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Abstract: For a stationary Gaussian random field, the decay rate of the spectral

density as the frequency becomes large determines the smoothness of the random

field. The decay rate of the spectral density is also related to the fractal dimension,

which is used to measure the surface smoothness of a random field. We propose an

estimator of the decay rate using the periodogram when the observations are on a

grid and investigate the asymptotic properties under the fixed domain asymptotic

setting. A bias-reduced estimate is proposed based on the theoretical property

of the estimator found in this work. A simulation study and a data example are

presented.
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1. Introduction

Analyzing surface smoothness (or roughness) is of interest in many appli-

cations. Examples are coastlines of islands, surfaces of manufactured products,

moon craters and so on. Fractal dimension, or Fractal index, is related to smooth-

ness of sample paths of a random field and there is an extensive literature on

Fractal-based analysis to investigate surface smoothness (e.g., Butler, Lane, and

Chandler (2001); Deems, Fassnacht, and Elder (2006); Klinkenberg (1994); Man-

delbrot (1982); Milne (1992); Vázquez, Miranda, and Conzález (2005)).

For a stationary random field, the spectral density f(λ) provides the smooth-

ness information of a random field - its decay rate of the spectral density as |λ|
increases is related to the smoothness of its corresponding random field. For

example, if the covariance function K(x) of a stationary Gaussian random field,

Z(s), on Rd satisfies

K(x) ∼ K(0)− k|x|α as |x| → 0 (1.1)

for some k and 0 < α ≤ 2, α is the fractal index that measures the roughness

of sample paths of Z. For such covariance function, the corresponding spectral

density satisfies

f(λ) ∼ c|λ|−θ as |λ| → ∞, (1.2)
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for some c > 0 and θ = α + d, by an Abelian-type theorem. Further discussion

of these connections can be found in Adler and Taylor (2007) and Xue and Xiao

(2011).

We are interested in estimating θ in (1.2) to obtain the smoothness informa-

tion of a realization of a random field. There are several approaches to estimate

a fractal index. One of them is based on box counting (Block, Von Bloh, and

Schellnhuber (1990); Hall and Wood (1993); Liebovitch and Toth (1989)). For

example, Hall and Wood (1993) observed that the limit of log ratio of the total

area of the boxes at scale ϵ, A(ϵ), to its scale, ϵ, is a linear function of the fractal

index so that one can estimate it by regressing logA(ϵ) on log ϵ. Another ap-

proach is based on observing that logarithm of the variogram is a linear function

of the fractal index at small lags, so that one can get an estimator from a regres-

sion fit (Constantine and Hall (1994); Kent and Wood (1997); Davies and Hall

(1999); Chan and Wood (2000, 2004); Zhu and Stein (2002)). As a generalized

version of a variogram estimator, a variation estimator is introduced that makes

use of the variogram of order p, γp(h) = (1/2)E |Z(s)−Z(s+ h)|p. When p = 2,

this is the usual variogram. The logarithm of the variogram of order p is a linear

function of the fractal index for a Gaussian process and a regression fit can be

used to find an estimator (Emery (2005)).

In the spectral domain, Chan, Hall, and Poskitt (1995) introduced a

periodogram-based estimator using the relationship between the spectral den-

sity function for a stationary process and the fractal index. A recent review

paper, Gneiting, Ševč́ıková, and Percival (2012), gives a detailed comparison of

the above mentioned methods for estimating a fractal index.

On the other hand, the estimation of the differentiability of a stationary

Gaussian random field is not always equivalent to the estimation of a fractal

index, since the smoothness parameter θ is related to a fractal index only when

θ is in (d, 2 + d]. Thus, when θ is outside this range, the estimation methods for

a fractal index may not work.

The estimation of the differentiability of a stationary Gaussian random field

was investigated in Wu, Lim, and Xiao (2013). They proposed a local Whittle

likelihood-type estimator to estimate the smoothness parameter θ in (1.2); it is

related to the differentiability of the random field. Their objective function can

be viewed as a weighted asymptotic local Whittle-likelihood. In Wu, Lim, and

Xiao (2013), the consistency and asymptotic normality of the estimators of c

and θ were shown when the other parameter is assumed to be known. They

also obtained the consistency of the estimator of θ when c is any fixed positive

quantity, but simulation results show significant bias depending on the choice

of c.

Estimation on the spectral domain typically requires data on a regular lattice.

This can be a limitation given that there are many applications with irregularly
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spaced data, but data on a regular lattice is popular, for example, in the areas

of remote sensing, computer vision, biomedical imaging, surface meteorology,

etc. There are also several studies dealing with irregularly spaced data on the

spectral domain (Fuentes (2007); Matsuda and Yajima (2009); Bandyopadhyay

and Lahiri (2009)). These references investigate Whittle likelihood or the discrete

Fourier transform under stochastic sampling design, but do not lead estimates of

the smoothness parameter. Here we consider data on a regular lattice.

The proposed estimation of a smoothness parameter is a modification of the

estimation procedure of Wu, Lim, and Xiao (2013), yet it maintains the same

asymptotic properties. We are able to verify additional asymptotic features of

the modified estimator, which leads us to develop a bias-reduced estimate of θ

when c is any given positive value.

Our asymptotic results are based on a fixed domain asymptotic setting (or

infill asymptotic setting) (Cressie (1993); Stein (1999)), where the observation

domain is fixed but the distance of neighboring observations tends to zero. A

main reason to work on the fixed domain asymptotic setting is to bring out

the information of smoothness (tail behavior of the spectral density) from the

estimate of the spectral density.

The remainder of the paper is as follows. Section 2 introduces the proposed

estimation method and its asymptotic properties. Also, a bias-reduced estimate

of θ is proposed. Section 3 verifies the proposed method through simulations. A

data example is given as well. Section 4 gives the summary of our findings.

2. Estimation and Asymptotic Properties

For a stationary Gaussian random field, Z(s) on Rd, we assume that the

spectral density, f(λ), satisfies (1.2). We also assume that Z(s) is observed on

the lattice ϕJ with J ∈ Tm = {1, . . . ,m}d so that ϕ is the distance between two

grid points in each direction. Let Zd be the set of d-dimensional integer-valued

vectors. Then, we can define the lattice process Yϕ(J) ≡ Z(ϕJ) for J ∈ Zd, with

spectral density f̄ϕ(λ) = ϕ−d
∑

Q∈Zd f ((λ+ 2πQ)/ϕ) for λ ∈ (−π, π ]d.

As ϕ → 0, f̄ϕ(λ) increases near λ = 0 which makes the spectral density

unbounded. We apply a differencing operator to avoid non-integrability of the

spectral density. For d = 1, we consider the simple differencing operator and for

d > 1, we use a discrete Laplacian operator defined as ∆ϕ(Z(s)) =
∑d

j=1 Z(s+

ej)− 2Z(s) + Z(s− ej), where ej is the unit vector whose jth entry is 1.

We introduce a lattice process Y τ
ϕ (J) obtained by applying the Laplacian

operator τ times. That is, Y τ
ϕ (J) ≡ (∆ϕ)

τ (Z(J)). The spectral density of Y τ
ϕ is

then given by

f̄ τ
ϕ (λ) =

{ d∑
j=1

4 sin2(
λj

2
)
}2τ

f̄ϕ(λ). (2.1)



1732 WEI-YING WU AND CHAE YOUNG LIM

Here we have

lim
ϕ→0

ϕd−θf̄ τ
ϕ (λ) = c

{ d∑
j=1

4 sin2
(λj

2

)}2τ ∑
Q∈Zd

|(λ+ 2πQ)|−θ I{λ ̸=0}, (2.2)

for λ ∈ (−π, π]d. We let gc,θ(λ) be the limit in (2.2) that is obtained from

the condition (1.2). Here IA is the indicator function of the set A. gc,θ (λ) is

integrable by choosing τ such that 4τ − θ > −d for d > 1, and 2τ − θ > −d for

d = 1. For simplicity, we assume that we have Y τ
ϕ (J) at J ∈ Tm = {1, . . . ,m}d

after differencing Z(s) τ times, and ϕ is set as ϕ = m−1 so that we are considering

a fixed domain asymptotic setting.

The periodogram, a nonparametric estimate of the spectral density of Y τ
ϕ (J)

is defined as Iτm(λ) = (2πm)−d
∣∣∣∑J∈Tm

Y τ
ϕ (J) exp{−iλTJ}

∣∣∣2 . A smoothed pe-

riodogram at Fourier frequencies is defined as Îτm (2πJ/m) =
∑

K∈Tm Wh(K)Iτm
(2π(J +K)/m) , where Tm ≡ {−⌊(m − 1)/2⌋, · · · ,m − ⌊m/2⌋}d is the set of

Fourier frequencies and ⌊x ⌋ is the largest integer not greater than x. Wh(K) is

a weight defined as Wh(K) = Λh(2πK/m)
/∑

L∈Tm Λh( 2πL/m), where Λh(s) =

(1/h)Λ (s/h) I{||s ||≤h} for a nonnegative symmetric continuous function Λ on Rd

with Λ(0) > 0, and || · || is the max norm || s || = max{|s1|, |s2|, . . . , |sd|}. We

refer the reader to Wu, Lim, and Xiao (2013) for more discussion on the spectral

density and its limit, as well as the periodogram.

We need some assumptions on the spectral density f (λ).

Assumption 1. Let f(λ) be the spectral density of a stationary Gaussian ran-

dom field Z(s) on Rd.

(A) f(λ) satisfies f (λ) ∼ c |λ|−θ as |λ| → ∞, for some c > 0, θ > d.

(B) f (λ) is twice differentiable and there exists a positive constant C such that,

for |λ| > C,∣∣∣∣ ∂λj
f(λ)

∣∣∣∣ (1 + |λ|)θ+1 and

∣∣∣∣ ∂2

λjλk
f(λ)

∣∣∣∣ (1 + |λ|)θ+2 (2.3)

are uniformly bounded for j, k = 1, . . . , d.

(C) f(λ) satisfies f(λ) ≍ (1 + |λ|)−θ for all possible λ.

The Assumption 1 (A) means f (λ) /c |λ|−θ → 1 as |λ| → ∞, and 1 (C)

means there exist C1 and C2 such that 0 < C1 ≤ f(λ)/(1+ |λ|)−θ ≤ C2 < ∞ for

all possible λ. There are several models that satisfy the Assumption 1. Two

examples are considered in the simulation study section: a damped oscillation

model (Yaglom (1987)) and a Matérn model (Stein (1999)). A Matérn model

and its variants are commonly used in modeling spatial data.
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Wu, Lim, and Xiao (2013) introduced a local Whittle likelihood-type estima-

tor for θ that utilizes Fourier frequency information around some fixed non-zero

frequency (e.g. (π/2)1d). The difference from the local Whittle likelihood is that

Wu, Lim, and Xiao (2013) considered a weighted local Whittle likelihood using

a kernel function. Fourier frequencies used to obtain the estimator in Wu, Lim,

and Xiao (2013) are getting close to that fixed non-zero frequency as the sample

size increases. This motivates us to consider a modified objective function to

estimate the parameters (c, θ):

Rm(c, θ) = log

(
md−θgc,θ

(
2πJ

m

))
+

1

md−θ

Îτm(2πJ/m)

gc,θ(2πJ/m)
, (2.4)

where gc,θ(2πJ/m) is introduced as (2.2). This objective function considers

Fourier frequencies near the fixed non-zero frequency, say, 2πJ/m, through the

smoothed periodogram Îτm. The fixed non-zero frequency can be chosen such

that 2πJ/m is the closest to (π/2)1d as in Wu, Lim, and Xiao (2013). Although

it looks like it is using information at only one non-zero Fourier frequency, it

is not. The estimators of c and θ obtained by minimizing (2.4) have similar

asymptotic properties to the ones introduced in Wu, Lim, and Xiao (2013). To

avoid confusion in notation, we use c0 and θ0 for the true values of c and θ,

respectively. Then, the estimators of c and θ are given by

cm = argmin
c∈C

Rm(c, θ0), (2.5)

θm = argmin
θ∈Θ

Rm(c∗, θ), (2.6)

where C and Θ are the parameter spaces of c and θ, respectively. Here c∗ > 0 is

a fixed value that may not be equal to the true value, c0. Theorem 1 gives the

consistency and asymptotic distribution of cm. The consistency and convergence

rate of θm are given in Theorem 2. The asymptotic distribution for θm when

c∗ = c0, is given in Theorem 3.

We write
p−→ for the convergence in probability, and

d−→ for the convergence

in distribution.

Theorem 1. For a stationary Gaussian random field Z(s) on Rd satisfying

Assumption 1, suppose 4τ > θ0 − 1 and h = κm−γ for some κ > 0, where γ

satisfies max{0, (d − 2)/d} < γ < 1. Assume that J satisfies J = ⌊(m/4)1d⌋,
and that c0 is in the interior of the parameter space C, a closed interval. Then,

cm
p−→ c0, and (2.7)

mη(cm − c0)
d−→ N

(
0 , c20

Λ2

Λ2
1

(2π
κ

)d)
, (2.8)

where Λr =
∫
[−1,1]d Λ

r(s)ds and η = d(1− γ)/2.
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Theorem 2. If the conditions of Theorem 1 hold, θ0 is in the interior of the

parameter space Θ, a closed interval, and c∗ is chosen from a closed interval C,
then

θm
p−→ θ0. (2.9)

Moreover, there exists Mϵ for 0 < ϵ < 1, δ > 0 such that for all m > Mϵ,

P

{
(log(m))−1 log

c∗

c0(1 + ϵ)
≤ θm − θ0 ≤ (log(m))−1 log

c∗

c0(1− ϵ)

}
≥ 1− δ.

(2.10)

Remark 1. Theorem 2 implies that m−θm+θ0c∗/c0−1 = op(1) and, equivalently,

θ0−θm = (log(m))−1 log(c0/c
∗)+op((log(m))−1). When c∗ = c0, we get θm−θ0 =

op((log(m))−1), a result in Wu, Lim, and Xiao (2013).

Different from the estimator in Wu, Lim, and Xiao (2013), we have strong

consistency results when d ≥ 2.

Corollary 1. For max{0, (d− 2)/d} < γ < (d− 1)/d with d ≥ 2, θm → θ0 a.e..

When the true value of c is known, the asymptotic normality of the proposed

estimator of θ can be shown.

Theorem 3. Under the conditions of Theorem 2, if c∗ = c0, we have

log(m)mη(θm − θ)
d−→ N

(
0,

Λ2

Λ2
1

(2π
κ

)d)
,

where η = d(1− γ)/2.

Remark 2. The condition on γ in Theorems 1−3, max{0, (d − 2)/d} < γ < 1,

is weaker than the condition on γ in Wu, Lim, and Xiao (2013) since it allows

a better convergence rate, η, for the estimator. For example, when d = 1, we

need 0 < γ < 1 for the asymptotic results of the proposed estimator so that

η = (1 − γ)/2 satisfies 0 < η < 1/2, where 1/3 < γ < 1 is needed for the

asymptotic results in Wu, Lim, and Xiao (2013).

The proofs of Theorems 1 and 3 are similar to those in Wu, Lim, and Xiao

(2013) so their proofs are omitted. Proofs of of Theorem 2 and Corollary 1 are

presented in the online supplementary material along with the proof of the next

result.

Theorem 4. Under the conditions of Theorem 2, (i) c∗ > c0, there exists M

such that P (θ0 ≤ θm) = 1 for m > M ; (ii) c∗ < c0, there exists M such that

P (θ0 ≥ θm) = 1 for m > M.
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Remark 3. By Theorems 2 and 4, θm will over-estimate or under-estimate θ0
when c∗ ̸= c0 for a large sample size m. As the sample size increases, θm is
getting close to θ0 from the one side of θ0. On the other hand, when c∗ = c0, θm
can be on the both sides of the true value, θ0. This property is also empirically
verified through the simulation study in section 3.

2.1. Plug-in approach to estimate c and θ

Asymptotic properties of estimators of c given θ0, and θ given c∗, are investi-
gated in Theorems 1−4. As we have a consistent estimator of θ even if we do not
know the true c, we need a consistent estimator of c without assuming θ is known.
As cm has an explicit expression, cm = (1/md−θ0)Îτm(2πJ/m)/g1,θ0(2πJ/m), we
can replace θ0 with θm to get an estimator of c when θ is unknown. It is, how-
ever, challenging to show its consistency. One could profile out c to estimate θ
and estimate c after that, but this does not work since we get a constant objec-
tive function after c is profiled out. We consider a modified plug-in approach to
produce a consistent estimator of c when θ is not known.

Recall that we have assumed the number of grid points where data are ob-
served is md but, for simplicity, we use the term ‘sample size’ to refer to m.
Suppose m can be written as m ≡ mk = ⌊ak⌋ for some positive integers a and
k. Then, consider m′

k = ⌊akρ⌋ for some 0 < ρ < 1 so that we have a sub-sample
of size m′

k by selecting every b = ⌊ak−kρ⌋-th grid point for each direction. Then,
we consider the estimator for c.

cmk
=

1

m′
k
d−θmk

Îτm′
k
(2πJ/m′

k)

g1,θmk
(2πJ/m′

k)
, (2.11)

where θmk
= argminθ∈ΘRmk

(c∗, θ) is the estimator of θ obtained by using mk

samples and Îτm′
k
(2πJ/m′

k) is a smoothed periodogram using m′
k samples. The

consistency of θmk
as k → ∞ follows from Theorem 2. The consistency of cmk

follows from

1

m′
k
d−θ0

Îτm′
k
(2πJ/m′

k)

g1,θm′
k

(2πJ/m′
k)

g1,θm′
k

(2πJ/m′
k)

g1,θmk
(2πJ/m′

k)

p−→ c0,

log(m′
k
θ0−θmk ) = (θ0 − θmk

) log(m′
k) = Op

(
log(m′

k)

log(mk)

)
= op(1).

Although this approach provides a consistent estimator of (c, θ) when both
parameters are unknown, a more efficient approach is needed to improve the
performance of the estimator in finite samples.

Another issue is the bias of θm. From simulations, we found that the further
the bias grows the further c∗ is from c0. This affects the estimation of c using the
above approach. To reduce such impact, we propose a one-step bias reduction
approach to estimating θ.
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2.2. Bias reduction in the estimation of θ

We have θ0 − θm = (log(m))−1 log(c0/c
∗) + op((log(m))−1) from Remark 1.

Consider a sub-sample of sizem1 < m and an estimate constructed usingm1 sam-

ples. Then, we have the alternative relationship θ0−θm1 = (log(m1))
−1 log(c0/c

∗)+

op((log(m1))
−1). Combining the two, we have

log
(c0
c∗

)
=

θm − θm1(
(log(m1))

−1 − (log(m))−1
) + op(1),

and this leads us to propose a bias-reduced estimate of θ,

θ∗m = θm + (log(m))−1

(
θm1 − θm

(log(m))−1 − (log(m1))
−1

)
.

For a fixed c∗, we have θm − θ0 = Op((log(m))−1). With the bias-reduced

estimate, θ∗m, we have

θ∗m − θ0 = θm + (log(m))−1

(
θm1 − θm

(log(m))−1 − (log(m1))
−1

)
− θ0

= − (log(m))−1 log
(c0
c∗

)
+ op((log(m))−1)

+ (log(m))−1
(
log
(c0
c∗

)
+ op(1)

)
= op((log(m))−1).

With this bias-reduced estimate, we can obtain a new estimate for c, say, c∗m
by plugging in θ∗m,

c∗m =
1

md−θ∗m

Îτm(2πJ/m)

gθ∗m(2πJ/m)
.

This estimate is consistent since (1/md−θ0)Îτm(2πJ/m)/gθ0(2πJ/m) →p c0 and

θ∗m − θ0 = op((log(m))−1). As with earlier results, we can show that

mη (c∗m − amc0)
d−→ N

(
0 , c20

Λ2

Λ2
1

(
2π

κ

)d
)
,

where am =
(
(gθ0/gθ∗m)m

θ∗m−θ0
)
→p 1 under similar conditions as the those of

Theorem 1. However, we have been unable to show the asymptotic normality of

c∗m since it is not easy to obtain the convergence rate of am.

3. Numerical Results

Some simulations were conducted to evaluate performance of the proposed

estimation method and the bias-reduced estimate of θ. A data example was also

carried out. The expression of gc,θ(λ) in (2.2) involves an infinite sum so that



ESTIMATION OF SMOOTHNESS OF A RANDOM FIELD 1737

we need to truncate it in practice. We used Q ∈ [−n, n]d ∩ Zd with n = 60 for

truncation. The results with n = 30 were also looked at and not much difference

in the results was found.

3.1. Simulation studies on R
We investigated performance of the bias-reduced estimate, and compared it

with approaches lacking bias correction, using two covariance models on R. The
first was a damped oscillation covariance function on R (Yaglom (1987)), with

covariance function

K(x) = σ2 exp(−β|x|) cos(ω0x), (3.1)

for x ∈ R, where β and ω0 are positive. The spectral density for (3.1) satis-

fies f(λ) ∼ c|λ|−θ as |λ| → ∞, where c = σ2β/π and θ = 2. We considered

(σ2, β, ω0) = (π2, 1, 1) so that c0 = π and θ0 = 2.

We generated 100 data sets from the Gaussian process with covariance K.

The observation domain was [0, 10] with m = 2,000. For bias-reduced estimates,

we used m1 = 500 and 1,000. For the number of differencing steps, we took

τ = 1, 2. To obtain the smoothed periodogram, we used κ = 5 and γ = 1/3.

We compared the bias-reduced estimates with the estimator without bias-reduced

update introduced here, as well as the estimator from Wu, Lim, and Xiao (2013).

Bias was calculated as the average of difference between the estimates and

the true value. STD is the standard deviation of the estimates. Table 1 shows

the results for the comparison of estimates.

The second choice was a Matérn covariance model (Stein (1999)). We con-

sidered the isotropic Matérn covariance

K(|x|) = ϕ (β|x|)ν

Γ(ν + d/2)2ν−1
Kν(β|x|), (3.2)

where x ∈ Rd and Kν is a modified Bessel function of the second kind. The

corresponding spectral density is f(λ) = ϕβ2vπ−d/2 (β2 + |λ|2)−(ν+d/2). We took

(ϕ, β, ν) = (2, 1,1.3) with d = 1 so that (c0, θ0) = (1.13, 3.6). All other settings

were same as those in the first example except that τ = 2, 3, as τ needs to satisfy

2τ > θ0 − 1 = 3. The results are given in Table 2.

In both tables, results in the SINGLE column are comparable to those in

the WLX column. This suggests that the same asymptotic results hold for both

approaches. Also, we can see the negative bias for c∗ < c0 and the positive bias

for c∗ > c0, in the SINGLE columns in Tables 1 and 2, as supporting Theorem

4. Although we were not able to prove Theorem 4 for the WLX approach, we

conjecture that the same results holds based on the simulation results.

Tables 1 and 2 show that the bias for the estimate of θ gets larger as c∗

deviates more from the true value for both SINGLE and WLX approaches. The
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Table 1. Bias and standard deviation of the estimates of θ under different
c∗s for the covariance model given in (3.1). m = 2,000 is considered. The
first two columns under ‘Bias-reduced’ category are when m1 = 500 is used.
The next two columns under ‘Bias-reduced’ category are when m1 = 1,000
is used. The value of Bias and STD are scaled by 102.

(σ2, β, ω0) = (π2, 1, 1), (c0, θ0) = (π, 2)
τ = 1

Bias-reduced SINGLE WLX
Bias STD Bias STD Bias STD Bias STD

c∗ = 0.5 6.14 9.48 9.40 17.20 -29.73 1.00 -29.74 1.00
2 0.81 9.91 4.73 17.80 -7.38 1.02 -7.39 1.03
π -1.51 10.04 2.76 17.99 0.03 1.03 0.02 1.03
5 -4.09 10.16 0.51 18.08 7.72 1.04 7.71 1.04
25 -14.47 10.40 -8.30 18.50 34.66 1.06 34.65 1.06

τ = 2
Bias-reduced SINGLE WLX

Bias STD Bias STD Bias STD Bias STD
c∗ = 0.5 6.08 10.84 8.66 19.97 -29.75 1.01 -29.75 1.01

2 0.75 11.35 3.98 20.68 -7.40 1.03 -7.40 1.04
π -1.57 11.50 1.98 20.90 0.006 1.04 0.01 1.05
5 -4.15 11.63 -0.27 21.01 7.69 1.05 7.71 1.06
25 -14.52 11.92 -9.89 19.16 34.64 1.08 34.63 1.08

bias-reduced estimates introduced in Section 2.2 reduce the bias from that seen

in the other approaches. However, the variance gets larger. In looking at this

as a bias-variance trade-off, the MSE can be obtained from Tables 1 and 2. The

increase in MSE from SINGLE and WLX by moving c∗ away from the true value

is larger than the increase in MSE from the bias-reduced approach. For example,

MSE for the bias-reduced approach when τ = 1 and c∗ = 0.5 with m1 = 500

(Table 1) is 0.01, while MSE for SINGLE and WLX for the corresponding case is

0.09. Also, MSEs from the bias-reduced approach are more stable for various c∗

compared to SINGLE and WLX. When the fixed c∗ is the true c0, the SINGLE

and WLX approaches provide the best results. But in terms of MSE, the bias-

reduced approach provides a better result overall.

3.2. Simulation studies on R2

This section compares the perfirmance of simulation results for the proposed

approach with those of other approaches on R2. Recall that the proposed method

estimates the smoothness parameter θ while the other methods were designed to

estimate a fractal index. We took θ = 2.6, which corresponds to the fractal index

α = 0.6, and θ = 4.4, which case does not have a corresponding fractal index.
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Table 2. Bias and standard deviation of estimates of θ under different c∗s
for the covariance model given in (3.2). m = 2,000 is considered. The first
two columns under ‘Bias-reduced’ category are when m1 = 500 is used. The
next two columns under ‘Bias-reduced’ category are when m1 = 1,000 is
used. The value of Bias and STD are scaled by 102.

(ϕ, β, ν) = (2, 1, 1.3), (c0, θ0) = (1.13, 3.6)
τ = 2

Bias-reduced SINGLE WLX
Bias STD Bias STD Bias STD Bias STD

c∗ = 0.5 5.06 12.71 7.80 19.42 -14.44 1.17 -14.28 1.26
1.13 -0.75 12.73 2.78 19.44 -0.33 1.17 -0.18 1.26
5 -11.51 12.76 -6.50 19.47 25.42 1.17 25.57 1.26
10 -16.57 12.77 -10.86 19.48 37.43 1.17 37.59 1.26
20 -21.64 12.77 -15.24 19.49 49.45 1.17 49.60 1.26

τ = 3
Bias-reduced SINGLE WLX

Bias STD Bias STD Bias STD Bias STD
c∗ = 0.5 3.35 12.75 7.15 19.53 -14.19 1.21 -14.07 1.30

1.13 -2.47 12.78 2.13 19.55 -0.09 1.22 0.04 1.30
5 -13.23 12.80 -7.15 19.58 25.66 1.22 25.79 1.30
10 -18.29 12.81 -11.51 19.60 37.68 1.22 37.80 1.30
20 -23.37 12.81 -15.89 19.60 49.70 1.22 49.83 1.30

We considered the approaches of Davies and Hall (1999) and Zhu and Stein

(2002) for the comparison. Both use the least square estimate from the linear

relation of the logarithm of variogram with a fractal index by replacing the vari-

gogram with its estimate. Depending on the variogram estimate, Davies and Hall

cover both isotropic and anisotropic Gaussian fields when the data are observed

on a square grid. Zhu and Stein’s approach considers different types of filters

when calculating the variogram. In our simulation study, we used filter 1 as

described in Zhu and Stein (2002).

The Gaussian random field with the covariance function as (3.2) with (σ2, β,

ν) = (2, 2.5, 0.3) and (σ2, β, ν) = (1.5, 2.1, 1.2) was generated 100 times for each

set of parameters. The corresponding values of (c0, θ0) were (1.10, 2.60) and

(2.83, 4.40), respectively. The fractal index is well-defined for the first set of

parameters while the second set of parameters yields a smooth surface. That is

not characterized by a fractal index. The observation domain was [0, 1]2 with the

number of grids n = m2 = 1002. For bias-reduced estimates, we used m1 = 60

for the one-step update.

Our approach requires a choice of the number of differencing steps (τ), and

the number of frequencies used to calculate smoothed periodogram that is con-

trolled by κ and the value of c. We chose τ = 1, 2, κ = 1, 2, 3, 4, and three values
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Table 3. Bias and standard deviation of estimates of θ for the covariance
model given in (3.2) with d = 2 and m = 100. ‘Bias-reduced’ is our proposed
bias-reduced estimate, ’ZS’ is the Filter 1 approach of Zhu and Stein (2002)
and ’DH’ is the isotropic approach of Davies and Hall (1999). The value of
Bias and STD are scaled by 102.

(σ2, β, ν) = (2, 2.5, 0.3) (σ2, β, ν) = (1.5, 2.1, 1.2)
(c0, θ0) = (1.10, 2.60) (c0, θ0) = (2.83, 4.40)

Bias STD Bias STD
Bias-reduced 5.08 12.06 Bias-reduced 4.35 14.23
ZS 0.17 2.42 ZS - -
DH -0.30 1.78 DH -52.05 2.24

of c. For each such choice, we obtained a bias-reduced estimate and calculated

bias and standard deviation using 100 datasets. We used the fractaldim pack-

age in R to obtain the estimates from the approaches of Davies and Hall (1999)

and Zhu and Stein (2002). Table 3 gives the results.

The results for the first set of parameters show that DH and ZS are better

than our approach on R2, while our approach is better for the second set of

parameters. The fractaldim package in R did not produce meaningful values

for the ZS approach. Simulations suggest that the approaches developed for

estimating a fractal dimension work well for estimating θ when the range of θ is

restricted to define a fractal index but do not work well otherwise. Our approach

can estimate θ reasonably well regardless of the range of θ.

3.3. Simulation studies on non-Gaussian or non-stationary processes

This section compares the results of the proposed approach with DH and ZS

approaches on R2 for a non-Gaussian random field and a non-stationary random

field. We wanted to investigate the robustness of our approach under violations

of Gaussianity and stationarity.

For a non-Gaussian random field, we considered a χ2 random field con-

structed by taking a square of a Gaussian random field. For the simulation, we

generated 100 sets of a simulated χ2 random field from the Gaussian random

field with covariance function as (3.2) using (σ2, β, ν) = (2, 2.5, 0.3) with the

same observation domain and the number of grids as in section 3.2. For a non

stationary random field, we considered a fractional Brownian surface that has a

variogram γ(h) = C|h|α, where α ∈ (0, 2). We took α = 1.4 in the simulation

study.

As described in Section 3.2, we obtained the estimates using our proposed

approach, DH and ZS for both cases. Table 4 shows the bias and standard

deviation results. They indicate that DH and ZS are better overall than our

approach. Here, for a χ2 random field, we started from a Gaussian random field
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Table 4. Bias and standard deviation of estimates from θ for a fractional
Brownian surface (non-stationary) and a χ2 field (non Gaussian). ‘Bias-
reduced’ is our proposed bias-reduced estimate, ’ZS’ is the Filter 1 approach
of Zhu and Stein (2002) and ’DH’ is the isotropic approach of Davies and
Hall (1999). The value of Bias and STD are scaled by 102.

χ2 field Fractional Brownian surface
Bias STD Bias STD

Bias-reduced -7.41 14.82 Bias-reduced 7.54 12.89
ZS -4.24 3.84 ZS -0.05 2.55
DH -5.89 3.36 DH -1.05 4.58

with a well-defined fractal index. Thus, one expects a similar result as in Table

3. Despite this, the results are reasonable since the simulated data violated our

assumption of a stationary Gaussian random field.

3.4. Data examples

For a data example, we considered the arctic sea-ice profile data analyzed

by Gneiting, Ševč́ıková, and Percival (2012). Various estimation methods of the

fractal dimension are reviewed and applied to their data.

The data are sonar measurements of the underwater surface of sea-ice in the

Arctic Ocean by submarines. The data are collected by the U.S. Navy and are

available from the National Snow and Ice Data Center at http://nsidc.org/

data/docs/noaa/g01360_upward_looking_sonar. The resolution of the data is

one meter. For comparisons , we used the same profiles (sc98drft.002, 003 and

005-008) that were used in Gneiting, Ševč́ıková, and Percival (2012). Thus, we

used the same blocks of six profiles that were shown in their Figure 23. Each block

is 1,024 meters long so that the sample size is 1,024. We reproduce Figure 23 in

our Figure 1. Although some blocks clearly show non-Gaussianity and/or non-

stationarity, we did not do any transformation to alleviate such characteristics

to compare the results provided in Gneiting, Ševč́ıková, and Percival (2012).

To obtain the estimate from the proposed method, we considered κ = 5, 10,

20, 25 and γ = 1/3 for bandwidth in computing smoothed periodograms. We

set τ = 1, 2, 3 and c∗ = 0.5, 2, 5, 10, 20. For the bias-reduced estimate, we chose

m1 = m/2 = 528. Then, we obtained 4×3×5 = 60 estimates for each block from

six sea-ice profiles. We report the averaged value and standard deviation among

these 60 values (in parentheses) in Table 5. Note that this standard deviation is

different from the standard deviation we reported for the simulation study since

the standard deviation in the simulation study is calculated among estimates

from repeated data sets. The values of estimates from other methods are also

given in the Table 5; they are taken from Gneiting, Ševč́ıková, and Percival

(2012).

http://nsidc.org/data/docs/noaa/g01360_upward_looking_sonar
http://nsidc.org/data/docs/noaa/g01360_upward_looking_sonar
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Figure 1. 6 artic sea-ice profiles: Each plot corresponds to a 1,024-length
window from each profile.

The proposed bias-reduced estimates are comparable with estimates from

other methods. Our estimates are similar to those from other methods for

a possibly non-stationary profile (sc98drftm.007) and a non-Gaussian profile

(sc98drftm.008), indicating that our approach is comparable to the other meth-

ods for some non-stationary or non-Gaussian data.

4. Discussion

For the bias-reduced estimate, we need to choose m1, a sub-sample size,

to have another estimate to do the one-step update. Simulations show that

the results are comparable for some different choices of m1, but this could be

investigated further.

The proposed estimation method of estimating the smoothness parameter,

θ, can be used to estimate a fractal index, as seen in simulations and a data

example.

The objective function in Wu, Lim, and Xiao (2013) is not a local Whittle

likelihood but a local Whittle-type objective function given that (asymptotic)

Whittle likelihood has not been verified as a valid likelihood for some limiting
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Table 5. Fractal dimension estimate of sea-ice profiles. The estimates from
other methods were adopted from Gneiting, Ševč́ıková, and Percival (2012).

Method sc98drftm.002 sc98drftm.003 sc98drftm.005
Variogram 1.43 1.37 1.38
Variation(1) 1.37 1.38 1.29
Variation(0.5) 1.32 1.37 1.24
Hall-Wood 1.39 1.35 1.30

Proposed approach 1.47(0.19) 1.32(0.17) 1.32(0.06)

Method sc98drftm.006 sc98drftm.007 sc98drftm.008
Variogram 1.40 1.42 1.30
Variation(1) 1.32 1.42 1.33
Variation(0.5) 1.27 1.38 1.31
Hall-Wood 1.30 1.43 1.32

Proposed approach 1.39(0.06) 1.41(0.28) 1.31(0.18)

process under infill asymptotics. Even without the validity of the Whittle likeli-

hood, one can still consider using more than local frequencies. However, to show

the asymptotic properties of estimators, we need asymptotic properties of the

sum of periodograms at those frequencies; this is not available and fairly chal-

lenging to show. Not many properties are known under infill asymptotics and we

expect loss of efficiency in using a local Whittle Likelihood-type approach. As

we did not assume any parametric spectral density model, efficiency loss may be

unavoidable.

Supplementary Materials

The online supplementary material contains the proofs of some results in

Section 2.
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