asymptotic arguments, and, we

sometimes write t̄M (k∗M ) = t̄M (k∗M ,p,γ) for brevity.

Perturbed weights are simulated by multiplying each asymptotically optimal

weight by a positive random variable Um,

w̃m,M (k∗M ,p,γ) = Umwm,M (k∗M ,p,γ) (6.3)

for each m. A perturbed weight is often denoted by w̃m,M and the vector of

perturbed weights is denoted by w̃M (k∗M ,p,γ) or w̃M . To allow for (A2) to

be satisfied, assume each triplet (Um, γm, pm) has a joint distribution satisfying

0 ≤ Umtm(k∗M/pm, γm) ≤ 1 almost surely, and that E[Um|p,γ] = 1 for each m

so that perturbed weights have mean 1. Here w̃M = w∗M if Um = 1 for each m

(almost surely). Hence, results regarding perturbed weights immediately carry

over to asymptotically optimal weights.

Theorem 7. Suppose that Pr(pm ≤ 1−α) = 1, take λM = t̄M (k∗M ), and consider

the perturbed weights w̃M . Under Model 1 and (A1), (A2) and (A4) - (A6) are

satisfied and µ0 ≤ 1. Hence the conditions of Theorem 4 are satisfied and (C1)

and (C2) hold.

Next the notion of “asymptotically optimal” is formalized and some examples

of α-exhaustive weighting schemes are provided. Asymptotically optimal weights

are equivalent to optimal fixed-t weights with t = t̄M (k∗M ), while the asymptoti-

cally optimal WAMDF utilizes the asymptotic threshold tλα,∞ (see Theorem 4).

Theorem 8. Suppose that Pr(pm ≤ 1 − α) = 1 and take λM = t̄M (k∗M ). Then

under Model 1 and (A1), t̄M (k∗M )→ tλα,∞ almost surely.

Two corollaries show that asymptotic α-exhaustive FDP control is provided

for a variety of weighing schemes.

Corollary 2. Under Model 1 and (A1) - (A2), if wM are mutually independent



1748 JOSHUA D. HABIGER

weights and independent of θM with E[wm,M ] = 1, then (C1) - (C2) hold for

α ∈ (0, 1) and (C3) holds for 0 < α ≤ FDP∞(u).

The next setting arises in practice whenever the distributions of the Zm’s

from false nulls are heterogeneous, but heterogeneity attributable to prior proba-

bilities for the states of the null hypotheses either does not exist or is not modeled.

For an illustration see Section 8. See also Spjøtvoll (1972); Storey (2007); Peña,

Habiger and Wu (2011) for more on this type of heterogeneity.

Corollary 3. Suppose that the conditions of Theorem 7 are satisfied and consider

perturbed weights w̃M . If pi = pj for every i, j, then (C3) holds for 0 < α ≤
FDP∞(u).

The fact that α-exhaustion need not be achieved when pi 6= pj in Model 1 for

the asymptotically optimal WAMDF, even though it is more powerful than com-

peting MDFs, is noteworthy. A similar phenomenon was observed in Genovese,

Roeder and Wasserman (2006) in the unadaptive setting, and it was suggested

that one potential route for improvement is to incorporate an estimate of µ0 into

the procedure. However, it is not clear how this objective could be accomplished

without sacrificing FDP control, especially when weights may be perturbed.

7. Simulation

This section compares weighted adaptive MDFs to other MDFs in terms of

power and FDP control via simulation. In particular, for each of K = 1,000 repli-

cations, we generate Zm
i.i.d.∼ N(θmγm, 1) for m = 1, 2, . . . , 1,000 and compute

δ(t̂λα,MwM ), δ(t̂0α,MwM ), δ(t̂λα,M1M ), and δ(t̂0α,M1M ) as in Example 1, where

α = 0.05 and λM = t̄M (k∗M ,p,γ). The average FDP and average correct discov-

ery proportion (CDP) was computed over the K replications for each procedure,

where CDP =
∑

m∈M1
δm/max{M1, 1}.

In each simulation experiment, γm
i.i.d.∼ Un(1, a) for a = 1, 3, 5, Un(1, a) the

uniform distribution over (1, a). When a = 1 the effect sizes were identical, while

when a = 3 or a = 5 they varied. In Simulation 1, pm = 0.5 for each m and

weighted procedures utilized asymptotically optimal weights. In Simulation 2,

weighted procedures used asymptotically optimal weights as before and the ef-

fect sizes varied as before, but pm
i.i.d.∼ Un(0, 1). Thus, though the procedure was

optimally weighted and asymptotic FDP control was provided, the conditions of

(C3) are no longer satisfied. In Simulation 3, data were generated according to

the same mechanism as in Simulation 2, but asymptotically optimal weights were
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perturbed via Umwm,M (k∗M ,p,γ), where Um
i.i.d.∼ Un(0, 2). Simulation 4 repre-

sents a worst case scenario weighting scheme, in which weights were generated

as wm,M
i.i.d.∼ Un(0, 2).

Detailed results and discussions of simulations are in the supplemental ma-

terials. The main point is that the WA procedure dominates all other procedures

as long as the employed weights are at least positively correlated with the op-

timal weights, and it performs nearly as well as other procedures otherwise. In

particular, its FDP was less than or equal to 0.05 in all simulations, as Theorem

7 stipulates. Further, its average CDP was as large as or larger than the CDP of

all other procedures in the first three simulations. The WA procedure did have a

slightly smaller average CDP than the UA procedure in the worst case scenario

(Simulation 4), as one might expect.

8. Implementation

In practical applications parameters p and γ in Model 1 are not (at least

fully) observable and hence the asymptotically optimal WAMDF is not readily

implementable. However, these parameters can be estimated or specified based

on reasonable assumptions if the nature of the heterogeneity is at least partially

observable. This section illustrates these two implementation approaches on the

data in Table 1 and discusses strengths and limitations of each.

8.1. The setup

The goal is to test Hm : βm = 0 for each m, where βm is the regression coeffi-

cient for regressing Y m = (Y1m, Y2m, . . . , Y5m)T on x = (x1, x2, . . . , x5)T with the

log-linear model log(µim) = αm + βmxi and where Yim are independent Poisson

random variables with mean µim. Let Nm =
∑5

i=1 Yim and Tm =
∑5

i=1 xiYim.

As per McCullagh and Nelder (1989), we focus on the conditional distribution

of Tm|Nm = nm, which is free of the nuisance parameter αm. Given Nm =

nm, Y m has a multinomial distribution with mean nmp(βm) and covariance

nm[diag(p(βm))−p(βm)p(βm)T ], where p(a) = [exp(x1a)/
∑

i exp{xia}, exp(x2a)

/
∑

i exp{xia}, . . . , exp(x5a)/
∑

i exp{xia}]T . Thus, the Z-score for Tm = xTY m

is

Zm =

(
Tm − nmxTp(0)√

nmxT [diag(p(0))− p(0)p(0)T ]x

)
.

To facilitate Model 1 we consider the mixture model introduced in Habiger,

Watts and Anderson (2016), that assumes apriori that Pr(βm = 0) = π0, Pr(βm =
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η1) = π1, and Pr(βm = η2) = π2 for some η1 6= η2 6= 0 and π0 + π1 + π2 = 1.

Denote the mixing proportions by π and take η = (η1, η2). Utilizing a normal

approximation for the distribution of Zm results in normal mixture density for

Zm|Nm = nm:

f(zm|nm;π,η) = π0φ (zm; 0, 1) + π1φ
(
zm;µ(η1, nm), σ2(η1)

)
+ π2φ

(
zm;µ(η2, nm), σ2(η2)

)
, (8.1)

where

µ(a, nm) =

√
nmx

T [p(a)− p(0)]√
xT [diag(p(0))− p(0)p(0)T ]x

,

and σ2(a) =
xT
[
diag(p(a))− p(a)p(a)T

]
x

xT [diag(p(0))− p(0)p(0)T ]x
.

In the context of Model 1, F0 = Φ, pm = 1− a0 = π1 + π2, γm = nm and

F1(zm|γm) = F1(zm|nm;π,η) =
π1

π1 + π2
Φ

(
zm − µ(η1, nm)

σ(η1)

)
+

π2

π1 + π2
Φ

(
zm − µ(η2, nm)

σ(η2)

)
.

Here γm = nm is not an unobservable effect size. It is observable and indexes a

mixture distribution for Zm when Hm is false, which depends on the parameters

π and η.

The uniformly most powerful unbiased decision function is δm(Zm; tm) =

I(|Zm| ≥ Φ−1(1− tm/2)), with power function

πnm
(tm) = F1(Φ−1(

tm
2

)|nm;π,η) + [1− F1(Φ−1(1− tm
2

)|nm;π,η)].

To compute optimal fixed-t weights, first note that φ(Φ−1(tm/2)) = φ(Φ−1(1 −
tm/2)) so that the derivative of πnm

(tm) with respect to tm is

π′nm
(tm) ∝ f1(Φ−1(tm/2)|nm;π,η) + f1(Φ−1

0 (1− tm/2)|nm;π,η)

φ(Φ−1(tm/2))
. (8.2)

Setting this derivative equal to k/pm = k/(π1 + π2) and solving for tm gives a

collection of optimal fixed-t thresholds. Denote each such tm by tm(k,π,η, nm).

Then, optimal fixed-t weights are computed as in wm(k∗,π,η, nm) = (tm(k∗,π,η,

nm))/(t̄M (k∗,π,η,n)) where k∗ satisfies t̄M (k∗,π,η,n) ≡M−1
∑

m∈M tm(k∗,π,

η, nm) = t.

The five steps for implementing the WAMDF are:

1a. get (π,η, nm) for each m;

1b. compute w∗m = wm(k∗M ,π,η, nm) as in (4.3);



ADAPTIVE FDR CONTROL FOR HETEROGENEOUS DATA 1751

Table 3. Maximum likelihood estimates for the model in (8.1).

π̂0 π̂1 π̂2 η̂1 η̂2
0.66 0.17 0.17 −1.09 0.71

2a. specify λ and compute Qm = Pm/w
∗
m = 2Φ̄(|zm|)/w∗m;

2b. get j = max{m : Q(m) ≤ αm/M̂0(λw∗)};

2c. get t̂λ∗α = min{jα/M̂0(λw), λ} and reject Hm if Qm ≤ t̂λ∗α .

The parameters π and η are unobservable and hence must be estimated or spec-

ified.

8.2. Parameter estimation

Parameters are estimated via maximum likelihood. Specifically, assuming

that Y 1,Y 2, . . . ,Y M are independent conditionally upon N1, N2, . . . ., NM , then

under (8.1), the log likelihood is

l(π,η) =

M∑
m=1

log(f(zm|nm;π,η))

and maximum likelihood estimates are found using the EM algorithm (Dempster,

Laird and Rubin (1977)). Results are summarized in Table 3. For more details on

the EM algorithm and finite mixtures of normal distributions, see McLachlan and

Peel (2000) and see, for example, Benaglia et al. (2009) for available software.

For α = 0.05 and λ = 0.5, the unweighted adaptive procedure resulted in 86

discoveries. The weighted adaptive procedure with estimated weights as above

(but modified via w̃m = [w∗m + 0.1]/[M−1
∑

m(w∗m + 0.1)] to avoid impractically

small weights) was applied for α = 0.05 and λ = 0.5 and resulted in 85 discoveries.

Of course, we cannot know the average power or FDR for the weighted and

unweighed adaptive procedures based on this run of the experiment.

Some asymptotic results are readily available. In particular, because π̂ and

η̂ are maximum likelihood estimates, π̂ → π and η̂ → η as M → ∞ almost

surely. Consequently, wm(k∗, π̂, η̂, nm) → wm(k∗,π,η, nm) as M → ∞ almost

surely. See for example Serfling (1980), pg. 145 - 150. Thus, this WAMDF

is α-exhaustive and asymptotically optimal under (8.1). A limitation of this

approach is that it can be computationally intense, especially when M is large.

Here parameters π and η must be estimated with an iterative procedure, a root

finding algorithm is necessary to compute tm(k,π,η, nm) for each m and each
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value of k, and a root-finding algorithm is necessary to find the k∗ corresponding

to the asymptotically optimal weights.

8.3. Parameter specification

One of the advantages of the WAMDF is that computationally simpler ver-

sions can be utilized with potentially little loss in efficiency and without sacrificing

FDR control. To illustrate, consider weights computed w∗m = tm/t̄ where

tm = 2Φ̄

(
0.5Φ̄−1(

α

4
)

[ √
nm√
n·/M

+

√
n·/M√
nm

])
(8.3)

and where
√
n· =

∑
m

√
nm. The WAMDF, with α = 0.05, λ = 0.5, and w̃m =

[w∗m+0.1]/[M−1
∑

m(w∗m+0.1)] to safeguard against impractically small weights,

was applied and resulted in 87 discoveries.

These weights utilized were justified as in (3.3), and by assuming that the

average power and prior probability of Hm being false is 1/2. Specifically,

µ(a, nm)/σ(a) ∝
√
nm and leads to approximate power functions as in Example

1 via πγm(tm) = Φ̄(Φ̄−1(tm/2)−γm) = Φ̄(Φ̄−1(tm/2)−γ√nm) for γ some tuning

parameter. Then, assume pm = 0.5 and πγ̄(t) = Φ̄(Φ̄−1(t/2)− γ̄) = 0.5. Approxi-

mating the FDR at t when pm = 1/2 and πγ̄(t) = 0.5 with FDR(t) = 0.5t/[0.5t+

(1−0.5)πγ̄(t)], solving FDR(t) = α and πγ̄(t) = 1/2 simultaneously gives approx-

imate fixed-t threshold t = α/[2(1 − α)] ≈ α/2 and γ̄ = Φ̄−1(t/2) ≈ Φ̄−1(α/4).

Taking the derivative of πγm(tm) = Φ̄(Φ̄−1(tm/2) − γm) with respect to tm and

setting it equal to k/p and solving yields log(k/p) = Φ̄−1(tm/2)γm − 0.5γ2
m, and

tm = 2Φ̄

(
0.5γm +

log(k/p)

γm

)
.

Plugging Φ̄−1(t/2)γ̄ − 0.5γ̄2 = γ̄2 − 0.5γ̄2 = 0.5γ̄2 in for log(k/p), γm =
√
nmγ,

and γ̄ = γ
√
n·/M here, we recover (8.3).

These weights need not be asymptotically optimal. However, under (8.1)

this WAMDF it is still α-exhaustive (Corollary 3) and simulation studies suggest

that it is more efficient than its unweighted version even if these weights are

only positively correlated with optimal weights. The main advantage of this

approach is that weights still exploit heterogeneity attributable to the nm’s and

are computationally simple.

The fact that weights are so simple allows for a simulation study to gauge

the performance of the WAMDF. In Simulation 5, for each of 1,000 replications

and M = 1,000, we sampled nm’s from the nm’s in Table 1 and generate θm ∼
Bernoulli(p) and Zm ∼ N(γ

√
nmθm, 1). We considered all p-γ combinations
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where γ is chosen so that γ̄ = γM−1√n· = 1.75, 2, 2.25 and p = 0.2, 0.5, 0.8. For

each replication and setting, the unweighted adaptive MDF was applied and the

WAMDF was applied with α = 0.01, 0.05, 0.10. The average FDP and CDP were

recorded over the 1,000 replications for each setting. Detailed results are in the

supplemental materials.

Although the weights were based on some simplifying assumptions, the

WAMDF was more powerful than in its unweighted counterpart even if p = 0.2

or p = 0.8, as long as the CDP was at least 0.2. Further, the average FDP was

always less than α. Our simplifying assumptions were made merely because they

were the least informative and lead to the simplest weights. Other weighting

schemes could be considered. We leave more extensive methodological develop-

ment of this nature as future work. The goal here was to demonstrate that the

theory developed in the previous sections will be useful in developing WAMDFs

that are simple and practical.

9. Concluding Remarks

Efforts to improve upon the original BH procedure have focused on control-

ling the FDR at a level nearer α, or exploiting heterogeneity across tests. We

have combined these objectives using a weighted decision theoretic framework

and showed that the resulting procedure is more powerful than procedures which

only consider of them. We have provided weighted adaptive multiple decision

functions that satisfy the α-exhaustive optimality criterion considered in Finner,

Dickhaus and Roters (2009), but allow for further improvements via an optimal

weighting scheme that incorporates heterogeneity.

The proposed WAMDFs are robust, and coupled with the flexibility of the

WAMDF framework, allow for multiple testing procedures that exploit hetero-

geneity to be developed in a wide variety of settings, even when the nature and

degree of heterogeneity is not fully observable or known.

The finite sample and asymptotic results here are valid under independence

and weak dependence conditions, respectively. Benjamini and Yekutieli (2001)

showed that the unweighted unadaptive BH procedure provides (finite) FDR con-

trol under a certain positive dependence structure, and that it can be modified

to control the FDR for arbitrary dependence. One could study the performance

of weighted adaptive procedures under other types of dependence, but obtain-

ing finite sample analytical results for adaptive MDFs then appears to be very

challenging. See Blanchard and Roquain (2009); Roquain and Villers (2011) for
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some results. As for large sample results, Fan, Han and Gu (2012) and Desai

and Storey (2012) provide techniques for transforming test statistics so that they

are weakly dependent, and our WAMDF framework facilitates weak dependence.

Perhaps these transformed test statistics could be used in conjunction with our

WAMDF, but this requires further development.

Other estimators for M0 could be considered. For example, it is possible to

use the unweighted estimator from Storey, Taylor and Siegmund (2004) in the

WAMDF, or to consider data dependent choices of the tuning parameter λ as

in Liang and Nettleton (2012). A more detailed assessment of M̂0(λw), though

warranted, is beyond the scope of the present work.

Supplementary Materials

Additional details and further discussion regarding simulations referred to

in Sections 7 and 8, and proofs of theorems, lemmas, and corollaries in Sections

3, 5, and 6 are in the supplemental materials.
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